CHARYBDIS2: Modelling higher dimensional black hole events

Marco Sampaio

sampaio@hep.phy.cam.ac.uk

CFP, Physics Department, University of Porto

June 30, 2010

In collaboration with James A. Frost, Jonathan R. Gaunt, Marc Casals, Sam R. Dolan, M. Andrew Parker and Bryan R. Webber

References: JHEP10(2009)014 [arXiv:0904.0979], http://projects.hepforge.org/charybdis2/

Acknowledgements

Cambridge SUSY working group

FCT – SFRH/BD/23052/2005

Gravity

Gravity

Gravity

Gravity

Particle Physics

How to explain this hierarchy of scales?

Aim of this talk

The aim of this talk

To introduce the Physics of Black Hole production and decay in theories with extra dimensions.

Describe the incorporation of the theory into a Monte Carlo program CHARYBDIS2.

Present some phenomenological features of the results and how they affect observables at the LHC.

Outline

[Introduction](#page-13-0)

- [The hierarchy problem Extra dimensions](#page-13-0)
- [Strong gravity & Black Holes](#page-35-0)
- Modelling BH events CHARYBDIS2
	- [The production](#page-42-0)
	- [The decay](#page-61-0)
	- CHARYBDIS2 [& other generators](#page-93-0)
- [Phenomenology using](#page-97-0) CHARYBDIS2
	- [Classical signatures](#page-97-0)
	- [The effects of rotation](#page-107-0)

Outline

[Introduction](#page-13-0)

- [The hierarchy problem Extra dimensions](#page-13-0)
- [Strong gravity & Black Holes](#page-35-0)
- [Modelling BH events –](#page-40-0) CHARYBDIS2
	- [The production](#page-42-0)
	- [The decay](#page-61-0)
	- CHARYBDIS2 [& other generators](#page-93-0)
- [Phenomenology using](#page-97-0) CHARYBDIS2
	- [Classical signatures](#page-97-0)
	- [The effects of rotation](#page-107-0)

[Conclusions and Outlook](#page-118-0)

- \bullet 1 Higgs particle $(s = 0)$,
- \bullet 3 families of leptons and 3 of quarks ($s = 1/2$),
- \bullet 1 non-abelian $SU(3)_C$ gluon field, 3 massive vector bosons, 1 neutral $U(1)$ Maxwell field $(s = 1)$.

"Low" energy degrees of freedom (after symmetry breaking):

$$
\mathcal{L}_{\mathcal{SM}} = \frac{1}{2} \partial^{\mu} h \partial_{\mu} h - \frac{m_h^2}{2} h^2
$$

\bullet 1 Higgs particle ($s = 0$),

- \bullet 3 families of leptons and 3 of quarks ($s = 1/2$),
- \bullet 1 non-abelian $SU(3)_C$ gluon field, 3 massive vector bosons, 1 neutral $U(1)$ Maxwell field $(s = 1)$.

$$
\mathcal{L}_{SM} = \frac{1}{2} \partial^{\mu} h \partial_{\mu} h - \frac{m_h^2}{2} h^2 + \bar{e}^a (i\partial - m_{\theta_a}) e^a + \bar{\nu}^a i \partial \nu^a + \bar{u}^a (i\partial - m_{\theta_a}) u^a +
$$

+ $\bar{d}^a (i\partial - m_{\theta_a}) d^a$

- \bullet 1 Higgs particle ($s = 0$),
- \bullet 3 families of leptons and 3 of quarks $(s = 1/2)$,
- 1 non-abelian $SU(3)_C$ gluon field, 3 massive vector bosons, 1 neutral $U(1)$ Maxwell field $(s = 1)$.

$$
\mathcal{L}_{\text{SM}} = \frac{1}{2} \partial^{\mu} h \partial_{\mu} h - \frac{m_h^2}{2} h^2 + \bar{e}^a (i\partial - m_{e_a}) e^a + \bar{\nu}^a i \partial \nu^a + \bar{u}^a (i\partial - m_{u_a}) u^a +
$$

$$
+ \bar{d}^a (i\partial - m_{d_a}) d^a - \frac{1}{4} G_{\mu\nu} \cdot G^{\mu\nu} - \frac{1}{2} W_{\mu\nu}^{\dagger} W^{\mu\nu} + m_W^2 W_{\mu}^{\dagger} W^{\mu} +
$$

$$
- \frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} + \frac{m_Z^2}{2} Z_{\mu} Z^{\mu} - \frac{1}{4} A_{\mu\nu} A^{\mu\nu}
$$

- \bullet 1 Higgs particle ($s = 0$),
- \bullet 3 families of leptons and 3 of quarks $(s = 1/2)$,
- 1 non-abelian $SU(3)_C$ gluon field, 3 massive vector bosons, 1 neutral $U(1)$ Maxwell field $(s = 1)$.

$$
\mathcal{L}_{\text{SM}} = \frac{1}{2} \partial^{\mu} h \partial_{\mu} h - \frac{m_h^2}{2} h^2 + \bar{e}^a (i\partial - m_{\theta_a}) e^a + \bar{\nu}^a i \partial \nu^a + \bar{u}^a (i\partial - m_{\theta_a}) u^a +
$$

$$
+ \bar{d}^a (i\partial - m_{\theta_a}) d^a - \frac{1}{4} \mathbf{G}_{\mu\nu} \cdot \mathbf{G}^{\mu\nu} - \frac{1}{2} W_{\mu\nu}^{\dagger} W^{\mu\nu} + m_W^2 W_{\mu}^{\dagger} W^{\mu} +
$$

$$
- \frac{1}{4} Z_{\mu\nu} Z^{\mu\nu} + \frac{m_Z^2}{2} Z_{\mu} Z^{\mu} - \frac{1}{4} A_{\mu\nu} A^{\mu\nu} + \text{ Interactions}
$$

- \bullet 1 Higgs particle ($s = 0$),
- \bullet 3 families of leptons and 3 of quarks $(s = 1/2)$,
- 1 non-abelian $SU(3)_C$ gluon field, 3 massive vector bosons, 1 neutral $U(1)$ Maxwell field $(s = 1)$.

The Standard Model – Interactions

The hierarchy problem: SM vs Gravity

The action for **gravity coupled to matter** is

$$
\mathcal{S}=\int d^4x\sqrt{|g|}\left[\frac{M_4^2}{2}R+\mathcal{L}_{SM}\right]
$$

The hierarchy problem: SM vs Gravity

The action for **gravity coupled to matter** is

$$
S = \int d^4x \sqrt{|g|} \left[\frac{M_{4}^2}{2} R + \mathcal{L}_{SM} \right]
$$

Linear perturbations $g_{\mu\nu} = \eta_{\mu\nu} + \frac{E}{M}$ $\frac{L}{M_4} h_{\mu\nu}$ (units *x* \rightarrow *x*/(*E*⁻¹))

$$
\mathcal{S} = \int \left[\mathcal{L}_{h_{\mu\nu},\text{kinetic}} + \mathcal{L}_{\text{SM}} + \frac{E}{2M_4} T_{\mu\nu} h^{\mu\nu} + \ldots \right], \frac{1 \text{ TeV}}{M_4} \sim \sqrt{\alpha}_G \sim 10^{-16}
$$

The hierarchy problem: SM vs Gravity

The action for **gravity coupled to matter** is

$$
S = \int d^4x \sqrt{|g|} \left[\frac{M_{4}^2}{2} R + \mathcal{L}_{SM} \right]
$$

Linear perturbations $g_{\mu\nu} = \eta_{\mu\nu} + \frac{E}{M}$ $\frac{L}{M_4} h_{\mu\nu}$ (units *x* \rightarrow *x*/(*E*⁻¹))

$$
\mathcal{S} = \int \left[\mathcal{L}_{h_{\mu\nu},\text{kinetic}} + \mathcal{L}_{\text{SM}} + \frac{E}{2M_4} T_{\mu\nu} h^{\mu\nu} + \ldots \right], \frac{1 \text{ TeV}}{M_4} \sim \sqrt{\alpha}_G \sim 10^{-16}
$$

M⁴ ∼ 10¹⁶**MEW**

Hierarchy due to taking the scale for new physics from gravity (mesoscopic) rather than the electroweak scale (microscopic). **The ADD solution:** Assume **M**_{FW} is more fundamental.

N. Arkani-Hamed et al. hep-th/9803315 (ADD)

$$
\textbf{S}_G \sim \int \mathrm{d}^{4+n} x\, \textbf{M}_{(4+n)}^{2+n} \, \sqrt{-g}\, \mathcal{R}^{(4+n)}
$$

M⁴ ∼ 10¹⁶**MEW**

Hierarchy due to taking the scale for new physics from gravity (mesoscopic) rather than the electroweak scale (microscopic).

The ADD solution: Assume **M**_{FW} is more fundamental.

N. Arkani-Hamed et al. hep-th/9803315 (ADD)

Assume our space time is 4+n dimensional

SM effective theory on a thin brane

$$
\textbf{S}_\textbf{G} \sim \int \mathrm{d}^{4+n} \textbf{x} \, \textbf{M}_{(4+n)}^{2+n} \, \sqrt{-\textbf{g}} \, \mathcal{R}^{(4+n)}
$$

❄ R] Our 4D spacetime brane Extra dimensions

- Take **MEW** ∼ 1 TeV → **M4**+**ⁿ** as the fundamental scale
- At large distances **M² 4**

$$
\mathbf{S_G} \sim \int d^4 \mathbf{x} \, \mathbf{M}_{(4+n)}^{2+n \frac{1}{\gamma}} \mathbf{R}^n \sqrt{-g} \, \mathcal{R}^{(4)} \Rightarrow \text{4D gravity diluted}
$$

M⁴ ∼ 10¹⁶**MEW**

Hierarchy due to taking the scale for new physics from gravity (mesoscopic) rather than the electroweak scale (microscopic).

The ADD solution: Assume **M**_{FW} is more fundamental.

N. Arkani-Hamed et al. hep-th/9803315 (ADD)

Assume our space time is 4+n dimensional

$$
S_G \sim \int {\rm d}^{4+n} x\, M_{(4+n)}^{2+n}\, \sqrt{-g}\, {\cal R}^{(4+n)}
$$

- Take **MEW** ∼ 1 TeV → **M4**+**ⁿ** as the fundamental scale
- At large distances **M² 4** $\mathbf{S_G} \sim \int d^4\mathbf{x} \, \mathbf{M}_{(4+n)}^{2+n \frac{1}{\mathbf{Y}}} \mathbf{R}^n \sqrt{-\mathbf{g}} \, \mathcal{R}^{(4)} \Rightarrow$ 4D gravity diluted

M⁴ ∼ 10¹⁶**MEW**

Hierarchy due to taking the scale for new physics from gravity (mesoscopic) rather than the electroweak scale (microscopic).

The ADD solution: Assume **M**_{FW} is more fundamental.

N. Arkani-Hamed et al. hep-th/9803315 (ADD)

Assume our space time is 4+n dimensional

SM effective theory on a thin brane

$$
S_G \sim \int \mathrm{d}^{4+n} x\, M_{(4+n)}^{2+n}\, \sqrt{-g}\, \mathcal{R}^{(4+n)}
$$

Extra dimensions

Take **MEW** ∼ 1 TeV → **M4**+**ⁿ** as the fundamental scale

r 1

At large distances ❄ **4 M²** $\mathbf{S_G} \sim \int d^4\mathbf{x} \, \mathbf{M}_{(4+n)}^{2+n} \mathbf{R}^n \sqrt{-g} \, \mathcal{R}^{(4)} \Rightarrow$ 4D gravity diluted

So how does gravity look like in ADD?

$$
F_{r\ll R}\sim \frac{1}{\mathbf{M}^{2+n}_{(4+n)}r^{2+n}}\ ,\quad \ \ F_{r\gg R}\sim \frac{1}{\mathbf{M}^{2+n}_{(4+n)}\mathbf{R}^n r^2}\left(1+2n e^{-\frac{r}{R}}+\ldots\right)
$$

- **1** Predicts **deviations from Newtonian gravity** as we approach short distances.
- ² Contains **KK gravitons** from the 4D point of view.
- ³ **Gravity is higher dimensional** at **very short distances**.

This can be used to put bounds on *R* as a function of *n*.

So how does gravity look like in ADD?

$$
F_{r\ll R}\sim \frac{1}{\mathbf{M}^{2+n}_{(4+n)}r^{2+n}}\ ,\quad F_{r\gg R}\sim \frac{1}{\mathbf{M}^{2+n}_{(4+n)}\mathbf{R}^{n}r^{2}}\left(1+2n e^{-\frac{r}{R}}+\ldots\right)
$$

- **1** Predicts **deviations from Newtonian gravity** as we approach short distances.
- ² Contains **KK gravitons** from the 4D point of view.
- ³ **Gravity is higher dimensional** at **very short distances**.

This can be used to put bounds on *R* as a function of *n*.

So how does gravity look like in ADD?

$$
F_{r\ll R}\sim \frac{1}{\mathbf{M}^{2+n}_{(4+n)}r^{2+n}}\ ,\quad \ \ F_{r\gg R}\sim \frac{1}{\mathbf{M}^{2+n}_{(4+n)}\mathbf{R}^n r^2}\left(1+2n e^{-\frac{r}{R}}+\ldots\right)
$$

- **1** Predicts **deviations from Newtonian gravity** as we approach short distances.
- ² Contains **KK gravitons** from the 4D point of view.
- ³ **Gravity is higher dimensional** at **very short distances**.

This can be used to put bounds on *R* as a function of *n*.

So how does gravity look like in ADD?

$$
F_{r\ll R}\sim \frac{1}{\mathbf{M}^{2+n}_{(4+n)}r^{2+n}}\ ,\quad \ \ F_{r\gg R}\sim \frac{1}{\mathbf{M}^{2+n}_{(4+n)}\mathbf{R}^n r^2}\left(1+2n e^{-\frac{r}{R}}+\ldots\right)
$$

- **1** Predicts **deviations from Newtonian gravity** as we approach short distances.
- ² Contains **KK gravitons** from the 4D point of view.
- ³ **Gravity is higher dimensional** at **very short distances**.

This can be used to put bounds on *R* as a function of *n*.

So how does gravity look like in ADD?

$$
F_{r\ll R}\sim \frac{1}{\mathbf{M}^{2+n}_{(4+n)}r^{2+n}}\ ,\quad \ \ F_{r\gg R}\sim \frac{1}{\mathbf{M}^{2+n}_{(4+n)}\mathbf{R}^n r^2}\left(1+2n e^{-\frac{r}{R}}+\ldots\right)
$$

- **1** Predicts **deviations from Newtonian gravity** as we approach short distances.
- ² Contains **KK gravitons** from the 4D point of view.
- ³ **Gravity is higher dimensional** at **very short distances**.

This can be used to put bounds on *R* as a function of *n*.

Bounds on extra dimensions

Bounds on extra dimensions

 ${\sf SM~on~a~4D~brane~of~thickness~L} \lesssim (1\text{TeV})^{-1} \sim 10^{-13} \mu\text{m}$

To avoid bounds from Electroweak precision and fast proton decay. Quarks and leptons may have to be on sub-branes for $L \lesssim (1 \text{TeV})^{-1}.$

All SM particles propagating on a single brane.

Good approximation if process occurs at large scales compared to *L*.

Outline

[Introduction](#page-13-0)

- [The hierarchy problem Extra dimensions](#page-13-0)
- [Strong gravity & Black Holes](#page-35-0)
- [Modelling BH events –](#page-40-0) CHARYBDIS2
	- [The production](#page-42-0)
	- [The decay](#page-61-0)
	- CHARYBDIS2 [& other generators](#page-93-0)
- [Phenomenology using](#page-97-0) CHARYBDIS2
	- [Classical signatures](#page-97-0)
	- [The effects of rotation](#page-107-0)

[Conclusions and Outlook](#page-118-0)
At short distances gravity is higher dimensional

$$
\Rightarrow \sqrt{\alpha_G} \sim \frac{E}{M_4} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1\text{TeV}}
$$

At short distances gravity is higher dimensional

$$
\Rightarrow \sqrt{\alpha_G} \sim \frac{E}{M_4} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1\text{TeV}}
$$

At short distances gravity is higher dimensional

$$
\Rightarrow \sqrt{\alpha_G} \sim \frac{E}{M_4} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1\text{TeV}}
$$

At short distances gravity is higher dimensional

$$
\Rightarrow \sqrt{\alpha_G} \sim \frac{E}{M_4} \rightarrow \frac{E}{M_{4+n}} \sim \frac{E}{1\text{TeV}}
$$

Outline

- [The hierarchy problem Extra dimensions](#page-13-0)
- [Strong gravity & Black Holes](#page-35-0)

[Modelling BH events –](#page-40-0) CHARYBDIS2 • [The production](#page-42-0)

- [The decay](#page-61-0)
- CHARYBDIS2 [& other generators](#page-93-0)
- [Phenomenology using](#page-97-0) CHARYBDIS2
	- [Classical signatures](#page-97-0)
	- [The effects of rotation](#page-107-0)

[Conclusions and Outlook](#page-118-0)

Modelling production – The ideal solution

Ideally:

Set up spatial metric for **two highly boosted particles**,

- Set up spatial metric for **two highly boosted particles**,
- **•** Include the **spin** and **charge**,

Modelling product<u>io</u>n – The ideal solution ✲ ✛ **p** µ **1 p** µ **2** ❈ ❈ ❈ ❈❖ **s1** ✄ ✄✎ **s2 Q¹ Q²**

Ideally:

- Set up spatial metric for **two highly boosted particles**,
- **•** Include the **spin** and **charge**,
- Evolve this system using Einstein's equations,

- Set up spatial metric for **two highly boosted particles**,
- **•** Include the **spin** and **charge**,
- Evolve this system using Einstein's equations,
- Obtain final Black Hole + radiation

- Set up spatial metric for **two highly boosted particles**,
- **•** Include the **spin** and **charge**,
- Evolve this system using Einstein's equations,
- Obtain final Black Hole + radiation → **4D so far.**

U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 *b* = 0

- **M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735** $b \neq 0$
- **U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, T. Hinderer, N. Yunes arXiv:0907.1252** $b \neq 0$
- **M. Choptuik, F. Pretorius, arXiv:0908.1780** *b* = 0 **(solitons)**

Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302 4 + *n*

- Set up spatial metric for **two highly boosted particles**,
- **•** Include the **spin** and **charge**,
- Evolve this system using Einstein's equations,
- Obtain final Black Hole + radiation → **4D so far.**

U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738 *b* = 0

- **M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735** $b \neq 0$
- **U. Sperhake, V. Cardoso, F. Pretorius, E. Berti, T. Hinderer, N. Yunes arXiv:0907.1252** $b \neq 0$
- **M. Choptuik, F. Pretorius, arXiv:0908.1780** *b* = 0 **(solitons)**
- **Zilhao, Witek, Sperhake, Cardoso, Gualtieri, Herdeiro, Nerozzi arXiv:1001.2302** 4 + *n*

H. Yoshino and V. S. Rychkov hep-th/0503171

H. Yoshino and V. S. Rychkov hep-th/0503171

 1 Lower bounds on $b_{max}^{(n)}$ \Rightarrow Enhanced cross section $\mathsf{F}_{\mathbf{n}}\sigma_{disk}$

$$
\sigma_{PP\rightarrow BH}=\sum_{i,j}^{partons}\int_{\tau_{m}}^{1}d\tau\int_{\tau}^{1}\frac{dx}{x}f_{i}(\textbf{x})f_{j}\left(\frac{\tau}{\textbf{x}}\right)\textbf{F}_{n}\sigma_{\text{disk}}(\tau\textbf{s})
$$

⇒ σ**PP**→**BH** = **70**, **160**, **280** pb ⇒ 1*s* [−]¹ @ design at 7 TeV \Rightarrow 10⁻⁴ suppression.

H. Yoshino and V. S. Rychkov hep-th/0503171

 1 Lower bounds on $b_{max}^{(n)}$ \Rightarrow Enhanced cross section $\mathsf{F}_{\mathbf{n}}\sigma_{disk}$

$$
\sigma_{PP\rightarrow BH} = \sum_{i,j}^{\text{partons}} \int_{\tau_m}^1 d\tau \int_{\tau}^1 \frac{dx}{x} \mathbf{f}_i(\mathbf{x}) \mathbf{f}_j\left(\frac{\tau}{\mathbf{x}}\right) \mathbf{F_n} \sigma_{\text{disk}}(\tau \mathbf{s})
$$

 \Rightarrow σ _{РР→ВН} = **70**, **160**, **280** pb \Rightarrow 1*s*^{−1} @ design at 7 TeV \Rightarrow 10⁻⁴ suppression.

H. Yoshino and V. S. Rychkov hep-th/0503171

 1 Lower bounds on $b_{max}^{(n)}$ \Rightarrow Enhanced cross section $\mathsf{F}_{\mathbf{n}}\sigma_{disk}$

$$
\sigma_{PP\rightarrow BH} = \sum_{i,j}^{\text{partons}} \int_{\tau_m}^1 d\tau \int_{\tau}^1 \frac{dx}{x} \mathbf{f}_i(\mathbf{x}) \mathbf{f}_j\left(\frac{\tau}{\mathbf{x}}\right) \mathbf{F}_n \sigma_{\text{disk}}(\tau \mathbf{s})
$$

 \Rightarrow σ _{РР→ВН} = **70**, **160**, **280** pb \Rightarrow 1*s*^{−1} @ design at 7 TeV \Rightarrow 10⁻⁴ suppression.

H. Yoshino and V. S. Rychkov hep-th/0503171

 1 Lower bounds on $b_{max}^{(n)}$ \Rightarrow Enhanced cross section $\mathsf{F}_{\mathbf{n}}\sigma_{disk}$

$$
\sigma_{PP\rightarrow BH}=\sum_{i,j}^{\mathrm{partons}}\int_{\tau_{m}}^{1}d\tau\int_{\tau}^{1}\frac{dx}{x}f_{i}(\textbf{x})f_{j}\left(\frac{\tau}{\textbf{x}}\right)\textbf{F}_{n}\sigma_{\text{disk}}(\tau\textbf{s})
$$

 \Rightarrow σ _{РР→ВН} = **70**, **160**, **280** pb \Rightarrow 1*s*^{−1} @ design at 7 TeV \Rightarrow 10⁻⁴ suppression.

² Bounds on M and J lost into gravitational radiation.

H. Yoshino and V. S. Rychkov hep-th/0503171

 1 Lower bounds on $b_{max}^{(n)}$ \Rightarrow Enhanced cross section $\mathsf{F}_{\mathbf{n}}\sigma_{disk}$

$$
\sigma_{PP\rightarrow BH}=\sum_{i,j}^{\mathrm{partons}}\int_{\tau_{m}}^{1}d\tau\int_{\tau}^{1}\frac{dx}{x}f_{i}(\textbf{x})f_{j}\left(\frac{\tau}{\textbf{x}}\right)\textbf{F}_{n}\sigma_{\text{disk}}(\tau\textbf{s})
$$

 \Rightarrow σ _{РР→ВН} = **70**, **160**, **280** pb \Rightarrow 1*s*^{−1} @ design at 7 TeV \Rightarrow 10⁻⁴ suppression.

2 Bounds on M and J lost into gravitational radiation.

H. Yoshino and V. S. Rychkov hep-th/0503171

 1 Lower bounds on $b_{max}^{(n)}$ \Rightarrow Enhanced cross section $\mathsf{F}_{\mathbf{n}}\sigma_{disk}$

$$
\sigma_{PP\rightarrow BH}=\sum_{i,j}^{\mathrm{partons}}\int_{\tau_{m}}^{1}d\tau\int_{\tau}^{1}\frac{dx}{x}f_{i}(\textbf{x})f_{j}\left(\frac{\tau}{\textbf{x}}\right)\textbf{F}_{n}\sigma_{\text{disk}}(\tau\textbf{s})
$$

 \Rightarrow σ _{РР→ВН} = **70**, **160**, **280** pb \Rightarrow 1*s*^{−1} @ design at 7 TeV \Rightarrow 10⁻⁴ suppression.

² Bounds on M and J lost into gravitational radiation.

Outline

[Introduction](#page-13-0)

- [The hierarchy problem Extra dimensions](#page-13-0)
- [Strong gravity & Black Holes](#page-35-0)

Modelling BH events - CHARYBDIS2

- [The production](#page-42-0)
- [The decay](#page-61-0)
- CHARYBDIS2 [& other generators](#page-93-0)
- [Phenomenology using](#page-97-0) CHARYBDIS2
	- [Classical signatures](#page-97-0)
	- [The effects of rotation](#page-107-0)

[Conclusions and Outlook](#page-118-0)

After formation, classically nothing else happens! (if BH relatively slowly rotating, otherwise instabilities).

$$
ds^{2} = \left(1 - \frac{\mu}{\Sigma r^{n-1}}\right) dt^{2} + \frac{2a\mu \sin^{2}\theta}{\Sigma r^{n-1}} dt d\phi - \frac{\Sigma}{\Delta} dr^{2} -
$$

$$
-\Sigma d\theta^{2} - \left(r^{2} + a^{2} + \frac{a^{2}\mu \sin^{2}\theta}{\Sigma r^{n-1}}\right) \sin^{2}\theta d\phi^{2} - r^{2} \cos^{2}\theta d\Omega_{n}^{2},
$$

- 1974, Hawking's quantum instability⇒ BH decays 10−26*s*.
- **Gravity couples Universally**

$$
\mathcal{S}_{brane}=\int d^4x\sqrt{|g|}\left(-f^4+\mathcal{L}_0+\mathcal{L}_{\frac{1}{2}}+\mathcal{L}_1\right)
$$

• After formation, classically nothing else happens! (if BH relatively slowly rotating, otherwise instabilities).

$$
ds^{2} = \left(1 - \frac{\mu}{\sum r^{n-1}}\right) dt^{2} + \frac{2a\mu \sin^{2}\theta}{\sum r^{n-1}} dt d\phi - \frac{\sum}{\Delta} dr^{2} -
$$

$$
-\Sigma d\theta^{2} - \left(r^{2} + a^{2} + \frac{a^{2}\mu \sin^{2}\theta}{\sum r^{n-1}}\right) \sin^{2}\theta d\phi^{2} - r^{2} \cos^{2}\theta d\Omega_{n}^{2},
$$

- 1974, Hawking's quantum instability⇒ BH decays 10−26*s*.
- **Gravity couples Universally**

$$
\mathcal{S}_{brane}=\int d^4x\sqrt{|g|}\left(-f^4+\mathcal{L}_0+\mathcal{L}_{\frac{1}{2}}+\mathcal{L}_1\right)
$$

• After formation, classically nothing else happens! (if BH relatively slowly rotating, otherwise instabilities).

$$
ds^{2} = \left(1 - \frac{\mu}{\Sigma r^{n-1}}\right) dt^{2} + \frac{2a\mu \sin^{2}\theta}{\Sigma r^{n-1}} dt d\phi - \frac{\Sigma}{\Delta} dr^{2} -
$$

$$
-\Sigma d\theta^{2} - \left(r^{2} + a^{2} + \frac{a^{2}\mu \sin^{2}\theta}{\Sigma r^{n-1}}\right) \sin^{2}\theta d\phi^{2} - r^{2} \cos^{2}\theta d\Omega_{n}^{2},
$$

- 1974, Hawking's quantum instability⇒ BH decays 10−26*s*.
- **Gravity couples Universally**

$$
\mathcal{S}_{brane}=\int d^4x\sqrt{|g|}\left(-f^4+\mathcal{L}_0+\mathcal{L}_{\frac{1}{2}}+\mathcal{L}_1\right)
$$

• After formation, classically nothing else happens! (if BH relatively slowly rotating, otherwise instabilities).

$$
ds^{2} = \left(1 - \frac{\mu}{\Sigma r^{n-1}}\right) dt^{2} + \frac{2a\mu \sin^{2}\theta}{\Sigma r^{n-1}} dt d\phi - \frac{\Sigma}{\Delta} dr^{2} -
$$

$$
-\Sigma d\theta^{2} - \left(r^{2} + a^{2} + \frac{a^{2}\mu \sin^{2}\theta}{\Sigma r^{n-1}}\right) \sin^{2}\theta d\phi^{2} - r^{2} \cos^{2}\theta d\Omega_{n}^{2},
$$

1974, Hawking's quantum instability⇒ BH decays 10−26*s*.

Gravity couples Universally

$$
\mathcal{S}_{brane}=\int d^4x\sqrt{|g|}\left(-f^4+\mathcal{L}_0+\mathcal{L}_{\frac{1}{2}}+\mathcal{L}_1\right)
$$

• After formation, classically nothing else happens! (if BH relatively slowly rotating, otherwise instabilities).

$$
ds^{2} = \left(1 - \frac{\mu}{\Sigma r^{n-1}}\right) dt^{2} + \frac{2a\mu \sin^{2}\theta}{\Sigma r^{n-1}} dt d\phi - \frac{\Sigma}{\Delta} dr^{2} -
$$

$$
-\Sigma d\theta^{2} - \left(r^{2} + a^{2} + \frac{a^{2}\mu \sin^{2}\theta}{\Sigma r^{n-1}}\right) \sin^{2}\theta d\phi^{2} - r^{2} \cos^{2}\theta d\Omega_{n}^{2},
$$

- 1974, Hawking's quantum instability⇒ BH decays 10−26*s*.
- **Gravity couples Universally**

$$
\mathcal{S}_{brane} = \int d^4x \sqrt{|g|} \left(-f^4 + \mathcal{L}_0 + \mathcal{L}_{\frac{1}{2}} + \mathcal{L}_1 \right)
$$

• After formation, classically nothing else happens! (if BH relatively slowly rotating, otherwise instabilities).

$$
ds^{2} = \left(1 - \frac{\mu}{\Sigma r^{n-1}}\right) dt^{2} + \frac{2a\mu \sin^{2}\theta}{\Sigma r^{n-1}} dt d\phi - \frac{\Sigma}{\Delta} dr^{2} -
$$

$$
-\Sigma d\theta^{2} - \left(r^{2} + a^{2} + \frac{a^{2}\mu \sin^{2}\theta}{\Sigma r^{n-1}}\right) \sin^{2}\theta d\phi^{2} - r^{2} \cos^{2}\theta d\Omega_{n}^{2},
$$

- 1974, Hawking's quantum instability⇒ BH decays 10−26*s*.
- **Gravity couples Universally**

$$
\mathcal{S}_{\textit{brane}} = \int d^4x \sqrt{|g|} \left(-f^4 + \mathcal{L}_0 + \mathcal{L}_{\frac{1}{2}} + \mathcal{L}_1 \right)
$$

R. Sundrum hep-ph/9805471

- The decay can be described through **Hawking radiation**
- The **time between emission** of one particle is **large** (true for large BH mass)
- **Brane emission is dominant** (large number of SM $\begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$ degrees of freedom)
- **Backreaction** of the metric between emissions is **small** (true for large BH mass)

The decay can be described through **Hawking radiation**

- The **time between emission** of one particle is **large** (true for large BH mass)
- **Brane emission is dominant** (large number of SM $\begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$ degrees of freedom)
- **Backreaction** of the metric between emissions is **small** $\qquad \qquad \Box$ (true for large BH mass)

- The decay can be described through **Hawking radiation**
- The **time between emission** of one particle is **large** (true for large BH mass)
- **Brane emission is dominant** (large number of SM $\begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}$ degrees of freedom)
- **Backreaction** of the metric between emissions is **small** (true for large BH mass)

- The decay can be described through **Hawking radiation**
- The **time between emission** of one particle is **large** (true for large BH mass)
- **Brane emission is dominant** (large number of SM degrees of freedom)
- **Backreaction** of the metric between emissions is **small** (true for large BH mass)
Some of the underlying assumptions!

- The decay can be described through **Hawking radiation**
- The **time between emission** of one particle is **large** (true for large BH mass)
- **Brane emission is dominant** (large number of SM degrees of freedom)
- **e Backreaction** of the metric between emissions is **small** (true for large BH mass)

$$
\frac{\mathsf{d} \mathsf{E}_h}{\mathsf{d} \mathsf{t} \mathsf{d} \omega \mathsf{d} \Omega} = \sum_{m,j} \frac{\omega}{2\pi} \frac{\mathbb{T}_{k}^{(n)}(\omega, a_*)}{\exp(\frac{\omega - m\Omega_H}{\mathcal{T}_H}) \pm 1} \left| h \mathsf{S}_{j}^{m}(\Omega, \omega a_*) \right|^2
$$

Dependence on *a*[∗]

• Spheroidal angular functions

Harder spectrum

- $2 \text{ m} = j \text{ (m} > 0)$ dominant ⇒ Spin-down
- ³ Similar for Scalars and Vectors

$$
\frac{\mathsf{d} \mathsf{E}_h}{\mathsf{d} \mathsf{t} \mathsf{d} \omega \mathsf{d} \Omega} = \sum_{m,j} \frac{\omega}{2\pi} \frac{\mathbb{T}_k^{(n)}(\omega, a_*)}{\exp(\frac{\omega - m\Omega_H}{\mathcal{T}_H}) \pm 1} \left| hS_j^m(\Omega, \omega a_*) \right|^2
$$

Dependence on *a*[∗]

• Spheroidal angular functions

- **Harder spectrum**
- 2 $m = i$ ($m > 0$) dominant ⇒ Spin-down
- ³ Similar for Scalars and Vectors

$$
\frac{\mathsf{d} \mathsf{E}_h}{\mathsf{d} \mathsf{t} \mathsf{d} \omega \mathsf{d} \Omega} = \sum_{m,j} \frac{\omega}{2\pi} \frac{\mathbb{T}_k^{(n)}(\omega, a_*)}{\exp(\frac{\omega - m\Omega_H}{T_H}) \pm 1} \left| hS_j^m(\Omega, \omega a_*) \right|^2
$$

Dependence on *a*[∗]

 $\mathbf{T_H} = \frac{(n+1)+(n-1)a_*^2}{4\pi(1+a_*^2)r_H}, \Omega_H = \frac{1}{r_H}$ **rH a**∗ **1**+**a 2** ∗ • Spheroidal angular functions

-
- **Harder spectrum**
- $2 m = j (m > 0)$ dominant ⇒ Spin-down
- **3** Similar for Scalars and Vectors

$$
\frac{\mathsf{d} \mathsf{E}_h}{\mathsf{d} \mathsf{t} \mathsf{d} \omega \mathsf{d} \Omega} = \sum_{m,j} \frac{\omega}{2\pi} \frac{\mathbb{T}_k^{(n)}(\omega, a_*)}{\exp(\frac{\omega - m\Omega_H}{T_H}) \pm 1} \left| nS_j^m(\Omega, \omega a_*) \right|^2
$$

Dependence on *a*[∗]

$$
\textbf{T}_{\textbf{H}}=\tfrac{(n+1)+(n-1)a_*^2}{4\pi(1+a_*^2)r_{\textbf{H}}},\,\Omega_{\textbf{H}}\text{=}\tfrac{1}{r_{\textbf{H}}}\tfrac{a_*}{1+a_*^2}
$$

- Spheroidal angular functions
- **Harder spectrum**
- $m = i$ (*m* > 0) dominant ⇒ Spin-down
- ³ Similar for Scalars and Vectors

- Dependence on *a*[∗]
- $\mathbf{T_H} = \frac{(n+1)+(n-1)a_*^2}{4\pi(1+a_*^2)r_H}, \Omega_H = \frac{1}{r_H}$ **rH a**∗ **1**+**a 2** ∗
- Spheroidal angular functions
- **1** Harder spectrum
- $2 \text{ m} = j \text{ (m > 0)}$ dominant ⇒ Spin-down
- ³ Similar for Scalars and Vectors Power Flux

Hawking radiation – Angular spectrum

- ¹ High rotation makes angular distributions **equatorial**.
- ² However note lower energy vectors with **axial peaks!**:
	-
	-
	-

M. Casals, S. R. Dolan, P. Kanti and E. Winstanley, JHEP 0703 (2007) 019 [hep-th/0608193]

Hawking radiation – Angular spectrum

- ¹ High rotation makes angular distributions **equatorial**.
- ² However note lower energy vectors with **axial peaks!**:
	-
	-
	-

M. Casals, S. R. Dolan, P. Kanti and E. Winstanley, JHEP 0703 (2007) 019 [hep-th/0608193]

Hawking radiation – Angular spectrum

- ¹ High rotation makes angular distributions **equatorial**.
- ² However note lower energy vectors with **axial peaks!**:
	- Each peak comes from different polarisation contributions.
	- Study of **asymmetries in vector boson decays**.
	- Similar effect for fermions.

M. Casals, S. R. Dolan, P. Kanti and E. Winstanley, JHEP 0703 (2007) 019 [hep-th/0608193]

-
-
-
-

Non-rotating

Mass drops linearly.

•
$$
T \sim r_S^{-1} \rightarrow
$$
 speed up last \sim 15% *t*.

Non-rotating

- Mass drops linearly.
	- $T \sim r_S^{-1}$ → speed up last \sim 15% *t*.

Rotating

- Initial spin down ∼ 15%*t*. *J* **drops by** ∼ 80%**.** *M* **drops by** ∼ 30%
- Followed by a Schwarzchild phase.
- Note: BH with large *M* and *J*. **More semi-classical, Spins down efficiently**

Non-rotating

- Mass drops linearly.
	- $T \sim r_S^{-1}$ → speed up last \sim 15% *t*.

Rotating

- Initial spin down ∼ 15%*t*. *J* **drops by** ∼ 80%**.** *M* **drops by** ∼ 30%
- Followed by a Schwarzchild phase.
- Note: BH with large *M* and *J*. **More semi-classical, Spins down efficiently Maybe not the case for most BHs @ LHC**

Outline

[Introduction](#page-13-0)

- [The hierarchy problem Extra dimensions](#page-13-0)
- [Strong gravity & Black Holes](#page-35-0)

Modelling BH events - CHARYBDIS2

- [The production](#page-42-0)
- [The decay](#page-61-0)
- CHARYBDIS2 [& other generators](#page-93-0)
- [Phenomenology using](#page-97-0) CHARYBDIS2 • [Classical signatures](#page-97-0)
	- [The effects of rotation](#page-107-0)

[Conclusions and Outlook](#page-118-0)

BH event generators

J = 0 **generators**

<code>TRUENOIR: Fixed T, no $\mathbb{T}^{(n)}_k$ </code> *k* .

- <code>CHARYBDIS1:</code> Variable T, no $\mathbb{T}_{k}^{(n)}$ *k* . **C. M. Harris et al. hep-ph/0307305**
- <code>CATFISH:</code> Energy loss, variable T, no $\mathbb{T}^{(n)}_k$ *k* .

 $J \neq 0$ generators

- BlackMax: Energy loss, variable T, split branes, T (*n*) *k* . **Dai et al. arXiv:0711.3012**
- CHARYBDIS2: Energy loss model, polarisation, variable T, remnant options, $\mathbb{T}^{(n)}_k$ *k* .

J. A. Frost, J. R. Gaunt, MS, M. Casals, S. R. Dolan, M. A. Parker and

B. R. Webber, arXiV:0904.0979 http://projects.hepforge.org/charybdis2/

BH event generators

J = 0 **generators**

- TRUENOIR: **Fixed T, no** $\mathbb{T}_{k}^{(n)}$ *k* . **S. Dimopoulos et al. hep-ph/0106295**
- <code>CHARYBDIS1:</code> Variable T, no $\mathbb{T}_{k}^{(n)}$ *k* . **C. M. Harris et al. hep-ph/0307305**
- <code>CATFISH:</code> Energy loss, variable T, no $\mathbb{T}^{(n)}_k$ *k* . **Cavaglia et al. hep-ph/0609001**

$J \neq 0$ generators

- BlackMax: Energy loss, variable T, split branes, T (*n*) *k* . **Dai et al. arXiv:0711.3012**
- CHARYBDIS2: Energy loss model, polarisation, variable T, remnant options, $\mathbb{T}^{(n)}_k$ *k* .

J. A. Frost, J. R. Gaunt, MS, M. Casals, S. R. Dolan, M. A. Parker and

B. R. Webber, arXiV:0904.0979 http://projects.hepforge.org/charybdis2/

BH event generators

J = 0 **generators**

- TRUENOIR: **Fixed T, no** $\mathbb{T}_{k}^{(n)}$ *k* . **S. Dimopoulos et al. hep-ph/0106295**
- <code>CHARYBDIS1:</code> Variable T, no $\mathbb{T}_{k}^{(n)}$ *k* . **C. M. Harris et al. hep-ph/0307305**
- <code>CATFISH:</code> Energy loss, variable T, no $\mathbb{T}^{(n)}_k$ *k* . **Cavaglia et al. hep-ph/0609001**

$J \neq 0$ generators

- BlackMax: Energy loss, variable T, split branes, T (*n*) *k* . **Dai et al. arXiv:0711.3012**
- CHARYBDIS2: Energy loss model, polarisation, variable T, remnant options, $\mathbb{T}^{(n)}_k$ *k* .

J. A. Frost, J. R. Gaunt, MS, M. Casals, S. R. Dolan, M. A. Parker and

B. R. Webber, arXiV:0904.0979 http://projects.hepforge.org/charybdis2/

Outline

[Introduction](#page-13-0)

- [The hierarchy problem Extra dimensions](#page-13-0)
- [Strong gravity & Black Holes](#page-35-0)
- [Modelling BH events –](#page-40-0) CHARYBDIS2
	- [The production](#page-42-0)
	- [The decay](#page-61-0)
	- CHARYBDIS2 [& other generators](#page-93-0)
- [Phenomenology using](#page-97-0) CHARYBDIS2 [Classical signatures](#page-97-0)
	- [The effects of rotation](#page-107-0)

[Conclusions and Outlook](#page-118-0)

- **High multiplicity events with large number or jets.** In the SM, SUSY and other BSM models this is usually suppressed. Even more if also leptons are present.
- **Very High** *P^T* **tails.**
- Allow for **large boost** particles.
- For high multiplicity events, virtually **any combination of particles in the final state**.

- **High multiplicity events with large number or jets.** In the SM, SUSY and other BSM models this is usually suppressed. Even more if also leptons are present.
- **Very High** *P^T* **tails.**
- Allow for **large boost** particles.
- For high multiplicity events, virtually **any combination of particles in the final state**.

- **High multiplicity events with large number or jets.** In the SM, SUSY and other BSM models this is usually suppressed. Even more if also leptons are present.
- **Very High** *P^T* **tails.**
- Allow for **large boost** particles.
- For high multiplicity events, virtually **any combination of particles in the final state**.

- **High multiplicity events with large number or jets.** In the SM, SUSY and other BSM models this is usually suppressed. Even more if also leptons are present.
- **Very High** *P^T* **tails.**
- Allow for **large boost** particles.
- For high multiplicity events, virtually **any combination of particles in the final state**.

- **High multiplicity events with large number or jets.** In the SM, SUSY and other BSM models this is usually suppressed. Even more if also leptons are present.
- **Very High** *P^T* **tails.**
- Allow for **large boost** particles.
- For high multiplicity events, virtually **any combination of particles in the final state**.

Outline

[Introduction](#page-13-0)

- [The hierarchy problem Extra dimensions](#page-13-0)
- [Strong gravity & Black Holes](#page-35-0)
- [Modelling BH events –](#page-40-0) CHARYBDIS2
	- [The production](#page-42-0)
	- [The decay](#page-61-0)
	- CHARYBDIS2 [& other generators](#page-93-0)
- [Phenomenology using](#page-97-0) CHARYBDIS2
	- [Classical signatures](#page-97-0)
	- [The effects of rotation](#page-107-0)

[Conclusions and Outlook](#page-118-0)
Cross section

Massless approximation in the generator!

 \rightarrow But $m_H, m_W, m_Z, m_t \sim 0.1$ TeV

Gauge charges of the particles not included in the **Hawking radiation calculations**.

MOPS, JHEP 10 (2009) 008 [arXiv:0907.5107] MOPS, JHEP 02 (2010) 042 [arXiv:0911.0688]

Not clear whether **graviton emission** will be enhanced with rotation and compete with brane emission.

Massless approximation in the generator!

\rightarrow But $m_H, m_W, m_Z, m_t \sim 0.1$ TeV

Gauge charges of the particles not included in the **Hawking radiation calculations**.

MOPS, JHEP 10 (2009) 008 [arXiv:0907.5107] MOPS, JHEP 02 (2010) 042 [arXiv:0911.0688]

Not clear whether **graviton emission** will be enhanced with rotation and compete with brane emission.

Massless approximation in the generator!

 \rightarrow But $m_H, m_W, m_Z, m_t \sim 0.1$ TeV

Gauge charges of the particles not included in the **Hawking radiation calculations**.

MOPS, JHEP 10 (2009) 008 [arXiv:0907.5107] MOPS, JHEP 02 (2010) 042 [arXiv:0911.0688]

Not clear whether **graviton emission** will be enhanced with rotation and compete with brane emission.

Massless approximation in the generator!

 \rightarrow But $m_H, m_W, m_Z, m_t \sim 0.1$ TeV

Gauge charges of the particles not included in the **Hawking radiation calculations**.

MOPS, JHEP 10 (2009) 008 [arXiv:0907.5107] MOPS, JHEP 02 (2010) 042 [arXiv:0911.0688]

Not clear whether **graviton emission** will be enhanced with rotation and compete with brane emission.

Massless approximation in the generator!

 \rightarrow **But** $m_H, m_W, m_Z, m_t \sim 0.1$ **TeV**

Gauge charges of the particles not included in the **Hawking radiation calculations**.

MOPS, JHEP 10 (2009) 008 [arXiv:0907.5107] MOPS, JHEP 02 (2010) 042 [arXiv:0911.0688]

Not clear whether **graviton emission** will be enhanced with rotation and compete with brane emission.

[Introduction](#page-13-0)

- [The hierarchy problem Extra dimensions](#page-13-0)
- [Strong gravity & Black Holes](#page-35-0)
- [Modelling BH events –](#page-40-0) CHARYBDIS2
	- [The production](#page-42-0)
	- [The decay](#page-61-0)
	- CHARYBDIS2 [& other generators](#page-93-0)
- [Phenomenology using](#page-97-0) CHARYBDIS2
	- [Classical signatures](#page-97-0)
	- [The effects of rotation](#page-107-0)

- We have described the Physics of production and decay of BHs in theories with extra dimensions, in CHARYBDIS2.
- We have looked into some interesting **effects/models**:
	- ¹ *M* and *J* distributions at formation;
	- The effect of rotation on energy and angular distributions;
- **Phenomenologically:**
	- ¹ Large cross sections, large multiplicities, large *P^T* and missing energy \rightarrow classical signatures roughly remain.
	- Potential of rotation: angular correlations (to be explored).

- **asymmetries and angular correlations**,
- **refinement of the modelling** of production and $\begin{array}{c} \bullet \\ \bullet \end{array}$ evaporation to include mass and charge effects, etc...
- Studies of **exclusion limits** for the various LHC runs.

- We have described the Physics of production and decay of BHs in theories with extra dimensions, in CHARYBDIS2.
- We have looked into some interesting **effects/models**:
	- ¹ *M* and *J* distributions at formation;
	- The effect of rotation on energy and angular distributions;
- **Phenomenologically:**
	- ¹ Large cross sections, large multiplicities, large *P^T* and missing energy \rightarrow classical signatures roughly remain.
	- Potential of rotation: angular correlations (to be explored).

- **asymmetries and angular correlations**,
- **refinement of the modelling** of production and $\begin{array}{c} \bullet \\ \bullet \end{array}$ evaporation to include mass and charge effects, etc...
- Studies of **exclusion limits** for the various LHC runs.

- We have described the Physics of production and decay of BHs in theories with extra dimensions, in CHARYBDIS2.
- We have looked into some interesting **effects/models**:
	- ¹ *M* and *J* distributions at formation;
	- ² The effect of rotation on energy and angular distributions;
- **Phenomenologically:**
	- ¹ Large cross sections, large multiplicities, large *P^T* and missing energy \rightarrow classical signatures roughly remain.
	- Potential of rotation: angular correlations (to be explored).

- **asymmetries and angular correlations**,
- **refinement of the modelling** of production and $\begin{array}{c} \bullet \\ \bullet \end{array}$ evaporation to include mass and charge effects, etc...
- Studies of **exclusion limits** for the various LHC runs.

- We have described the Physics of production and decay of BHs in theories with extra dimensions, in CHARYBDIS2.
- We have looked into some interesting **effects/models**:
	- ¹ *M* and *J* distributions at formation;
	- ² The effect of rotation on energy and angular distributions;
- **Phenomenologically:**
	- ¹ Large cross sections, large multiplicities, large *P^T* and missing energy \rightarrow classical signatures roughly remain.
	- 2 Potential of rotation: angular correlations (to be explored).

- **asymmetries and angular correlations**,
- **refinement of the modelling** of production and $\begin{array}{c} \bullet \\ \bullet \end{array}$ evaporation to include mass and charge effects, etc...
- Studies of **exclusion limits** for the various LHC runs.

- We have described the Physics of production and decay of BHs in theories with extra dimensions, in CHARYBDIS2.
- We have looked into some interesting **effects/models**:
	- ¹ *M* and *J* distributions at formation;
	- ² The effect of rotation on energy and angular distributions;
- **Phenomenologically:**
	- ¹ Large cross sections, large multiplicities, large *P^T* and missing energy \rightarrow classical signatures roughly remain.
	- 2 Potential of rotation: angular correlations (to be explored).

- **asymmetries and angular correlations**,
- **refinement of the modelling** of production and $\begin{array}{c} \bullet \\ \bullet \end{array}$ evaporation to include mass and charge effects, etc...
- Studies of **exclusion limits** for the various LHC runs.

- We have described the Physics of production and decay of BHs in theories with extra dimensions, in CHARYBDIS2.
- We have looked into some interesting **effects/models**:
	- ¹ *M* and *J* distributions at formation;
	- ² The effect of rotation on energy and angular distributions;
- **Phenomenologically:**
	- ¹ Large cross sections, large multiplicities, large *P^T* and missing energy \rightarrow classical signatures roughly remain.
	- 2 Potential of rotation: angular correlations (to be explored).

- **asymmetries and angular correlations**,
- **refinement of the modelling** of production and $\begin{array}{c} \bullet \\ \bullet \end{array}$ evaporation to include mass and charge effects, etc...
- Studies of **exclusion limits** for the various LHC runs.

- We have described the Physics of production and decay of BHs in theories with extra dimensions, in CHARYBDIS2.
- We have looked into some interesting **effects/models**:
	- ¹ *M* and *J* distributions at formation;
	- ² The effect of rotation on energy and angular distributions;
- **Phenomenologically:**
	- ¹ Large cross sections, large multiplicities, large *P^T* and missing energy \rightarrow classical signatures roughly remain.
	- 2 Potential of rotation: angular correlations (to be explored).

- **asymmetries and angular correlations**,
- **refinement of the modelling** of production and evaporation to include mass and charge effects, etc...
- Studies of **exclusion limits** for the various LHC runs.

- We have described the Physics of production and decay of BHs in theories with extra dimensions, in CHARYBDIS2.
- We have looked into some interesting **effects/models**:
	- ¹ *M* and *J* distributions at formation;
	- ² The effect of rotation on energy and angular distributions;
- **Phenomenologically:**
	- ¹ Large cross sections, large multiplicities, large *P^T* and missing energy \rightarrow classical signatures roughly remain.
	- 2 Potential of rotation: angular correlations (to be explored).

- **asymmetries and angular correlations**,
- **refinement of the modelling** of production and evaporation to include mass and charge effects, etc...
- Studies of **exclusion limits** for the various LHC runs.

- We have described the Physics of production and decay of BHs in theories with extra dimensions, in CHARYBDIS2.
- We have looked into some interesting **effects/models**:
	- ¹ *M* and *J* distributions at formation;
	- ² The effect of rotation on energy and angular distributions;
- **Phenomenologically:**
	- ¹ Large cross sections, large multiplicities, large *P^T* and missing energy \rightarrow classical signatures roughly remain.
	- 2 Potential of rotation: angular correlations (to be explored).

Future work will involve detailed studies of:

- **asymmetries and angular correlations**,
- **refinement of the modelling** of production and evaporation to include mass and charge effects, etc...
- Studies of **exclusion limits** for the various LHC runs.

Thanks for your attention! Questions?

BACKUP

More effects of rotation – Species

Enhancement of Vector emission

Look at **radiative corrections** to Higgs mass:

Look at **radiative corrections** to Higgs mass:

Higgs mass runs from high scale:

$$
\delta m_h^2 = \left(|\lambda_f|^2 - \frac{1}{2} \lambda \right) \frac{\Lambda_{\text{cutoff}}^2}{8\pi^2} + \dots
$$

Look at **radiative corrections** to Higgs mass:

Higgs mass runs from high scale:

$$
\delta m_h^2 = \left(|\lambda_f|^2 - \frac{1}{2} \lambda \right) \frac{\Lambda_{\text{cutoff}}^2}{8\pi^2} + \ldots
$$

If Λcutoff ∼ *M*⁴ ∼ 10¹⁶ TeV ⇒ **fine tuning** of ∼ 10−¹⁶

¹ **Arrange cancellation of quadratic divergences.**

⇒ New particles: SUSY, Little Higgs, etc...

¹ **Arrange cancellation of quadratic divergences.**

 \Rightarrow New particles: SUSY, Little Higgs, etc...

² **Change the running to exponential.**

 \Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.

¹ **Arrange cancellation of quadratic divergences.**

 \Rightarrow New particles: SUSY, Little Higgs, etc...

² **Change the running to exponential.**

 \Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.

³ **Assume the fundamental Planck scale is** 1 **TeV.**

⇒ Extra dimensions.

¹ **Arrange cancellation of quadratic divergences.**

 \Rightarrow New particles: SUSY, Little Higgs, etc...

² **Change the running to exponential.**

 \Rightarrow Strong dynamics: the Higgs is a pion field of a new strongly coupled sector.

³ **Assume the fundamental Planck scale is** 1 **TeV.**

⇒ Extra dimensions.

Bounds on extra dimensions

-
-
-
-
-
-
- -
-
- - -
	- - -
-
-
-
-
-
-
- -
-
- -
-
-
-
-
-
-
-
- - - - - -
				-
				- -
				- - -
				-
		-
	-
-
-
-
-
-
-
-
-
- -
	-
- - -
-
-
-
-
-
-
- -
-
-
-
-
-
-

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$
\Delta x \sim \frac{1}{\rho} \ll r_S
$$

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$
\Delta x \sim \frac{1}{\rho} \ll r_S
$$

But:

p large ⇒ ∆*x* small
Classical approximation

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$
\Delta x \sim \frac{1}{p} \ll r_S
$$

But:

- *p* large ⇒ ∆*x* small
- *p* large ⇒ √ $s \equiv E_{CM}$ large \Rightarrow r_S large

Classical approximation

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$
\Delta x \sim \frac{1}{p} \ll r_S
$$

But:

- *p* large ⇒ ∆*x* small
- *p* large ⇒ √ $s \equiv E_{CM}$ large \Rightarrow r_S large

The condition is satisfied when $\sqrt{s} \gg M_{4+n}$ (trans-Planckian).

Classical approximation

For the **classical approximation** for production to be valid we need the wavelength of each colliding particle to be small compared to the interaction length.

$$
\Delta x \sim \frac{1}{p} \ll r_S
$$

But:

p large ⇒ ∆*x* small

p large ⇒ √ $s \equiv E_{CM}$ large \Rightarrow r_S large

The condition is satisfied when $\sqrt{s} \gg M_{4+n}$ (trans-Planckian).

Also quantum gravity approximations indicate small corrections:

- **T. Banks and W. Fischler, hep-th/9906038**
- **S. N. Solodukhin, hep-ph/0201248**
- **S. D. H. Hsu, hep-ph/0203154**

During formation we should have an asymmetric BH with electric and gravitational multipole moments.

→**Distorted geometry.**

- **•** The time for loss of multipoles is **r**_S (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$
\Delta t \sim r_S \left(\frac{\text{M}_{BH}}{\text{M}_{4+n}}\right)^{\frac{n+2}{n+1}} \gg r_S \; .
$$

We assume a **quick loss of asymmetries**

During formation we should have an asymmetric BH with electric and gravitational multipole moments. \sim 5 \prime

→**Distorted geometry.**

- The time for loss of multipoles is **r**_S (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$
\Delta t \sim r_S \left(\frac{M_{BH}}{M_{4+n}}\right)^{\frac{n+2}{n+1}} \gg r_S \; .
$$

We assume a **quick loss of asymmetries**

During formation we should have an asymmetric BH with electric and gravitational multipole moments. $\sqrt{2}$

→**Distorted geometry.**

- The time for loss of multipoles is **r**_S (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$
\Delta t \sim r_S \left(\frac{\text{M}_{BH}}{\text{M}_{4+n}}\right)^{\frac{n+2}{n+1}} \gg r_S \; .
$$

We assume a **quick loss of asymmetries**

During formation we should have an asymmetric BH with electric and gravitational multipole moments. $\sqrt{2}$

→**Distorted geometry.**

- The time for loss of multipoles is **r**_S (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$
\Delta t \sim r_{\text{S}} \left(\frac{M_{\text{BH}}}{M_{4+n}} \right)^{\frac{n+2}{n+1}} \gg r_{\text{S}} \; .
$$

We assume a **quick loss of asymmetries**

During formation we should have an asymmetric BH with electric and gravitational multipole moments. $\sqrt{2}$

→**Distorted geometry.**

- The time for loss of multipoles is **r**_S (natural units).
- We will look next into the Hawking decay and realise that the typical timescale there is

$$
\Delta t \sim r_\text{S} \left(\frac{M_\text{BH}}{M_{4+n}} \right)^{\frac{n+2}{n+1}} \gg r_\text{S} \; .
$$

We assume a **quick loss of asymmetries**

More effects of rotation – BH parameters

-
- -
- -

More effects of rotation – BH parameters

More effects of rotation – BH parameters

- **Extract angular correlations** by forming correlators of the \textrm{type} $x_{i,j} = \frac{\mathbf{p}_{i} \cdot \mathbf{p}_{j}}{|\mathbf{p}_{i}||\mathbf{p}_{j}|}$ |**p***i* ||**p***^j* | in the frame of the initial BH.
- Why?

Extract angular correlations by forming correlators of the type $x_{i,j} = \frac{\mathbf{p}_i \cdot \mathbf{p}_j}{\|\mathbf{p}_i\| \|\mathbf{p}_j\|}$ |**p***i* ||**p***^j* | in the frame of the initial BH. Why?

Extract angular correlations by forming correlators of the type $x_{i,j} = \frac{\mathbf{p}_i \cdot \mathbf{p}_j}{\|\mathbf{p}_i\| \|\mathbf{p}_j\|}$ |**p***i* ||**p***^j* | in the frame of the initial BH.

Why?

Hawking radiation – Angular spectrum

- ¹ High rotation makes angular distributions **equatorial**.
- ² However note lower energy vectors with **axial peaks!**:
	- Each peak comes from different polarisation contributions.
	- Study of **asymmetries in vector boson decays**.
	- Similar effect for fermions.

M. Casals, S. R. Dolan, P. Kanti and E. Winstanley, JHEP 0703 (2007) 019 [hep-th/0608193]

Extract angular correlations by forming correlators of the type $x_{i,j} = \frac{\mathbf{p}_i \cdot \mathbf{p}_j}{\|\mathbf{p}_i\| \|\mathbf{p}_j\|}$ |**p***i* ||**p***^j* | in the frame of the initial BH. Why?

- BH settles down to (4+n)D Myers-Perry rotating BH.
- Mass **M** and angular momentum **J** as seen from infinity.

-
-

$$
\frac{x^2 + y^2}{1 + a_*^2} + z^2 = r_H^2.
$$

- BH settles down to (4+n)D Myers-Perry rotating BH.
- Mass **M** and angular momentum **J** as seen from infinity.

-
-

$$
\frac{x^2 + y^2}{1 + a_*^2} + z^2 = r_H^2.
$$

- BH settles down to (4+n)D Myers-Perry rotating BH.
- Mass **M** and angular momentum **J** as seen from infinity.

Geometrical properties

- Typical size/curvature of the horizon is r_H .
- **Spheroidal horizon with** oblateness **a**[∗]

$$
\frac{x^2 + y^2}{1 + \mathbf{a}_*^2} + z^2 = \mathbf{r_H}^2.
$$

Observer at *r* → ∞ sees an "egg like" black disk.

- BH settles down to (4+n)D Myers-Perry rotating BH.
- Mass **M** and angular momentum **J** as seen from infinity.

Geometrical properties

- Typical size/curvature of the horizon is r_H .
- **Spheroidal horizon with** oblateness **a**[∗]

$$
\frac{x^2 + y^2}{1 + a_*^2} + z^2 = r_H^2.
$$

Observer at *r* → ∞ sees an "egg like" black disk.

- BH settles down to (4+n)D Myers-Perry rotating BH.
- Mass **M** and angular momentum **J** as seen from infinity.

Geometrical properties

- Typical size/curvature of the horizon is r_H .
- **Spheroidal horizon with** oblateness **a**[∗]

$$
\frac{x^2 + y^2}{1 + a_*^2} + z^2 = r_H^2.
$$

Observer at *r* → ∞ sees an "egg like" black disk.

• When M_{BH} $<$ M_{4+n} , we reach the **quantum gravity regime** which is not known.

→**A model must be provided.**

To make robust predictions we must try to minimise the

→ **Cut on events with** *MBH* **well above** *M*4+*ⁿ* ∼ 1TeV.

A remnant fixed N-body phase space decay is performed in CHARYBDIS1 if $M_{BH} < M_{4+n}$.

• When M_{BH} < M_{4+n} , we reach the **quantum gravity regime** which is not known.

→**A model must be provided.**

To make robust predictions we must try to minimise the

→ **Cut on events with** *MBH* **well above** *M*4+*ⁿ* ∼ 1TeV.

A remnant fixed N-body phase space decay is performed in CHARYBDIS1 if $M_{BH} < M_{4+n}$.

• When M_{BH} < M_{4+n} , we reach the **quantum gravity regime** which is not known.

→**A model must be provided.**

• To make robust predictions we must try to minimise the effect of this final stage.

 \rightarrow Cut on events with M_{BH} well above $M_{4+n} \sim 1 \text{TeV}$.

A remnant fixed N-body phase space decay is performed in CHARYBDIS1 if $M_{BH} < M_{4+n}$.

• When M_{BH} < M_{4+n} , we reach the **quantum gravity regime** which is not known.

→**A model must be provided.**

- To make robust predictions we must try to minimise the effect of this final stage.
	- \rightarrow Cut on events with M_{BH} well above $M_{4+n} \sim 1 \text{TeV}$.
- A remnant fixed N-body phase space decay is performed in CHARYBDIS1 if $M_{BH} < M_{4+n}$.

• When M_{BH} < M_{4+n} , we reach the **quantum gravity regime** which is not known.

→**A model must be provided.**

• To make robust predictions we must try to minimise the effect of this final stage.

 \rightarrow Cut on events with M_{BH} well above $M_{4+n} \sim 1 \text{TeV}$.

• A remnant fixed N-body phase space decay is performed in CHARYBDIS1 if $M_{BH} < M_{4+n}$. In addition If $KTNCUT=$. TRUE. this occurs earlier, if a

kinematically disallowed energy is selected.

• When M_{BH} < M_{4+n} , we reach the **quantum gravity regime** which is not known.

→**A model must be provided.**

• To make robust predictions we must try to minimise the effect of this final stage.

 \rightarrow Cut on events with M_{BH} well above $M_{4+n} \sim 1 \text{TeV}$.

• A remnant fixed N-body phase space decay is performed in CHARYBDIS1 if $M_{BH} < M_{4+n}$.

In addition If $KTNCUT=$. TRUE. this occurs earlier, if a kinematically disallowed energy is selected.

In CHARYBDIS2 we introduce more physical models.

New remnant models 1

- ¹ KINCUT: as before.
- ² NBODYAVERAGE: Go to remnant if,

$$
\langle N \rangle \simeq Mr_H \frac{\sum_{i} g_i \left(\frac{1}{r_H} \frac{dN}{dt} \right)_i}{\sum_{j} g_j \left(\frac{dE}{dt} \right)_j} < NBODY - 1 = 1 \text{ or } 2, \dots
$$

- **1** Phase space constrained model (next slide).
- RMBOIL: Remnant evaporates at T_H = THWMAX. Motivated by string balls.

3 Stable remnant $Q = 0, \pm 1$. Motivated by modified uncertainty principle. **B. Koch et al. hep-ph/0507138**

New remnant models 1

Termination criteria:

- **1** KINCUT: as before.
- 2 NBODYAVERAGE: Go to remnant if.

$$
\langle N \rangle \simeq Mr_H \frac{\sum_i g_i \left(\frac{1}{r_H} \frac{dN}{dt} \right)_i}{\sum_j g_j \left(\frac{dE}{dt} \right)_j} < NBODY - 1 = 1 \text{ or } 2, \dots
$$

- ¹ Phase space constrained model (next slide).
- RMBOIL: Remnant evaporates at T_H = THWMAX. Motivated by string balls.

3 Stable remnant $Q = 0, \pm 1$. Motivated by modified uncertainty principle. **B. Koch et al. hep-ph/0507138**

New remnant models 1

Termination criteria:

- **1** KINCUT: as before.
- ² NBODYAVERAGE: Go to remnant if,

$$
\langle N \rangle \simeq Mr_H \frac{\sum_i g_i \left(\frac{1}{r_H} \frac{dN}{dt} \right)_i}{\sum_j g_j \left(\frac{dE}{dt} \right)_j} < NBODY - 1 = 1 \text{ or } 2, \dots
$$

Remnant models

- **1** Phase space constrained model (next slide).
- 2 RMBOIL: Remnant evaporates at $T_H = THWMAX$. Motivated by string balls.

S. Dimopoulos et al. hep-ph/0108060

3 Stable remnant $Q = 0, \pm 1$. Motivated by modified uncertainty principle. **B. Koch et al. hep-ph/0507138**

1 NBODYVAR = .TRUE.: Choose multiplicity $n + 1$ using

$$
P_{\delta t}(n)=e^{-\langle N\rangle}\frac{\langle N\rangle^n}{n!}
$$

Motivated by sudden final burst approximation. $\langle N \rangle$ physically motivated.

 Ω NBODYPHASE = .FALSE.: Use constrained phase space $\mathrm{d}P\propto\delta^{(4)}\left(\sum_{i}p_{i}-P_{BH}\right)\prod_{i}\rho_{i}\left(E_{i},\Omega_{i}\right)\mathrm{d}^{3}\mathbf{p}_{i}$

$$
\rho_i\left(E_i,\Omega_i\right) = \frac{\mathbb{T}_k^{(n)}(E_i r_H,a_*)}{\exp(\tilde{E}_i/T_H)\pm 1} \left|S_k(\Omega_i)\right|^2
$$

1 NBODYVAR = .TRUE.: Choose multiplicity $n + 1$ using

$$
P_{\delta t}(n) = e^{-\langle N \rangle} \frac{\langle N \rangle^n}{n!}
$$

Motivated by sudden final burst approximation. $\langle N \rangle$ physically motivated.

 N BODYPHASE = .FALSE.: Use constrained phase space $\mathrm{d}P\propto\delta^{(4)}\left(\sum_{i}p_{i}-P_{BH}\right)\prod_{i}\rho_{i}\left(E_{i},\Omega_{i}\right)\mathrm{d}^{3}\mathbf{p}_{i}$

1 NBODYVAR = .TRUE.: Choose multiplicity $n + 1$ using

$$
P_{\delta t}(n) = e^{-\langle N \rangle} \frac{\langle N \rangle^n}{n!}
$$

Motivated by sudden final burst approximation. $\langle N \rangle$ physically motivated.

 \bullet NBODYPHASE = .FALSE. Use constrained phase space

$$
\mathrm{d}P\propto\delta^{(4)}\left(\sum_{i}p_{i}-P_{BH}\right)\prod_{i}\rho_{i}\left(E_{i},\Omega_{i}\right)\mathrm{d}^{3}\mathbf{p}_{i}
$$

with

$$
\rho_i\left(E_i,\Omega_i\right) = \frac{\mathbb{T}_k^{(n)}(E_i r_H,a_*)}{\exp(\tilde{E}_i/T_H)\pm 1}\left|S_k(\Omega_i)\right|^2
$$

More similar to Hawking evaporation

1 NBODYVAR = .TRUE.: Choose multiplicity $n + 1$ using

$$
P_{\delta t}(n) = e^{-\langle N \rangle} \frac{\langle N \rangle^n}{n!}
$$

Motivated by sudden final burst approximation. $\langle N \rangle$ physically motivated.

 \bullet NBODYPHASE = .FALSE.: Use constrained phase space

 $\mathrm{d}P\propto\delta^{(4)}\left(\sum_{i}p_{i}-P_{BH}\right)\prod_{i}\rho_{i}\left(E_{i},\Omega_{i}\right)\mathrm{d}^{3}\mathbf{p}_{i}$

with

$$
\rho_i\left(E_i,\Omega_i\right)=\frac{\mathbb{T}_k^{(n)}(E_ir_H,a_*)}{\exp(\tilde{E}_i/T_H)\pm 1}\left|S_k(\Omega_i)\right|^2
$$

More similar to Hawking evaporation