Automatized full one-loop renormalization of the MSSM with SloopS

Nans BARO

Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University

In collaboration with:

Fawzi BOUDJEMA, Guillaume CHALONS, Guillaume DRIEU LA ROCHELLE, Sun HAO, (LAPTH, Annecy)

> Andrei SEMENOV (JINR, Dubna)

N. B., F. Boudjema, A. Semenov, *Phys. Rev.* D78 (2008) 115003, 0807.4668 [hep-ph]
 N. B., F. Boudjema, A. Semenov, *Phys. Lett.* B660 (2008) 550, 0710.1821 [hep-ph]
 N. B., F. Boudjema, *Phys. Rev.* D80 (2009) 076010, 0906.1665 [hep-ph]
 N. B., F. Boudjema, G. Chalons, S. Hao, *Phys. Rev.* D81 015005 (2010), 0910.3293 [hep-ph]

TOOLS 2010 - Winchester

OUTLINE

1 INTRODUCTION: THE NEED FOR NEW PHYSICS

OUTLINE

2) THE CODE SLOOPS: AUTOMATIZING ONE-LOOP CALCULATIONS IN SUSY

3 APPLICATIONS TO COLLIDER PHYSICS AND COSMOLOGY

PROBLEMS: HIERARCHY, DARK MATTER, UNIFICATION

Standard Model

AUTOMATIZED FULL ONE-LOOP RENORMALIZATION OF THE MSSM, with SloopS

... AND A POSSIBLE SOLUTION: SUPERSYMMETRY

New symmetry: Fermion \leftrightarrow Boson.

AUTOMATIZED FULL ONE-LOOP RENORMALIZATION OF THE MSSM, with Sloop

... BUT SOME REMAINING PROBLEMS?!

- SUSY predicts $m_f = m_b$ but... we never saw these sparticles? \rightarrow SUSY must be broken! (introducing more parameters)
- At tree level, $m_{h^0} < m_{Z^0}$ but... we never saw the Higgs? \rightarrow At one-loop, the Higgs mass receives large corrections!

\Rightarrow Radiative corrections are important!

RELIC DENSITY OF DARK MATTER

COSMOLOGY + PARTICLE PHYSICS

$$\Omega_{DM}h^2pprox {3 imes 10^{-27} cm^3 s^{-1}\over <\sigma(ilde\chi^0 ilde\chi^0 o SM){
m v}>}$$

PRECISION

Need to know precisely σ

- \Rightarrow Computation of the relic density
- \Rightarrow Parameters reconstruction at the LHC/LC
- \Rightarrow Check the underlying cosmological scenario

A lot of parameters (124 after symmetry breaking)

A lot of interactions (~ 5000 vertices)

Calculations become extremely tedious and involved. Even more so at one-loop...

A lot of parameters (124 after symmetry breaking)

A lot of interactions (~ 5000 vertices)

Calculations become extremely tedious and involved. Even more so at one-loop...

SECTORS MSSM

 $\begin{array}{l} \underline{Fermions}\\ u, d \ Quark\\ e, \nu \ Lepton\\ \tilde{\chi}^0_{1,2,3,4} \ Neutralino\\ \tilde{\chi}^\pm_{1,2} \ Chargino\\ \tilde{g} \ Gluino \end{array}$

Bosons $\tilde{u}_{1,2}, \tilde{d}_{1,2}$ Squark $\tilde{e}_{1,2}, \tilde{\gamma}$ Slepton h^0, H^0, A^0, H^+ Higgs γ, Z^0, W^+ EW gauge g Gluon

A lot of parameters (124 after symmetry breaking)

A lot of interactions (~ 5000 vertices)

Calculations become extremely tedious and involved. Even more so at one-loop...

SECTORS MSSM

 $\begin{array}{l} \underline{Fermions}\\ u, d \ Quark\\ e, \nu \ Lepton\\ \tilde{\chi}^0_{1,2,3,4} \ Neutralino\\ \tilde{\chi}^\pm_{1,2} \ Chargino\\ \tilde{g} \ Gluino \end{array}$

Bosons $\tilde{u}_{1,2}, \tilde{d}_{1,2}$ Squark $\tilde{e}_{1,2}, \tilde{\gamma}$ Slepton h^0, H^0, A^0, H^+ Higgs γ, Z^0, W^+ EW gauge g Gluon

A lot of parameters (124 after symmetry breaking)

A lot of interactions (~ 5000 vertices)

Calculations become extremely tedious and involved. Even more so at one-loop...

RENORMALIZATION & DEFINITION OF THE PARAMETERS

SHIFTS

 $g \rightarrow g + \delta g$ $m_{ij}^2 \rightarrow m_{ij}^2 + \frac{\delta m_{ij}^2}{\delta a_{ij}}$ $\varphi_i \rightarrow (\delta_{ij} + \frac{1}{2} \delta Z_{ij}) \varphi_j$

ON-SHELL RENORMALIZATION SCHEME

- M_i^2 is the pole of the propagator: $\hat{\Sigma}_{ii}(M_i^2) = 0 \rightarrow \delta M^2$
- residue at the pole is 1: $\hat{\Sigma}'_{ii}(M_i^2) = 0 \rightarrow \delta Z_{ii}$
- no transition on the external legs: $\hat{\Sigma}_{ij}(M_i^2) = 0$ and $\hat{\Sigma}_{ji}(M_j^2) = 0 \rightarrow \delta Z_{ij}$

Tree Level

[9]

AUTOMATIZED FULL ONE-LOOP RENORMALIZATION OF THE MSSM, with Sloop

AUTOMATIZED FULL ONE-LOOP RENORMALIZATION OF THE MSSM, with SloopS

AUTOMATIZED FULL ONE-LOOP RENORMALIZATION OF THE MSSM, with Sloop

[42]

OUTLINE

2 THE CODE SLOOPS: AUTOMATIZING ONE-LOOP CALCULATIONS IN SUSY

3 APPLICATIONS TO COLLIDER PHYSICS AND COSMOLOGY

AUTOMATIC TOOL: SLOOPS

FEATURES OF THE CODE

- Complete and coherent renormalization of the MSSM
- Flexibility (between renormalization schemes)
- Non linear gauge fixing
- Special routine for v = 0 to avoid Gram det. problems

LANHEP

A.Semenov, Automatic generation of Feynman rules with LanHEP, today at 2 p.m.

Particles, lagrangian, counterterms...

vector A/A: (photon, gauge).

scalar h/h:('Light Higgs', mass Mh, width wh), H/H:('Heavy higgs', mass MHH, width wHh).

lterm -F**2/4 where

F=deriv^mu*B0^nu-deriv^nu*B0^mu.

lterm MG1*f_B0*f_B0/2

```
lterm -Mq1**2*sq1*sQ1 - Mq2**2*sq2*sQ2 - Mq3**2*sq3*sQ3.
```

```
transform h->h*(1+dZhlhl/2)+H*dZhlhh/2.
```

```
infinitesimal dphlhl = '-ReTilde[SelfEnergy[prt["h"]->prt["h"], Mh]]'.
```

Program similar to FeynRules		C.Duhr, FeynRules Tutorial, today at 11.30 a.m.
and SARAH	F.Staub, SARAH package, on Friday	at 10.00 a.m.

T.Hahn, FeynArts Tutorial, today at 2.30 p.m.

Automatic generation of \sim 5000 vertices involving all the counterterms!

```
(*----- h h h -----*)
C[ $13, $[3], $[3] ] == 3/4 I * {
{ -2 A00555 , A00519 dZhhhl -3 A00555 dZhlhl -4 A01380 dZg
+ 6 A01380 dZw3 + 2 A00555 dXwz - A01381 dXH + 2 A01382 dZb + 2 A01383 dZbw3} }
```

USUAL GAUGE FIXING

$$\mathcal{L}^{GF} = -\frac{1}{\xi_W} |\partial_{\mu} W^{+\mu} + i\xi_W \frac{g}{2} v G^{+}|^2 -\frac{1}{2\xi_Z} (\partial_{\mu} Z^{0\mu} + \xi_Z \frac{g}{2c_W} v G^{0})^2 - \frac{1}{2\xi_A} (\partial_{\mu} A^{\mu})^2$$

 $\xi = 1$ (loop library)

Non linear

CHECKS

- UV finite
- IR finite
- Gauge independent

USUAL GAUGE FIXING

$$\mathcal{L}^{GF} = -\frac{1}{\xi_{W}} |\partial_{\mu}W^{+\mu} + i\xi_{W}\frac{g}{2}vG^{+}|^{2} -\frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{0\mu} + \xi_{Z}\frac{g}{2c_{W}}vG^{0})^{2} - \frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2}$$

$$\bigvee_{q^2-m_{z^0}^2+i\epsilon}^{Z^0} \left[g_{\mu\nu}+\left(\xi_Z-1\right)\frac{q_{\mu}q_{\nu}}{q^2-\xi_Z m_{z^0}^2}\right]$$

 $\xi = 1$ (loop library)

Non linear

CHECKS

- UV finite
- IR finite
- Gauge independent

USUAL GAUGE FIXING

$$\mathcal{L}^{GF} = -\frac{1}{\xi_{W}} |\partial_{\mu}W^{+\mu} + i\xi_{W}\frac{g}{2}vG^{+}|^{2} -\frac{1}{2\xi_{Z}}(\partial_{\mu}Z^{0\mu} + \xi_{Z}\frac{g}{2c_{W}}vG^{0})^{2} - \frac{1}{2\xi_{A}}(\partial_{\mu}A^{\mu})^{2}$$

$$\bigvee \bigvee^{Z^0} \qquad \frac{-i}{q^2 - m_{Z^0}^2 + i\epsilon} \left[g_{\mu\nu} + \left(\xi_Z - 1 \right) \frac{q_{\mu}q_{\nu}}{q^2 - \xi_Z m_{Z^0}^2} \right]$$

 $\xi = 1$ (loop library)

Non linear

CHECKS

- UV finite
- IR finite
- Gauge independent

NON LINEAR GAUGE FIXING

Special routine for $\mathbf{v} = \mathbf{0}$

Boudjema, Semenov, Temes, Phys. Rev. D72 (2005) 055024, hep-ph/0507127

(Passarino-Veltman) tensor integral reduction requires inverse Gram determinant computation:

$$\det \begin{vmatrix} p_1^2 & p_1 p_2 & p_1 p_3 \\ p_1 p_2 & p_2^2 & p_2 p_3 \\ p_1 p_3 & p_2 p_3 & p_3^2 \end{vmatrix} \propto v^2$$

 \Rightarrow numerical instabilities for v ≈ 0

Segmentation of one-loop integrals at v = 0

$$\frac{1}{D_0D_1D_2D_3} \propto \frac{1}{D_0D_1D_2} + \frac{A}{D_0D_1D_3} + \frac{B}{D_0D_2D_3} - \frac{1+A+B}{D_1D_2D_3}$$
4-point integrals \rightarrow 3-point integrals

INPUT PARAMETERS

The MSSM contains 8×3 SUSY breaking parameters for sfermions, 3×3 fermion masses and 12 parameters for gauge couplings, scalar potential and the SUSY breaking gaugino masses:

$\underbrace{g,g',g_s}_{\text{gauge}},\underbrace{v_1,v_2}_{\text{v.e.v.}},\underbrace{m_1,m_2,m_{12}}_{\text{scalar potential}},\mu,\underbrace{M_1,M_2}_{\text{scalar potential}}$	$\underbrace{\frac{1}{SUSY}}_{\text{SUSY breaking}} M_{\tilde{u}_R}, M_{\tilde{d}_R}, \underbrace{A_u, A_d}_{\text{trilinear}}$
--	---

Set of parameters directly connected to the physical quantities:

$$\underbrace{\alpha(0), m_W, m_Z}_{\text{EW}}, \underbrace{t_{\beta} = v_2/v_1, m_A, T_1, T_2}_{\text{Higgs}}, \underbrace{m_{\chi_1^+}, m_{\chi_2^+}}_{\text{Chargino}}, \underbrace{m_{\chi_1^0}}_{\text{Neutralino}}, \underbrace{m_{\chi_1^0}}_{\text{QCD}}, \underbrace{m_{\tilde{u}_1}, m_{\tilde{d}_1}, m_{\tilde{d}_2}, \Gamma_u, \Gamma_d}_{\text{Squark}}$$

• On-Shell scheme

 Flexibility between different renormalization schemes (for example, one can also choose m<sub>x
⁰</sub>, m<sub>x
⁰</sub>, m<sub>x
¹</sub> as input parameters)

How to define $tan(\beta)$?

 t_{β} doesn't represent a physical/measurable quantity

We have many different ways/schemes to define it:

\overline{DR}

 δt_{β} is a pure divergence Heinemeyer, Hollik, Weiglein, *Phys. Rept.* **425** (2006) 265, hep-ph/0412214

DCPR

 δt_{β} is defined by the condition: $\hat{\Sigma}_{A^0Z^0}(m_{A^0}^2) = 0$ Dabelstein, Z. Phys. **C67** (1995) 495, hep-ph/9409375 Chankowski, Pokorski, Rosiek, *Nucl. Phys.* **B423** (1994) 437, hep-ph/9303309

MH

 δt_{β} is defined from the measurement of the heaviest CP-even Higgs mass m_{H^0} (we loose a correction but the definition is physical)

Αττ

 δt_{β} is defined from the decay $A^0 \rightarrow \tau^+ \tau^-$ (vertex $\propto m_{\tau} t_{\beta}$)

OUTLINE

2) THE CODE SLOOPS: AUTOMATIZING ONE-LOOP CALCULATIONS IN SUSY

FIRST CHECKS ON THE CODE

TREE LEVEL CALCULATIONS

Comparison with public codes: Grace and CompHEP

Cross-section [pb]	SloopS	CompHEP	Grace	
$h^0 h^0 \rightarrow h^0 h^0$	3.932×10^{-2}	3.932×10^{-2}	3.929×10^{-2}	
$W^+ W^- \rightarrow \tilde{t}_1 \tilde{t}_1$	7.082×10^{-1}	7.082×10^{-1}	7.083×10^{-1}	
$e^+e^- \rightarrow \tilde{\tau}_1 \tilde{\tau}_2$	2.854×10^{-3}	2.854×10^{-3}	2.854×10^{-3}	
$H^+H^- \rightarrow W^+W^-$	6.643×10^{-1}	6.643×10^{-1}	6.644×10^{-1}	
Decay [GeV]				# 200 processes checked
$A^0 \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^-$	1.137×10^{-0}	1.137×10^{-0}	1.137×10^{-0}	
$\tilde{\chi}_1^+ \rightarrow t \bar{\tilde{b}}_1$	5.428×10^{-0}	5.428×10 ⁰	5.428×10^{-0}	
$H^{0} \rightarrow \tilde{\tau}_{1} \tilde{\tilde{\tau}}_{1}$	7.579×10^{-3}	7.579×10^{-3}	7.579×10^{-3}	
$H^+ \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^0$	1.113×10^{-1}	1.113×10^{-1}	1.113×10^{-1}	

ONE-LOOP CORRECTIONS THAT DO NOT NEED RENORMALIZATION

Comparisons with public codes: PLATON and DarkSUSY

Boudjema, Semenov, Temes, Phys. Rev. D72 (2005) 055024, hep-ph/0507127

- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \gamma \gamma$
- $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow gg$
- $\tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow Z^0 \gamma$

APPLICATIONS IN THE HIGGS SECTOR

N. B., F. Boudjema, A. Semenov, Phys. Lett. B660 (2008) 550, 0710.1821 [hep-ph]

-

• One-loop corrections to Higgs masses H^+ , h^0 Freitas, Stockinger, *Phys. Rev.* **D66** (2002) 095014, hep-ph/0205281

$t_{\beta} = 3$	mhmax	<i>large</i> μ	nomix
Tree Level	72.51	72.51	72.51
DCPR	134.28	97.57	112.26
MH	140.25	86.68	117.37
Αττ	134.25	97.59	112.27
$\overline{\mathrm{DR}} \overline{\mu} = m_{A^0}$	134.87	98.10	112.86
• •			

Light Higgs mass m_{h^0}

$ullet$ $A^0 ightarrow au^+ au^-, A^0 ightarrow Z^0 h^0, H^0 ightarrow Z^0 Z^0, H^0 ightarrow au^+ au^-$									
	$t_{\beta} = 3$	mhmax	large μ	nomix					
	Tree Level	9.35×10^{-3}	9.35×10^{-3}	9.35×10^{-3}					
	DCPR	-1.09×10^{-4}	-7.96×10^{-5}	-1.09×10^{-4}					
	MH	$+6.28 \times 10^{-3}$	-7.91×10^{-3}	$+4.47 \times 10^{-3}$					
	Αττ	-1.45×10^{-4}	-7.09×10^{-5}	-1.01×10^{-4}					
	$\overline{\mathrm{DR}} \overline{\mu} = m_{A^0}$	$+5.08 \times 10^{-4}$	$+3.24 \times 10^{-4}$	$+4.17 \times 10^{-4}$					
	$H^0 \rightarrow \tau^+ \tau^-$ at one-loop with no OED								

• Theoretical issue due to non-linear gauge fixing and modified Ward-Slavnov-Taylor Identity in the Higgs sector:

$$m_{A^0}^2 \times {}^{A^0} \to \bigcirc \to Z^0 + m_{Z^0} \times {}^{A^0} \to \bigcirc \to G^0 = (m_{A^0}^2 - m_{Z^0}^2) \frac{ie}{s_{2W}} [\tilde{\mathbf{e}} \times \bigcirc_{h^0}^{G^0} \to A^0 + \tilde{\mathbf{y}} \times \bigcirc_{H^0}^{G^0} \to A^0] \neq 0$$

APPLICATIONS IN THE CHARGINO/NEUTRALINO SECTOR

N. B., F. Boudjema, Phys. Rev. D80 (2009) 076010, 0906.1665 [hep-ph]

• One-loop corrections to neutralino masses $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$ Fritzsche, Hollik, *Eur. Phys. J.* C24 (2002) 619, hep-ph/0203159

• Chargino decays at one-loop (comparison with Fujimoto et al., Phys. Rev. D75 (2007) 113002, hep-ph/0701200)

APPLICATIONS IN THE SFERMION SECTOR

N. B., F. Boudjema, Phys. Rev. D80 (2009) 076010, 0906.1665 [hep-ph]

• 4-sfermion vertices (complicated color structure with mixing)

• Corrections to the sbottom and stau masses

Hollik, Rzehak, Eur. Phys. J. C32 (2003) 127, hep-ph/0305328

APPLICATIONS TO COLLIDER PHYSICS

N. B., F. Boudjema, Phys. Rev. D80 (2009) 076010, 0906.1665 [hep-ph]

• $e^+e^- \to \tilde{\chi}_1^+\tilde{\chi}_1^-$ Fujimoto *et al.*, *Phys. Rev.* **D75** (2007) 113002, hep-ph/0701200 • $e^+e^- \to \tilde{\tau}_i\tilde{\tau}_j^*$ Kovarik, Weber, Eberl, Majerotto, *Phys. Rev.* **D72** (2005) 053010, hep-ph/0506021

Tree Level $\alpha(0)$ Tree level $\alpha(m_Z^2)$ Pure electroweak correction One-loop

APPLICATIONS TO DARK MATTER

Total cross section

$$\sigma \mathbf{v} = \sum_{ij} \frac{\tilde{g}_i \tilde{g}_j}{\tilde{g}^2} (\sigma_{ij} \mathbf{v})$$

Effective d.o.f.

$$\tilde{g}_i = \frac{g_i}{g_{\tilde{\chi}_1^0}} (1 + \underbrace{(m_i - m_{\tilde{\chi}_1^0})/m_{\tilde{\chi}_1^0}}_{\Delta m_i})^{3/2} e^{-x\Delta m_i}$$

Examples of thermal averaging $\langle \mathbf{v}^2 \rangle = \frac{6}{x},$ $\langle 1/\mathbf{v} \rangle = \sqrt{\frac{x}{\pi}}$

APPROXIMATION

Expansion:
$$\sigma \mathbf{v} = a + b \mathbf{v}^2 \Rightarrow \Omega h^2 \simeq \frac{0.237 \times 10^{-26} cm^3/s}{\sigma \mathbf{v} (\mathbf{v}^2 = 6/x_F \simeq 0.15)}$$

Relic density calculated with the help of MicrOmegas

G. Bélanger, MicrOmegas Tutorial, tomorrow at 11.30 a.m.

HOW TO EXTRACT THE PARAMETERS *a* AND *b*?

AVERAGE

For a preliminary study, we compute the approximation:

 $\langle \sigma v \rangle \simeq a + b \langle v^2 \rangle$ with v = relative velocity $\simeq 0.1 - 0.3$

A FEW EXAMPLES

N. B., F. Boudjema, A. Semenov, Phys. Rev. D78 (2008) 115003, 0807.4668 [hep-ph]

BINO-LIKE NEUTRALINO									
$ ilde{\chi}^0_1 ilde{\chi}^0_1 ightarrow l^+ l^-$	<i>M</i> ₁	M ₂	μ	М3	$M_{\tilde{f}_{L,R}}$	A_{f}	M _{A0}	ťβ	
	90	200	-600	1000	250/110 800/800	0	500	5	

COANNIHILATION WITH A STAU

 $\begin{array}{l} \tilde{\chi}_1^0 \tilde{\tau}_1^+ \rightarrow \tau^+ \gamma \\ \tilde{\chi}_1^0 \tilde{\tau}_1^+ \rightarrow \tau^+ Z^0 \\ \tilde{\tau}_1^+ \tilde{\tau}_1^+ \rightarrow \tau^+ \tau^+ \end{array}$

MIXED-LIKE NEUTRALINO

 $egin{array}{lll} { ilde\chi}^0_1 { ilde\chi}^0_1
ightarrow W^+ W^- \ { ilde\chi}^0_1 { ilde\chi}^0_1
ightarrow Z^0 Z^0 \end{array}$

QCD CORRECTION

 $\tilde{\chi}^0_1 \tilde{\chi}^0_1 \to b \overline{b}$

BINO CASE

X f x		/ ^f χ.	<.	∠ ^f
ý ,		Ē	•A	Ē
χ \sqrt{f} κ		, λ		5
	$(\times 10^{26} cm)$	$n^{3}/s)$		
	Tree	Αττ	\overline{DR}	MH
$ ilde{\chi}_1^0 ilde{\chi}_1^0 ightarrow au^+ au^-$ (36%))			
а	0.081	+38%	+35%	+15%
b	3.858	+18%	+18%	+18%
Ωh^2	0.166	0.138	0.138	0.141
$\frac{\delta \Omega h^2}{\Omega l^2}$		-17%	-17%	-15%
12h ²		-2%	-2%	0%

• Helicity suppression: Ampl $(v \rightarrow 0) \propto m_{\tau}$ thus $a \sim 0$

• $\alpha(0) \rightarrow \alpha(m_Z^2)$ implies a correction of 15%

Relic density dominated by the annihilation process $\tilde{\chi}^0_1 \tilde{\chi}^0_1 \rightarrow W^+ W^-$

N. B., F. Boudjema, G. Chalons, S. Hao, Phys. Rev. D81 015005 (2010), 0910.3293 [hep-ph]

• Higgsino or wino neutralino could "explain" the PAMELA/ATIC data

Nagai, Nakayama, 0807.1634[hep-ph]

Lattanzi, Silk, 0812.0360[hep-ph]

- Coannihilation with a chargino
- Calculating the relic density including coannihilation effects can significantly change the results
- Region of parameters difficult to probe (in mSUGRA) in colliders are regions where coannihilation comes into account for the relic density

LIGHT WINO LIKE

LIGHT WINO LIKE

HEAVY WINO LIKE

AUTOMATIZED FULL ONE-LOOP RENORMALIZATION OF THE MSSM, with Sloop

HEAVY WINO LIKE

CONCLUSION

- Complete EW renormalization of the MSSM and modularity with different schemes
- One-loop corrections to masses, decays, cross-sections at the colliders
- Importance of radiative corrections in the relic density calculation
 - Corrections seem to be small for the bino case either in the bulk through coannihilation (after reabsorbing $\alpha(0) \rightarrow \alpha(m_{\tilde{z}}^2)$) but still needed
 - Large corrections for the mixed case
- Coannihilation with a stau
- Coannihilation with a chargino
- Coulomb-Sommerfeld enhancement
- First steps done for the connection with micrOMEGAs
- New renormalisation schemes (chargino/neutralino sector)