Minimal Walking Technicolor Dark Matter and Collider Signatures

Mads Toudal Frandsen

University of Oxford

TOOLS2010, Southampton, June 30th 2010 m.frandsen1@physics.ox.ac.uk

Outline

2 Minimal Walking Technicolor and TIMPs

3 LHC Phenomenology and Dark Matter

• = • •

Outline

2 Minimal Walking Technicolor and TIMPs

3 LHC Phenomenology and Dark Matter

• = • •

In collaboration with:

Alexander Belyaev (Southampton U.), Roshan Foadi (Michigan State U.), Matti Jaïvinen (CP3-Origins), Alexander Pukhov (Moscow State U.), Francesco Sannino (CP3-Origins), Subir Sarkar (Oxford U.) Alexander Sherstnev (Oxford U.).

A. Belyaev, M.T.F and A. Sherstnev In progress

The origin of bright and dark mass

Composite vs 'SM-like' Higgs sector

 Natural, v_{EW} ~ F_Π dynamical. • Fine-tuning, triviality etc.

< ロ > < 同 > < 三 > < 三

Composite vs 'SM-like' Higgs sector

- Natural, v_{EW} ~ F_Π dynamical.
- Known realizations QCD and Superconductivity

- Fine-tuning, triviality etc.
- No known fundamental scalars

Composite vs 'SM-like' Higgs sector

- Natural, v_{EW} ~ F_Π dynamical.
- Known realizations QCD and Superconductivity
- Naturally stable DM.
 Ω_{DM}, Ω_B of same origin?

- Fine-tuning, triviality etc.
- No known fundamental scalars
- Hand-made stability.

Composite vs 'SM-like' Higgs sector

- Natural, v_{EW} ~ F_Π dynamical.
- Known realizations QCD and Superconductivity
- Naturally stable DM.
 Ω_{DM}, Ω_B of same origin?
- Dynamical flavor sector complicated

- Fine-tuning, triviality etc.
- No known fundamental scalars
- Hand-made stability.
- Flavor sector simply parametrized

Technicolor

EWSB from Technicolor: (Weinberg 78, Susskind 78)

In the SM without a Higgs, QCD breaks the EW symmetry:

$$\langle \bar{u}_L u_R + \bar{d}_L d_R \rangle \neq 0 \quad \rightarrow \quad M_W = \frac{g f_\pi}{2}$$

- Consider a new strongly interacting gauge theory with $F_{\Pi} = v_{EW} = 246 GeV$.
- Let the electroweak gauge group be a subgroup of the chiral symmetry group.

Technicolor

EWSB from Technicolor: (Weinberg 78, Susskind 78)

In the SM without a Higgs, QCD breaks the EW symmetry:

$$\langle \bar{u}_L u_R + \bar{d}_L d_R \rangle \neq 0 \quad \rightarrow \quad M_W = \frac{g f_\pi}{2}$$

- Consider a new strongly interacting gauge theory with $F_{\Pi} = v_{EW} = 246 GeV$.
- Let the electroweak gauge group be a subgroup of the chiral symmetry group.

Example: Scaled-up QCD !

New Strong Sector

The SM gauge group is augmented:

 ${\it G_{SM}}
ightarrow {\it SU}(3)_{
m c} imes {\it SU}(2)_{
m W} imes {\it U}(1)_{
m Y} imes {\it G}_{
m TC}$.

New Strong Sector

The SM gauge group is augmented:

$${\it G_{SM}}
ightarrow {\it SU}(3)_{
m c} imes {\it SU}(2)_{
m W} imes {\it U}(1)_{
m Y} imes {\it G}_{
m TC}$$
 .

The Higgs sector of the SM is replaced:

$$\mathcal{L}_{Higgs}
ightarrow -rac{1}{4} F^{a}_{\mu
u} F^{a\mu
u} + i ar{Q}_{\mathrm{L}} \gamma_{\mu} D^{\mu} Q_{\mathrm{L}} + i ar{Q}_{\mathrm{R}} \gamma_{\mu} D^{\mu} Q_{\mathrm{R}} + ...$$

New Strong Sector

The SM gauge group is augmented:

$$G_{SM}
ightarrow SU(3)_{
m c} imes SU(2)_{
m W} imes U(1)_{
m Y} imes G_{
m TC}$$
 .

The Higgs sector of the SM is replaced:

$$\mathcal{L}_{\text{Higgs}} \rightarrow -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i \bar{Q}_{L} \gamma_{\mu} D^{\mu} Q_{L} + i \bar{Q}_{R} \gamma_{\mu} D^{\mu} Q_{R} + ...$$

Minimal chiral symmetries: 3 GB's + Custodial + DM.

$$SU_L(2) imes SU_R(2) imes U_{TB}(1) o SU_V(2) imes U_{TB}(1)$$
 .

< 17 >

Technicolor dark matter

Technocosmology (Nussinov 85)

Lightest Technibaryon as Asymmetric Dark Matter

(日) (同) (三) (

Technocosmology (Nussinov 85)

Lightest Technibaryon as Asymmetric Dark Matter

• The LTB abundance:

$$\Omega_{TB}/\Omega_B = m_{TB}/m_B imes n_{TB}/n_B$$

(日) (同) (三) (

Technocosmology (Nussinov 85)

Lightest Technibaryon as Asymmetric Dark Matter

• The LTB abundance:

$$\Omega_{TB}/\Omega_B = m_{TB}/m_B \times n_{TB}/n_B$$

• From initial $n_B \sim n_{TB}$:

 $\begin{array}{lll} \Omega_{TB}/\Omega_B & \sim & m_{TB}/m_B \times \left(m_{TB}/T_{sphaleron}\right)^{3/2} e^{-m_{TB}/T_{sphaleron}} \\ T_{sphaleron} & \sim & v_{EW} \end{array},$

(Chivukula and Walker 90; Bahr, Chivukula and Farhi 90; Harvey and Turner 90; Ellis et al 95; Sarkar 95; Gudnason, Kouvaris and Sannino 05)

- 4 同 6 4 日 6 4 日 6

Technocosmology (Nussinov 85)

Lightest Technibaryon as Asymmetric Dark Matter

• The LTB abundance:

$$\Omega_{TB}/\Omega_B = m_{TB}/m_B \times n_{TB}/n_B$$

• From initial $n_B \sim n_{TB}$:

 $\begin{array}{lll} \Omega_{TB}/\Omega_B & \sim & m_{TB}/m_B \times (m_{TB}/T_{sphaleron})^{3/2} e^{-m_{TB}/T_{sphaleron}} \\ T_{sphaleron} & \sim & v_{EW} \ , & M_{TB} \sim TeV \end{array}$

(Chivukula and Walker 90; Bahr, Chivukula and Farhi 90; Harvey and Turner 90; Ellis et al 95; Sarkar 95; Gudnason, Kouvaris and Sannino 05)

Technocosmology (Nussinov 85)

Lightest Technibaryon as Asymmetric Dark Matter

• The LTB abundance:

$$\Omega_{TB}/\Omega_B = m_{TB}/m_B \times n_{TB}/n_B$$

• From initial $n_B \sim n_{TB}$:

 $\begin{array}{lll} \Omega_{TB}/\Omega_B & \sim & m_{TB}/m_B \times (m_{TB}/T_{sphaleron})^{3/2} e^{-m_{TB}/T_{sphaleron}} \\ T_{sphaleron} & \sim & v_{EW} \ , & M_{TB} \sim TeV \end{array}$

(Chivukula and Walker 90; Bahr, Chivukula and Farhi 90; Harvey and Turner 90; Ellis et al 95; Sarkar 95; Gudnason, Kouvaris and Sannino 05)

Or 'Dark Baryon' with m_{DB} ~ 5 - 10GeV ?
 (D.B.Kaplan 92; An, Chen, Mohapatra and Zhang 09; D.E.Kaplan, Luty and Zurek 09; Fitzpatrick, Zurek and Hooper 10; M.T.F and Sarkar 10)

Constraints from LEP

A minimal matter content in the TC sector is favored:

Constraints from LEP

A minimal matter content in the TC sector is favored:

(Kennedy and Lynn 89; Peskin and Takeuchi 90; Altarelli and Barbieri 91) $O(S \sim S_{naive})$ in Walking (near-conformal) Technicolor (?) (Sundrum and Hsu 92; Appelquist and Sannino 98; Harada, Kurachi and Yamawaki 03; Kurachi and Shrock 06; Sannino 10)

Minimal Technicolor Theory Space

Minimal Technicolor: 2 EW charged Dirac Flavors

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f .

(日) (同) (三) (三)

Minimal Technicolor Theory Space

Minimal Technicolor: 2 EW charged Dirac Flavors

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f .

Minimal Technicolor Theory Space

Minimal Technicolor: 2 EW charged Dirac Flavors

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f .

Minimal Technicolor Theory Space

Minimal Technicolor: 2 EW charged Dirac Flavors

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

Minimal Technicolor Theory Space

Minimal Technicolor: 2 EW charged Dirac Flavors

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}\right)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

'Orthogonal TC'

- \mathcal{R} real
- *F* of *SO*(*N*)
- *SU*(4)/*SO*(4)

'QCD TC'

- \mathcal{R} complex
- *F* of *SU*(*N*)
- *SU*(2)

'Symplectic TC'

- \mathcal{R} pseudo-real
- F of Sp(2N)
- *SU*(4)/*Sp*(4)

Minimal Technicolor Theory Space

Minimal Technicolor: 2 EW charged Dirac Flavors

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}\right)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

'Orthogonal TC'

- \mathcal{R} real
- *F* of *SO*(*N*)
- *SU*(4)/*SO*(4)
- $3_{\Pi} \oplus 3 \oplus \overline{3}$

'QCD TC'

- \mathcal{R} complex
- *F* of *SU*(*N*)
- *SU*(2)

● 3_Π

'Symplectic TC'

- \mathcal{R} pseudo-real
- F of Sp(2N)
- *SU*(4)/*Sp*(4)
- $\bullet \hspace{0.1cm} 3_{\Pi} \oplus 1 \oplus \overline{1}$

Minimal Technicolor Theory Space

Minimal Technicolor: 2 EW charged Dirac Flavors

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

'Orthogonal TC'

- \mathcal{R} real
- *F* of *SO*(*N*)
- *SU*(4)/*SO*(4)
- $3_{\Pi} \oplus 3 \oplus \overline{3}$ $\begin{pmatrix} \Pi & T_i \\ T_i^* & \Pi^T \end{pmatrix}$

'QCD TC'

- \mathcal{R} complex
- *F* of *SU*(*N*)
- *SU*(2)

•
$$3_{\Pi}$$

 $\Pi = \begin{pmatrix} \Pi^0 & \Pi^+ \\ \Pi^- & \Pi^0 \end{pmatrix}$

'Symplectic TC'

- \mathcal{R} pseudo-real
- F of Sp(2N)
- *SU*(4)/*Sp*(4)
- $3_{\Pi} \oplus 1 \oplus \overline{1}$ $\begin{pmatrix} \Pi & T_s \\ T_s^* & \Pi^T \end{pmatrix}$

Minimal Technicolor Theory Space

Minimal Technicolor: 2 EW charged Dirac Flavors

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

'Orthogonal TC'

- \mathcal{R} real
- *F* of *SO*(*N*)
- *SU*(4)/*SO*(4)
- $3_{\Pi} \oplus 3 \oplus \overline{3}$ $\begin{pmatrix} \Pi & T_i \\ T_i^* & \Pi^T \end{pmatrix}$

 $T_i = \begin{pmatrix} T^0 & T^+ \\ T^- & T^{0*} \end{pmatrix}$

'QCD TC'

- \mathcal{R} complex
- *F* of *SU*(*N*)
- *SU*(2)

•
$$3_{\Pi}$$

 $\Pi = \begin{pmatrix} \Pi^0 & \Pi^+ \\ \Pi^- & \Pi^0 \end{pmatrix}$

'Symplectic TC'

- \mathcal{R} pseudo-real
- F of Sp(2N)
- *SU*(4)/*Sp*(4)
- $3_{\Pi} \oplus 1 \oplus \overline{1}$ $\begin{pmatrix} \Pi & T_s \\ T_s^* & \Pi^T \end{pmatrix}$

 $T_s = \begin{pmatrix} T^0 & 0\\ 0 & T^{0*} \end{pmatrix}$

Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f .

- < 同 > < 三 > < 三 >

Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

→ Ξ →

< D > < A >

Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}\right)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

< D > < A >

< ∃ > <

Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

Sannino 09)

< D > < A >

(*) *) *) *)

Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

09)

(Bahr, Chivukula and Farhi 90; Nussinov 92) (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

・ロト ・同ト ・ヨト ・ヨト

Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f .

(M.T.F and F.Sannino 09)

(Bahr, Chivukula and Farhi 90; Nussinov 92) (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

・ロト ・同ト ・ヨト ・ヨト

Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

(M.T.F and F.Sannino 09)

(Bahr, Chivukula and Farhi 90; Nussinov 92) (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

・ロト ・同ト ・ヨト ・ヨト
Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f

(101.1.1 and 1.5a) 09) (Bahr, Chivukula and Farhi 90; Nussinov 92) (Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

・ロト ・同ト ・ヨト ・ヨト

Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f .

.F and F.Sannino

09)

(Bahr, Chivukula and Farhi 90; Nussinov 92)

٩	${\mathcal R}$ pseudo-real
٩	$T^0 \sim UD$
٩	SM singlet GB
٩	$M_{T^0}^2 \sim -g^2 F_{\Gamma}^2$

TIMP'

(Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

イロト イポト イヨト イヨト

Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f .

'iTIMP'

- \mathcal{R} real
- $T^0 \sim UD$
- Iso-singlet GB
- $M_{T^0} \sim g F_{\Pi}$

(M.T.F and F.Sannino 09)

TIMP'

- 4 of *SU*(4)
- UDUD
- SM singlet

•
$$M_T \sim N_{TC}^{3/2} F_{\Pi}$$

(Bahr, Chivukula and Farhi 90; Nussinov 92)

TIMP'

- *R* pseudo-real
- $T^0 \sim UD$

•
$$M_{T^0}^2 \sim -g^2 F_{\Pi}^2$$

(Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09)

(日) (同) (三) (三)

Dark Matter from Minimal Technicolor

TIMP: Complex scalar, charged under the $U(1)_{TB}$ symmetry

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f .

iTIMP' • \mathcal{R} real • $T^0 \sim UD$ Iso-singlet GB • $M_{T^0} \sim g F_{\Pi}$

(M.T.F and F.Sannino 09)

TIMP'

- 4 of *SU*(4)
- UDUD
- SM singlet

•
$$M_T \sim N_{TC}^{3/2} F_{\Pi}$$

TIMP'

- \mathcal{R} pseudo-real
- $T^0 \sim UD$
- SM singlet GB

•
$$M_{T^0}^2 \sim -g^2 F_{\Pi}^2$$

(Bahr, Chivukula and Farhi 90; Nussinov 92)

(Ryttov and Sannino 08; Foadi, M.T.F and Sannino 09) (Other candidates in MWT: Gudnason, Kouvaris and Sannino 05; Kainulainen,

Virkajärvi and Tuominen 06, 09, 10; Kouvaris 07; Khlopov and Kouvaris 08) 🛓

Minimal Models of Walking Technicolor

$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}
ight)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$; λ^f .

(日) (同) (三) (三)

æ

Minimal Models of Walking Technicolor

MWT model: (Sannino and Tuominen 04)

 $G_{TC} = SU(2)$. $\mathcal{R} = Adj$. Leptons.

(Dietrich, Sannino and Tuominen 05)

(日) (同) (三) (三)

Minimal Models of Walking Technicolor

MWT model: (Sannino and Tuominen 04)

 $G_{TC} = SU(2)$. $\mathcal{R} = Adj$. Leptons.

(Dietrich, Sannino and Tuominen 05)

Minimal Models of Walking Technicolor

MWT model: (Sannino and Tuominen 04)

 $G_{TC} = SU(2)$. $\mathcal{R} = Adj$. Leptons. (Dietrich, Sannino and Tuominen 05)

OMT model • $G_{TC} = SO(4)$ • $\mathcal{R} = F$

(M.T.F and F.Sannino 09)

NMWT model
•
$$G_{TC} = SU(3)$$

• $\mathcal{R} = 2S$

(Sannino and Tuominen 04) UMT model

•
$$G_{TC} = SU(2)$$

•
$$\mathcal{R} = F, Adj$$

(Ryttov and Sannino 08)

Minimal Models of Walking Technicolor

MWT model: (Sannino and Tuominen 04)

 $G_{TC} = SU(2)$. $\mathcal{R} = Adj$. Leptons. (Dietrich, Sannino and Tuominen 05)

OMT model

- $G_{TC} = SO(4)$
- $\mathcal{R} = F$
- iTIMP

(M.T.F and F.Sannino 09)

NMWT model

•
$$G_{TC} = SU(3)$$

•
$$\mathcal{R} = 2S$$

(Sannino and Tuominen 04)

UMT model

•
$$G_{TC} = SU(2)$$

•
$$\mathcal{R} = F, Adj$$

• TIMP,
$$\phi \sim \lambda \lambda$$

(Ryttov and Sannino 08)

Minimal Models of Walking Technicolor

MWT model: (Sannino and Tuominen 04)

 $G_{TC} = SU(2)$. $\mathcal{R} = Adj$. Leptons. (Dietrich, Sannino and Tuominen 05)

09)

 Other TC Models (non-minimal/including E^{OP}C): Farhi and Susskind 79; Eichten and Lane 89; Appelquist and Terning 94; Appelquist, Christensen, Pia and Shrock 04; Lane and Martin 06; Ryttov and Shrock 10

EFT for strong dynamics @ LHC

common sector:

$$SU_L(2) imes SU_R(2) imes U_{TB}(1) o SU_V(2) imes U_{TB}(1)$$
.

- New states: Lightest (axial)-vector triplets and scalar $R_1^{\pm,0}, R_2^{\pm,0}, H.$ TIMPs
- Input parameters and constraints:

 $e, G_F, M_Z; S$, Sum Rules.

• Main free parameters:

 $M_A, \tilde{g}, M_H.$

(Appelquist, Da Silva and Sannino 99; Foadi, M.T.F, Ryttov and Sannino

EFT for strong dynamics @ LHC

common sector:

$$SU_L(2) imes SU_R(2) imes U_{TB}(1) o SU_V(2) imes U_{TB}(1)$$
.

New states: Lightest (axial)-vector triplets and scalar

 $R_1^{\pm,0}, R_2^{\pm,0}, H.$ TIMPs

• Input parameters and constraints:

 $e, G_F, M_Z; S,$ Sum Rules.

• Main free parameters:

 $M_A, \tilde{g}, M_H.$

(Appelquist, Da Silva and Sannino 99; Foadi, M.T.F, Ryttov and Sannino

• EFTs for 'BESS' models, '3-site/4-site' models and LSTC (Casalbuoni, Deandrea, De Curtis, Dominici, Gatto, Grazzini 95; He et al 08; Lane and Martin 09)

Parameter space

(Foadi, M.T.F and Sannino 07 ; Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

< □ > < 同 >

Lattice simulations

(Dedicated collaborations: Lattice Strong Dynamics (US) ; Strong=BSM [(EU)] → <<

Mads Toudal Frandsen

Minimal Walking Technicolor

Mass spectrum, imposing S and WSR1

Figure: $R_{1,2}$ spectrum.

(Foadi, M.T.F, Ryttov and Sannion 08)

LHC Phenomenology

• Basic phenomenology controlled by \tilde{g} , M_A , M_H .

< ロ > < 同 > < 三 > < 三

LHC Phenomenology

• Basic phenomenology controlled by \tilde{g} , M_A , M_H .

• Different decay channels probe R_1, R_2 and H.

LHC Phenomenology

• Basic phenomenology controlled by \tilde{g} , M_A , M_H .

Different decay channels probe R₁, R₂ and H.
Di-lepton: R⁰_{1,2} → ℓ⁺ℓ⁻. Single top: R[±]_{1,2} → tb

LHC Phenomenology

• Basic phenomenology controlled by \tilde{g} , M_A , M_H .

• Different decay channels probe R_1, R_2 and H.

- Di-lepton: $R_{1,2}^0 \rightarrow \ell^+ \ell^-$. Single top: $R_{1,2}^\pm \rightarrow tb$
- Di-boson: $R_2 \rightarrow ZW/WW$.

LHC Phenomenology

- Different decay channels probe R_1, R_2 and H.
 - Di-lepton: $R_{1,2}^0 \rightarrow \ell^+ \ell^-$. Single top: $R_{1,2}^\pm \rightarrow tb$
 - Di-boson: $R_2 \rightarrow ZW/WW$.
 - Higgs-Strahlung: $R_1 \rightarrow HZ/HW$.

LHC Phenomenology

- Different decay channels probe R_1, R_2 and H.
 - Di-lepton: $R^0_{1,2} \rightarrow \ell^+ \ell^-$. Single top: $R^{\pm}_{1,2} \rightarrow tb$
 - Di-boson: $R_2 \rightarrow ZW/WW$.
 - Higgs-Strahlung: $R_1 \rightarrow HZ/HW$.
 - Higgs-Decays: $H \rightarrow ZZ/WW (b\bar{b}?)$.

LHC Phenomenology

- Different decay channels probe R_1, R_2 and H.
 - Di-lepton: $R^0_{1,2} \rightarrow \ell^+ \ell^-$. Single top: $R^{\pm}_{1,2} \rightarrow tb$
 - Di-boson: $R_2 \rightarrow ZW/WW$.
 - Higgs-Strahlung: $R_1 \rightarrow HZ/HW$.
 - Higgs-Decays: $H \rightarrow ZZ/WW (b\bar{b}?)$.
 - boosted tops, W, Z and H

LHC Phenomenology

- Different decay channels probe R_1, R_2 and H.
 - Di-lepton: $R_{1,2}^0 \rightarrow \ell^+ \ell^-$. Single top: $R_{1,2}^\pm \rightarrow tb$
 - Di-boson: $R_2 \rightarrow ZW/WW$.
 - Higgs-Strahlung: $R_1 \rightarrow HZ/HW$.
 - Higgs-Decays: $H \rightarrow ZZ/WW(b\bar{b}?)$.
 - boosted tops, W, Z and H
- Lattice can (in principle) narrow down parameter space for each model

LHC Phenomenology

- Different decay channels probe R_1, R_2 and H.
 - Di-lepton: $R_{1,2}^0 \rightarrow \ell^+ \ell^-$. Single top: $R_{1,2}^\pm \rightarrow tb$
 - Di-boson: $R_2 \rightarrow ZW/WW$.
 - Higgs-Strahlung: $R_1 \rightarrow HZ/HW$.
 - Higgs-Decays: $H \rightarrow ZZ/WW (b\bar{b}?)$.
 - boosted tops, W, Z and H
- Lattice can (in principle) narrow down parameter space for each model
 - MWT/OMT, NMWT, UMT etc...

Model Implementation

- (N)MWT, UMT and OMT models in:
 - LanHEP (A.Semenov) FeynRules (C.Duhr et al)
 - CalcHEP (A.Pukhov) and CompHEP (E.BOOS et al)
 - LHE output/model files is/will be available for HERWIG/PYTHIA/SHERPA/...

< 🗇 > < 🖻 > <

Model Implementation

- (N)MWT, UMT and OMT models in:
 - LanHEP (A.Semenov) FeynRules (C.Duhr et al)
 - CalcHEP (A.Pukhov) and CompHEP (E.BOOS et al)
 - LHE output/model files is/will be available for HERWIG/PYTHIA/SHERPA/...
 - Dark matter sector in MicrOMEGAs (Belanger et al) w/ asymmetry courtesy of A. Pukhov

Model Implementation

- (N)MWT, UMT and OMT models in:
 - LanHEP (A.Semenov) FeynRules (C.Duhr et al)
 - CalcHEP (A.Pukhov) and CompHEP (E.BOOS et al)
 - LHE output/model files is/will be available for HERWIG/PYTHIA/SHERPA/...
 - Dark matter sector in MicrOMEGAs (Belanger et al) w/ asymmetry courtesy of A. Pukhov
- Used ThePEG/HERWIG++ for showering/hadronization (Lönnblad/Bahr et al)
- Used DELPHES for Fast Detector Simulation (Ovyn and Rouby)

A (1) > A (2) > A

Vector BRs

Figure: BR's of R_1 .

æ

Vector Production

Figure: DY production of $R_{1,2}$.

< □ > < 同 >

э

$\ell^+\ell^-$ signature @ LHC using CalcHEP

Figure: Dilepton invariant mass distribution $M_{\ell\ell}$ for $pp \to R^0_{1,2} \to \ell^+ \ell^-$

(Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

$\ell^+\ell^-$ signature @ LHC using HERWIG/DELPHES

Figure: Dilepton invariant mass distribution $M_{\mu\mu}$ for $pp \rightarrow R_{1,2}^0 \rightarrow \ell^+ \ell^-$. $M_A = 1$ TeV, $\tilde{g} = 2$, S = 0.3.

Additional Cuts: $M_{\mu\mu} > 500 \, GeV$ and $R_j = 1$. (A. Belyaev, M.T.F and A.Sherstnev in preparation)

$\ell^+\ell^-$ signature @ LHC using HERWIG/DELPHES

Figure: Dilepton invariant mass distribution $M_{\mu\mu}$ for $pp \rightarrow R_{1,2}^0 \rightarrow \ell^+ \ell^-$. $M_A = 1$ TeV, $\tilde{g} = 3.5$, S = 0.3.

Additional Cuts: $M_{\mu\mu} > 500 \, GeV$ and $R_j = 1$. (A. Belyaev, M.T.F and A.Sherstnev in preparation)

Parton leveltb signature @ LHC using CompHEP

Figure: tb cross-section

Results for tb

Figure: Reconstructed (left plot) and partonic (right plot) invariant mass of top and b-quarks after final cuts. Distributions normalized to 30 $\rm fb^{-1}$.

A (1) > A (2) > A

Di-boson vs Higgs-strahlung

(Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08)

Higgs Strahlung in the SM and TC

Enhanced HZ/HW cross-section from a resonance

(日) (同) (三) (三)
Higgs Strahlung in the SM and TC

- Enhanced HZ/HW cross-section from a resonance
- U(1) techni-omega, U(1) Z', axial techni-vector (R₁) resonance

(Zerwekh 05; Barger, Langacker and Lee 05; Belyaev, Foadi, M.T.F,

Järvinen, Pukhov, Sannino 08)

Higgs Strahlung in the SM and TC

(1) Resonance peaks from axial-vector R_1

(Belyaev, Foadi, M.T.F, Järvinen, Pukhov, Sannino 08 ; M.T.F and Sannino 09)

- E -

< D > < A >

Boosted WH final states: Preliminary analysis

 Large Higgs transverse momenta peaked at p_T(H) ~ M_{R1}/2 (Belyaev, M.T.F and Sherstnev in progress)

< 17 >

- ∢ ≣ →

Boosted WH final states: Preliminary analysis

• ΔR_{bb} and ΔR_{jj} accordingly small in the $b\bar{b}$ channel: Peaked at $\Delta R_{bb} \sim 4M_H/M_{R_1}, \Delta R_{jj} \sim 4M_Z/M_{R_1}$ (Belyaev, M.T.F and Sherstnev in progress)

- ∢ ∩ ¬ >

Boosted WH final states: Preliminary analysis

Boost analysis also relevant when M_H > 2M_W for the W associated with H and for the Z's (Belyaev, M.T.F and Sherstnev in progress)

< m

(i)TIMP missing energy signals (Invisible Higgs)

(Foadi, M.T.F and Sannino 08; Shrock and Suzuki 88; Godbole, Guchait, Mazumdar, Moretti and Roy 03).

Summary

• Minimal Walking Technicolor models constructed to be viable realizations of DEWSB and DM

• • • • • • • • • • • • •

3

Summary

- Minimal Walking Technicolor models constructed to be viable realizations of DEWSB and DM
 - Lattice simulations are vigorously investigating (near)-conformal dynamics

< ∃ >

- Minimal Walking Technicolor models constructed to be viable realizations of DEWSB and DM
 - Lattice simulations are vigorously investigating (near)-conformal dynamics
- Models provide distinctive pattern of LHC signatures

- Minimal Walking Technicolor models constructed to be viable realizations of DEWSB and DM
 - Lattice simulations are vigorously investigating (near)-conformal dynamics
- Models provide distinctive pattern of LHC signatures
- General EFT framework for LHC studies

- Minimal Walking Technicolor models constructed to be viable realizations of DEWSB and DM
 - Lattice simulations are vigorously investigating (near)-conformal dynamics
- Models provide distinctive pattern of LHC signatures
- General EFT framework for LHC studies
 - First Fast-Detector analysis in progress.

- Minimal Walking Technicolor models constructed to be viable realizations of DEWSB and DM
 - Lattice simulations are vigorously investigating (near)-conformal dynamics
- Models provide distinctive pattern of LHC signatures
- General EFT framework for LHC studies
 - First Fast-Detector analysis in progress.
- Model implementations/LHE files available for detailed analysis!

- Minimal Walking Technicolor models constructed to be viable realizations of DEWSB and DM
 - Lattice simulations are vigorously investigating (near)-conformal dynamics
- Models provide distinctive pattern of LHC signatures
- General EFT framework for LHC studies
 - First Fast-Detector analysis in progress.
- Model implementations/LHE files available for detailed analysis!
 - LanHEP /FeynRules and CalcHEP /CompHEP