R. Pittau (U. of Granada) WSA, June 29^{th} , 2010

1 Why (N)NLO QCD calculations?

R. Pittau (U. of Granada) WSA, June 29th, 2010 R[ecent developments and results in theoretical perturbative QCD](#page-0-0)

- **1** Why (N)NLO QCD calculations?
- **2** Techniques (mainly NLO)

- **1** Why (N)NLO QCD calculations?
- **2** Techniques (mainly NLO)
- **3** Tools

- **1** Why (N)NLO QCD calculations?
- **2** Techniques (mainly NLO)
- **3** Tools
- **4** Recent Results

Why (N)NLO QCD calculations?

(N)NLO QCD calculations at Hadron Colliders are needed for:

 α_s m_t M_W M_H \cdots

- Heavy New Physics states undergo long chain decays
- **SM Processes accompanied by multi-jet activity**

Why (N)NLO OCD [Techniques](#page-12-0) [Tools](#page-27-0) [Recent Results](#page-33-0)

From Dixon's talk at HO-2010

R. Pittau (U. of Granada) WSA, June 29th, 2010 Recent developments and results in theoretical perturbative OCD

W NNLO rapidity distribution at TEVATRON

Catani, Ferrera, Grazzini

• Now the normalization is trustable

Moretti, Piccinini, R. P., Treccani using MLM matching

ALPGEN vs Tevatron $W + i$ data

The Les Houches NLO Wishlist (LHC but also Tevatron)

Priority list of processes experimentalist wish to know at NLO Z. Bern et. al., arXiv:0803.0494

2009 update

- $pp \rightarrow t\bar{t}t\bar{t}$ $pp \rightarrow 4j$ $pp \rightarrow W + 4j$ • $pp \rightarrow Z + 3j$ • $pp \rightarrow W b \bar{b} i$
- See the Les Houches 2009 Proceedings

J. R. Andersen et. al., arXiv:1003.1241 [hep-ph]

The SM and NLO multileg working group

J.R. Andersen, J. Archibald, S. Badger, R.D. Ball, G. Bevilacqua, I. Bierenbaum, T. Binoth, F. Boudjema, R. Boughezal, A. Bredenstein, R. Britto, M. Campanelli, J. Campbell, L. Carminati, G. Chachamis, V. Ciulli, G. Cullen, M. Czakon, L. Del Debbio, A. Denner, G. Dissertori, S. Dittmaier, S. Forte, R. Frederix, S. Frixione, E. Gardi, M.V. Garzelli, S. Gascon-Shotkin, T. Gehrmann, A.Gehrmann-De Ridder, W. Giele, T. Gleisberg, E.W.N. Glover, N. Greiner, A. Guffanti, J.-Ph. Guillet, A. van Hameren, G. Heinrich, S. Hoeche, M. Huber, J. Huston, M. Jaquier, S. Kallweit, S. Karg, N. Kauer, F. Krauss, J.I. Latorre, A. Lazopoulos, P. Lenzi, G. Luisoni, R. Mackeprang, L. Magnea, D. Maitre, D. Majumder, I. Malamos, F. Maltoni, K. Mazumdar, P. Nadolsky, P. Nason, C. Oleari, F. Olness, C.G. Papadopoulos, G. Passarino, E. Pilon, R. Pittau, S. Pozzorini, T. Reiter, J. Reuter, M. Rodgers, G. Rodrigo, J. Rojo, G. Sanguinetti, F.-P. Schilling, M. Schumacher, S. Schumann, R. Schwienhorst, P. Skands, H. Stenzel, F. Stoeckli, R. Thorne, M. Ubiali, P. Uwer, A. Vicini, M. Warsinsky, G. Watt, J. Weng, I. Wigmore, S. Weinzierl, J. Winter, M. Worek, G. Zanderighi

R. Pittau (U. of Granada) WSA, June 29th, 2010 R[ecent developments and results in theoretical perturbative QCD](#page-0-0)

Effort Distribution at NLO

A typical
$$
2 \to m
$$
 process at NLO
\n
$$
\sigma^{NLO} = \int_m d\sigma^B + \int_m \left(d\sigma^V + \int_1 d\sigma^A \right) + \int_{m+1} \left(d\sigma^R - d\sigma^A \right)
$$

- $\mathbf{\Omega}$ $d\sigma^B$ is the Born cross section
- $\bm{2}$ $d\sigma^V$ is the Virtual correction (loop diagrams)
- $\mathbf{3}$ $d\sigma^R$ is the Real correction
- \bullet $d\sigma^{A}$ and $\int_{1}d\sigma^{A}$ are *unintegrated* and *integrated* counterterms (allowing to compute the Real part in 4 dimensions)

The Virtual corrections

$$
\mathcal{M}^{1-loop} = \sum_{i} d_i \text{ Box}_i + \sum_{i} c_i \text{ Triangle}_i + \sum_{i} b_i \text{ Bubble}_i + \sum_{i} a_i \text{ Tadpole}_i + R + \mathcal{O}(\epsilon)
$$

Scalar Loop Functions ∗

$$
\text{Tadpole}_i = \int d^n \bar{q} \frac{1}{\bar{D}_0} \qquad \qquad \text{Bubble}_i = \int d^n \bar{q} \frac{1}{\bar{D}_0 \bar{D}_1}
$$

Triangle_i =
$$
\int d^n \bar{q} \frac{1}{\bar{D}_0 \bar{D}_1 \bar{D}_2}
$$
 Box_i = $\int d^n \bar{q} \frac{1}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3}$

∗ Known analytically

$$
\bar{D}_i = (\bar{q} + p_i)^2 - m_i^2 \quad \text{and} \quad n = 4 + \epsilon
$$

The OPP Method (Ossola, Papadopoulos, Pittau, 2007)

Working at the *integrand* level

$$
\mathcal{M}^{1-loop}=\int d^n\bar{q}\;\left[\mathcal{A}(q)+\tilde{A}(q,\tilde{q},\epsilon)\right]
$$

$$
\left(\begin{array}{c} \bar{q}=q+\tilde{q}\\ n=4+\epsilon\end{array}\right)
$$

• For example, in the case of $pp \rightarrow t\bar{t}b\bar{b}$

The function to be sampled numerically to extract the coefficients

$$
N_i^{(6)}(q) = \sum_{i_0 < i_1 < i_2 < i_3}^{5} \left[d(i_0 i_1 i_2 i_3) + \tilde{d}(q; i_0 i_1 i_2 i_3) \right] D_{i_4} D_{i_5} + \sum_{i_0 < i_1 < i_2}^{5} \left[c(i_0 i_1 i_2) + \tilde{c}(q; i_0 i_1 i_2) \right] D_{i_3} D_{i_4} D_{i_5} + \sum_{i_0 < i_1}^{5} \left[b(i_0 i_1) + \tilde{b}(q; i_0 i_1) \right] D_{i_2} D_{i_3} D_{i_4} D_{i_5} + \sum_{i_0}^{5} \left[a(i_0) + \tilde{a}(q; i_0) \right] D_{i_1} D_{i_2} D_{i_3} D_{i_4} D_{i_5} + \tilde{P}(q) D_{i_0} D_{i_1} D_{i_2} D_{i_3} D_{i_4} D_{i_5}
$$

Why (N)NLO OCD [Techniques](#page-12-0) [Tools](#page-27-0) [Recent Results](#page-33-0)

Solving the OPP Equation 1

• The functional form of the *spurious* terms should be known Ossola, Papadopoulos, R. P., Nucl.Phys.B763:147-169,2007 del Aguila, R. P., JHEP 0407:017,2004

Example
$$
(p_0 = 0)
$$

\n
$$
\tilde{d}(q; 0123) = \tilde{d}(0123) \epsilon(qp_1p_2p_3)
$$
\n
$$
\int d^n \bar{q} \frac{\tilde{d}(q; 0123)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} = \tilde{d}(0123) \int d^n \bar{q} \frac{\epsilon(qp_1p_2p_3)}{\bar{D}_0 \bar{D}_1 \bar{D}_2 \bar{D}_3} = 0
$$

The coefficients $\{d_i, c_i, b_i, a_i\}$ and $\{\tilde{d}_i, \tilde{c}_i, \tilde{b}_i, \tilde{a}_i\}$ are extracted by solving linear systems of equations

[Why \(N\)NLO QCD](#page-5-0) [Techniques](#page-12-0) [Tools](#page-27-0) [Recent Results](#page-33-0)

Solving the OPP Equation 2

The use of special values of q helps

$$
D_0(q^{\pm}) = D_1(q^{\pm}) = D_2(q^{\pm}) = D_3(q^{\pm}) = 0
$$

$$
N^{(m-1)}(q^{\pm}) = \left[d(0123) + \tilde{d}(q^{\pm}; 0123)\right] \prod_{i \neq 0,1,2,3}^{m-1} D_i(q^{\pm})
$$

$$
d(0123) = \frac{1}{2} \left[\frac{N^{(m-1)}(q^+)}{\prod_{i \neq 0,1,2,3}^{m-1} D_i(q^+)} + \frac{N^{(m-1)}(q^-)}{\prod_{i \neq 0,1,2,3}^{m-1} D_i(q^-)} \right]
$$

· · ·

•
$$
N(q) = 1
$$

\n• $D_0(q^{\pm}) = D_1(q^{\pm}) = D_2(q^{\pm}) = D_3(q^{\pm}) = 0$
\n $d(0123) = \frac{1}{2} \left[\frac{1}{D_4(q^+)D_5(q^+)D_6(q^+)} + \frac{1}{D_4(q^+)D_5(q^+)D_6(q^+)} \right]$

What about $R (= R_1 + R_2)?$

The origin of R_1

$$
\frac{1}{\bar{D}_i} = \frac{1}{D_i} \left(1 - \frac{\tilde{q}^2}{\bar{D}_i} \right) \ \Rightarrow \text{predicted within OPP}
$$

The origin of R_2

$$
R_2 = \int d^n \bar{q} \frac{\tilde{N}(q, \tilde{q}, \epsilon)}{\bar{D}_0 \cdots \bar{D}_{m-1}} \Rightarrow \text{effective tree-level Feynman Rules*}
$$

∗ QCD: Draggiotis, Garzelli, Papadopoulos, R. P., JHEP 0904:072,2009 EW: Garzelli, Malamos, R. P., JHEP 1001:040,2010

Recursion Relations at 1-loop (cutting)

 \bullet OPP + hard-cut allow to use the same tree-level Recursion Relations for $m + 2$ tree-like structures

• The color can be treated as at the tree level

In the meanwhile \cdots

\cdots on the other side of the ocean \cdots

Why (N)NLO OCD [Techniques](#page-12-0) [Tools](#page-27-0) [Recent Results](#page-33-0)

Cutting \cdots (Gluing \cdots)

• Double cuts \Leftrightarrow gluing 2 tree-level amplitudes (Bern, Dixon, Dunbar, Kosower 1994)

• Different double cuts are applied to disentangle 1-loop scalar functions by looking at the analytic structure of the result

• R is reconstructed by looking at collinear and infrared limits

[Why \(N\)NLO QCD](#page-5-0) [Techniques](#page-12-0) [Tools](#page-27-0) [Recent Results](#page-33-0)

\cdots and more cutting $(\cdots$ more gluing)

 \bigcirc Quadruple cuts \Leftrightarrow gluing 4 tree-level amplitudes (Britto, Cachazo, Feng, hep-th/0412103)

- **2** q integration frozen \Rightarrow coefficient d_i of the box extracted
- **3** 3 bubbles are connected together, the box contributions subtracted and the *coefficients* c_i of the triangles extracted
- ⁴ · · ·

Generalized Unitarity (Relevant References)

- Bern, Dixon, Dunbar, Kosower (1994)
- Ossola, Papadopoulos, R. P., hep-ph/0609007
- Forde, 0704.1835
- Ellis, Giele, Kunszt, 0708.2398
- Berger et al., 0803.4180

The Real Corrections

• Feynman Diagrams avoided (Berends, Giele, Caravaglios, M. Moretti)

R. Pittau (U. of Granada) WSA, June 29th, 2010 R[ecent developments and results in theoretical perturbative QCD](#page-0-0)

The Counterterms

The Catani-Seymour dipoles

- Catani, Seymour, Nucl. Phys. B485, 291 (1997)
- Catani, Dittmaier, Seymour, Trocsanyi, Nucl. Phys. B627, 189 (2002)
- Czakon, Papadopoulos, Worek, JHEP 0908 (2009) 085
	- Massless Massive Polarized

The FKS subtraction

• Frixione, Kunszt, Signer, hep-ph/9512328

The Antenna subtraction

- Kosower, Phys. Rev. D 71 (2005) 045016
- Campbell, Cullen Glover, Eur. Phys. J. C 9 (1999) 245

R. Pittau (U. of Granada) WSA, June 29th, 2010 R[ecent developments and results in theoretical perturbative QCD](#page-0-0)

NLO Parton Level Tools

Analytic formulae

• MCFM [Campbell et al.]

Feynman Diagrams

- O DKU, HAWK · · · [Bredenstein, Denner, Dittmaier, Pozzorini et al.]
- FormCalc/LoopTools/FeynCalc [Hahn et al.]
- **GOLEM** [Binoth et al.]
- **GRACE** [Belanger, Boudjema et al.]

OPP/Unitarity

- **HELAC-NLO/CutTools** [Papadopoulos, R. P. et al.]
- **BlackHat/SHERPA** [Berger et al.]
- Rocket/MCFM [Ellis et al.]
- **Samurai** [Mastrolia, Ossola, Reiter, Tramontano]

The Helac-NLO System

- Ω CutTools $\{d_i, c_i, b_i, a_i\}$ and R_1
- ² HELAC-1LOOP $N(q)$ and R₂
- **3** OneLOop scalar 1-loop integrals
- **4** HELAC-DIPOLES

Real correction and CS dipoles

(figure by G. Bevilacqua)

- Ossola, Papadopoulos, R. P., JHEP 0803 (2008) 042
- van Hameren, Papadopoulos, R. P., JHEP 0909 (2009) 106
- Czakon, Papadopoulos, Worek, JHEP 0908 (2009) 085

The HELAC-NLO group $*$

G. Bevilacqua M. Czakon M. Garzelli M. Worek

A. van Hameren A. Kardos A. Lazopoulos

J. Malamos C.G. Papadopoulos R. P.

Contributors

Caffarella Draggiotis Kanaki Ossola

Tuned comparisons

- Agreement between two completely different techniques
- Agreement on $pp \rightarrow ZZ + i + X$ between GOLEM and Dittmaier, Kallweit and Uwer

R. Pittau (U. of Granada) WSA, June 29th, 2010 R[ecent developments and results in theoretical perturbative QCD](#page-0-0)

A proposal for
$$
\leftrightarrow
$$
 can be found in

Binoth et al. arXiv:1001.1307

Tools for the Real Radiation

Automation of the subtraction methods

- Gleisberg, Krauss, 0709.2881
- Seymour, Tevlin, 0803.2231
- Hasegawa, Moch, Uwer, 0807.3701
- Frederix, Gehrmann, Greiner, 0808.2128
- Czakon, Papadopoulos, Worek, 0905.0883
- Frederix, Frixione, Maltoni, Stelzer, 0908.4272
- Frederix, Gehrmann, Greiner, 1004.2905

Adding PS consistently at NLO

- MC@NLO Frixione, Webber (2002)
- POWHEGNason(2004); Frixione, Nason, Oleari (2007)
- GenEvABauer, Tackmann, Thaler (2008)

Not yet for arbitrary complex final states

A NLO analysis of ttH production vs $ttbb$ and $ttjj$ backgrounds

Based on arXiv:1003.1241 [hep-ph], Phys.Rev.Lett.104:162002,2010 and JHEP 0909:109,2009

R. Pittau (U. of Granada) WSA, June 29th, 2010 Recent developments and results in theoretical perturbative OCD

Cross sections at NLO

 $pp \rightarrow t\bar{t}bb + X$

$$
\begin{array}{c|c|c}\n\sigma_{LO}^B \text{ [fb]} & \sigma_{NLO}^B \text{ [fb]} & K\text{-factor} \\
\hline\n1489.2 \pm 0.9 & 2642 \pm 3 & 1.77\n\end{array}
$$

 $\mu_R = \mu_F = \mu_0 = m_t$ (CTEQ6)

$pp \rightarrow t\bar{t}H + X \rightarrow t\bar{t}b\bar{b} + X$

$$
\begin{array}{c|c|c|c}\n\sigma_{LO}^{S} \text{ [fb]} & \sigma_{NLO}^{S} \text{ [fb]} & K\text{-factor} \\
\hline\n150.375 \pm 0.077 & 207.268 \pm 0.150 & 1.38\n\end{array}
$$

 $\mu_R = \mu_F = \mu_0 = m_t + m_H/2$ (CTEQ6)

 $p_T (b) > 20 \text{ GeV}, \ \Delta R (b, \bar{b}) > 0.8, \ |\eta_b| < 2.5$

R. Pittau (U. of Granada) WSA, June 29th, 2010 R[ecent developments and results in theoretical perturbative QCD](#page-0-0)

Distributions at NLO

Scale dependence of the ttbb Background

Scale dependence of the Signal

The effect of a jet veto on the Signal/Background ratio

• With $p_T(i) < 50$ GeV:

$$
(S/B)_{LO}
$$
 = 0.10 $(S/B)_{NLO-veto}$ = 0.064
\n $(S/B)_{NLO}$ = 0.079

Scale dependence of the $ttjj$ Background

m_{ij} distribution of the $ttjj$ Background

Hardest jet p_T distribution of the $ttjj$ Background

NLO QCD corrections to $pp \rightarrow e^+e^-$ at the LHC

Parameters

$$
\sqrt{s} = 7 \text{ TeV} \qquad p_T(\ell^{\pm}) > 1 \text{ GeV} \quad |\eta(\ell^{\pm})| < 5
$$

$$
m_{\ell^+\ell^-} > 60 \text{ GeV} \quad \mu_F = \mu_R = M_Z
$$

Results cross-checked with MCFM

The $p_t(\ell^+)$ and $y(\ell^+)$ distributions

The $\Delta R_{\ell^+\ell^-}$ distribution

NLO QCD corrections to $pp \rightarrow W^+ \rightarrow e^+ \nu_e$ at the LHC

Parameters

$$
\begin{aligned} \sqrt{s} &= 7 \text{ TeV} & p_T(\ell^{\pm}) > 1 \text{ GeV} \\ |\eta(\ell^{\pm})| < 5 & \mu_F &= \mu_R = M_W \end{aligned}
$$

Results cross-checked with MCFM

[Why \(N\)NLO QCD](#page-5-0) [Techniques](#page-12-0) [Tools](#page-27-0) [Recent Results](#page-33-0) The $p_t(e^+)$ and $y(e^+)$ distributions $10³$ 1000 $\frac{d\sigma/dp_{\text{Test}}}{\ddot{\sigma}}\begin{bmatrix} pb/CeV\\ \ddot{\sigma}\\ E\\ \end{bmatrix}$ 800 $\rm{[ab]}$ 600 $1\sigma/dy_{\rm e+}$ 400 200 10^{-1} $\overline{20}$ 80 $\overline{100}$ -4 -2 $\frac{0}{y_{e+}}$ $p_{T,e+}$ [GeV] The $p_{t,miss}$ distribution

Single-top production at Tevatron

Schwienhorst, Frederix, Maltoni

W +3 jets at NLO

- Melnikov, Zanderighi, arXiv:0910.3671
- Ellis, Melnikov, Zanderighi, arXiv:0906.1445
- Ellis, Melnikov, Zanderighi, arXiv:0901.4101
- Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre (BlackHat)
	- arXiv:0907.1984
	- arXiv:0902.2760

$Z + 3$ jets at NLO

- BlackHat
	- a $arXiv:0912.4927$
	- arXiv:1004.1659
	- arXiv:1005.3728

R. Pittau (U. of Granada) WSA, June 29^{th} , 2010 R[ecent developments and results in theoretical perturbative QCD](#page-0-0)

W +4 jets at NLO

BlackHat

$W + 3i$ unleashed comparisons

- The use of a scale=HT reproduces the shape of the NLO calculation at LO for many relevant kinematic distributions
- The largest shape differences, of the order of 20% and 40%. are seen in the third-jet pT and HT distributions, respectively

R. Pittau (U. of Granada) WSA, June 29th, 2010 Recent developments and results in theoretical perturbative OCD

[Why \(N\)NLO QCD](#page-5-0) [Techniques](#page-12-0) [Tools](#page-27-0) [Recent Results](#page-33-0)

Higgs searches at Tevatron

- Anastasiou, Melnikov, hep-ph/0207004 \bullet
- Anastasiou, Melnikov, Petriello, hep-ph/0409088 \bullet
- Anastasiou, Boughezal, Petriello, arXiv:0811.3458 \bullet

[Why \(N\)NLO QCD](#page-5-0) [Techniques](#page-12-0) [Tools](#page-27-0) [Recent Results](#page-33-0)

NNLO QCD effects on $H \to WW \to \ell \nu \ell \nu$

G. Dissertori and F. Stöckli

• Jet vetoing reduces the K factor

NNLO Determination of $\alpha_s(M_z)$ at LEP from event shapes

Dissertori, Gehrmann-De Ridder, Gehrmann, Glover, Heinrich, Jaquier, Luisoni, Stenzel

 $\alpha_S(M_Z)^{NLO}$ = 0.1200 \pm 0.0021($exp) \pm 0.0062(th)$ $\alpha_S(M_Z)^{NNLO}$ = 0.1153 ± 0.0017(exp) ± 0.0023(th)

Understanding soft and collinear divergences at all orders

Gardi and Magnea, Becker and Neubert

$$
\mathcal{M}\left(p_i/\mu,\alpha_s(\mu^2),\epsilon\right) = Z\left(p_i/\mu_f,\alpha_s(\mu_f^2),\epsilon\right) \; \mathcal{H}\left(p_i/\mu,\mu/\mu_f,\alpha_s(\mu^2),\epsilon\right)
$$

$$
Z(p_i/\mu, \alpha_s(\mu^2), \epsilon) = \exp\left\{ \int_0^{\mu^2} \frac{d\lambda^2}{\lambda^2} \left[\frac{1}{8} \hat{\gamma}_K(\alpha_s(\lambda^2, \epsilon)) \sum_{i \neq j} \ln\left(\frac{2p_i \cdot p_j e^{-i\pi \phi_{ij}}}{\lambda^2}\right) T_i \cdot T_j - \frac{1}{2} \sum_{i=1}^n \gamma_{J_i}(\alpha_s(\lambda^2, \epsilon)) \right] \right\}.
$$

Very simple dipole structure

Conclusions and Outlooks

1 I reviewed recent developments in the field of QCD (N)NLO

calculations relevant for Hadron Collider phenomenology

- **2** The status of multileg NLO calculations is now at the same stage of multileg tree level calculations 10 years ago
- ³ An analysis of *all of the LHC data* (at least) at the NLO accuracy is possible
- ⁴ NLO public codes in preparation