
FeynArts and FormCalc

Thomas Hahn

Max-Planck-Institut für Physik
München

T. Hahn, FeynArts and FormCalc – p.1

Contradiction
An Introduction is to introduce people, but FeynArts and Friends have already
been introduced to you. So this is the opposite. When we asked Pooh what the
opposite of an Introduction was, he said “The what of a what?” which didn’t help
us as much as we had hoped, but luckily Owl kept his head and told us that the
Opposite of an Introduction, my dear Pooh, was a Contradiction.

. . . actually, a Distinction:
FeynArts/FormCalc FeynHiggs

Generic answer to Concrete answer to
an arbitrary question a specific question
Paint & brush Finished painting
Symbolic part Numerical program
(Mathematica) (hand-tuned Fortran)
Numerical part Mathematica
(generated Fortran) interface

Plan: Walk through the general setup of these programs and
show some perhaps non-standard applications.
http://feynarts.de/examples.tar.gz

T. Hahn, FeynArts and FormCalc – p.2

Automated Diagram Evaluation
Diagram Generation:
• Create the topologies
• Insert fields
• Apply the Feynman rules
• Paint the diagrams

Algebraic Simplification:
• Contract indices
• Calculate traces
• Reduce tensor integrals
• Introduce abbreviations

Numerical Evaluation:
• Convert Mathematica output to Fortran code
• Supply a driver program
• Implementation of the integrals

Symbolic manipulation
(Computer Algebra)
for the structural and
algebraic operations.

Compiled high-level
language (Fortran) for
the numerical evaluation.

FeynArts

Amplitudes

FormCalc

Fortran Code

LoopTools

|M|2 Cross-sections, Decay rates, . . .

T. Hahn, FeynArts and FormCalc – p.3

FeynArts
Find all distinct ways of connect-
ing incoming and outgoing lines

CreateTopologies

Topologies

Determine all allowed
combinations of fields

InsertFields

Draw the results
Paint

Diagrams

Apply the Feynman rules
CreateFeynAmp

Amplitudes
further

processing

EXAMPLE: generating the photon self-energy

top = CreateTopologies[1 , 1 -> 1]

one loop

one incoming particle

one outgoing particle

Paint[top]

ins = InsertFields[top, V[1] -> V[1] ,

Model -> SM]

use the Standard Model
the name of the

photon in the

“SM” model file

Paint[ins]

amp = CreateFeynAmp[ins]

amp >> PhotonSelfEnergy.amp

T. Hahn, FeynArts and FormCalc – p.4

Algebraic Simplification

The amplitudes output by FeynArts so far are in no good
shape for direct numerical evaluation. Some objects
must/should be handled symbolically, e.g. tensorial objects,
Dirac traces, dimension (D vs. 4).

• contract indices as far as possible,

• evaluate fermion traces,

• perform the tensor reduction,

• add local terms arising from D·(divergent integral),

• simplify open fermion chains,

• simplify and compute the square of SU(N) structures,

• “compactify” the results as much as possible.

T. Hahn, FeynArts and FormCalc – p.5

FormCalc

FormCalc

Mathematica

FORM
FeynArts

amplitudes

Analytical
results

Fortran

Generated Code
SquaredME
RenConst

Driver
programs

Utilities
library

EXAMPLE: Calculating the photon self-energy

In[1]:= << FormCalc‘

FormCalc 6.1

by Thomas Hahn

last revised 6 Jul 09

In[2]:= CalcFeynAmp[<< PhotonSelfEnergy.amp]

preparing FORM code in /tmp/m1.frm

> 2 amplitudes with insertions

> 5 amplitudes without insertions

running FORM... ok

Out[2]= Amp[{0} -> {0}][
-3 Alfa Pair1 A0[MW2]

2 Pi
+

3 Alfa Pair1 B00[0, MW2, MW2]

Pi
,

(
Alfa Pair1 A0[MLE2[Gen1]]

Pi
+

Alfa Pair1 A0[MQD2[Gen1]]

3 Pi
+

4 Alfa Pair1 A0[MQU2[Gen1]]

3 Pi
-

2 Alfa Pair1 B00[0, MLE2[Gen1],MLE2[Gen1]]

Pi
-

2 Alfa Pair1 B00[0, MQD2[Gen1],MQD2[Gen1]]

3 Pi
-

8 Alfa Pair1 B00[0, MQU2[Gen1],MQU2[Gen1]]

3 Pi
) *

SumOver[Gen1,3]]

T. Hahn, FeynArts and FormCalc – p.6

Numerical Evaluation in Fortran 77

user-level code included in FormCalc

generated code, “black box”

Cross-sections, Decay rates, Asymmetries. . .

SquaredME.F
master subroutine

abbr_s.F

abbr_angle.F
...

abbreviations
(calculated only when necessary)

born.F

self.F
...

form factors

main.F
driver program

run.F
parameters for this run

process.h
process definition

T. Hahn, FeynArts and FormCalc – p.7

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier ,
loop momenta,
generic amplitude,
insertions]

GraphID[Topology == 1, Generic == 1]

T. Hahn, FeynArts and FormCalc – p.8

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier,
loop momenta ,

generic amplitude,
insertions]

Integral[q1]

T. Hahn, FeynArts and FormCalc – p.9

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier,
loop momenta,
generic amplitude ,

insertions]

I

32 Pi4
RelativeCF ...prefactor

FeynAmpDenominator[
1

q12 - Mass[S[Gen3]]2
,

1

(-p1 + q1)2 - Mass[S[Gen4]]2
]loop denominators

(p1 - 2 q1)[Lor1] (-p1 + 2 q1)[Lor2] kin. coupling structure

ep[V[1], p1, Lor1] ep*[V[1], k1, Lor2]polarization vectors

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]]

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]], coupling constants

T. Hahn, FeynArts and FormCalc – p.10

Sample CreateFeynAmp output

γ

γ

G

G = FeynAmp[identifier,
loop momenta,
generic amplitude,
insertions]

{ Mass[S[Gen3]],

Mass[S[Gen4]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

G(0)SSV[(Mom[1] - Mom[2])[KI1[3]]],

RelativeCF } ->

Insertions[Classes][{MW, MW, I EL, -I EL, 2}]

T. Hahn, FeynArts and FormCalc – p.11

Sample Paint output

\begin{feynartspicture}(150,150)(1,1)

\FADiagram{}

\FAProp(6.,10.)(14.,10.)(0.8,){ScalarDash}{-1}

\FALabel(10.,5.73)[t]{G}

\FAProp(6.,10.)(14.,10.)(-0.8,){ScalarDash}{1}

\FALabel(10.,14.27)[b]{G}

\FAProp(0.,10.)(6.,10.)(0.,){Sine}{0}

\FALabel(3.,8.93)[t]{γ}

\FAProp(20.,10.)(14.,10.)(0.,){Sine}{0}

\FALabel(17.,11.07)[b]{γ}

\FAVert(6.,10.){0}

\FAVert(14.,10.){0}

\end{feynartspicture} γ

γ

G

G

Technically: uses its own PostScript prologue.

T. Hahn, FeynArts and FormCalc – p.12

FormCalc Output

A typical term in the output looks like

C0i[cc12, MW2, MW2, S, MW2, MZ2, MW2] *

(-4 Alfa2 MW2 CW2/SW2 S AbbSum16 +

32 Alfa2 CW2/SW2 S2 AbbSum28 +

4 Alfa2 CW2/SW2 S2 AbbSum30 -

8 Alfa2 CW2/SW2 S2 AbbSum7 +

Alfa2 CW2/SW2 S (T - U) Abb1 +

8 Alfa2 CW2/SW2 S (T - U) AbbSum29)

= loop integral = kinematical variables

= constants = automatically introduced abbreviations

T. Hahn, FeynArts and FormCalc – p.13

Abbreviations

Outright factorization is usually out of question.
Abbreviations are necessary to reduce size of expressions.

AbbSum29 = Abb2 + Abb22 + Abb23 + Abb3

Abb22 = Pair1 Pair3 Pair6

Pair3 = Pair[e[3], k[1]]

The full expression corresponding to AbbSum29 is
Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[1]] +

Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[1]] +

Pair[e[1], e[2]] Pair[e[3], k[1]] Pair[e[4], k[2]] +

Pair[e[1], e[2]] Pair[e[3], k[2]] Pair[e[4], k[2]]

T. Hahn, FeynArts and FormCalc – p.14

Categories of Abbreviations

• Abbreviations are recursively defined in several levels.

• When generating Fortran code, FormCalc introduces
another set of abbreviations for the loop integrals.

In general, the abbreviations are thus costly in CPU time.
It is key to a decent performance that the abbreviations are
separated into different Categories:

• Abbreviations that depend on the helicities,

• Abbreviations that depend on angular variables,

• Abbreviations that depend only on
√

s.

Correct execution of the categories guarantees that almost no
redundant evaluations are made and makes the generated
code essentially as fast as hand-tuned code.

T. Hahn, FeynArts and FormCalc – p.15

External Fermion Lines

An amplitude containing external fermions has the form

M =
nF

∑
i=1

ci Fi where Fi = (Product of) 〈u|Γi |v〉 .

nF = number of fermionic structures.

Textbook procedure: Trace Technique

|M|2 =
nF

∑
i, j=1

c∗i c j F∗i Fj

where F∗i Fj = 〈v| Γ̄i |u〉 〈u|Γ j |v〉 = Tr
(
Γ̄i |u〉〈u| Γ j |v〉〈v|

)
.

T. Hahn, FeynArts and FormCalc – p.16

Problems with the Trace Technique

PRO: Trace technique is independent of any representation.

CON: For nF Fi’s there are n2
F F∗i Fj’s.

Things get worse the more vectors are in the game:
multi-particle final states, polarization effects . . .
Essentially nF ∼ (# of vectors)! because all
combinations of vectors can appear in the Γi.

Solution: Use Weyl–van der Waerden spinor formalism to
compute the Fi’s directly.

T. Hahn, FeynArts and FormCalc – p.17

Sigma Chains

Define Sigma matrices and 2-dim. Spinors as

σµ = (1l,−~σ) ,

σµ = (1l,+~σ) ,

〈u|4d ≡
(
〈u+|2d , 〈u−|2d

)
,

|v〉4d ≡
(
|v−〉2d

|v+〉2d

)
.

Using the chiral representation it is easy to show that
every chiral 4-dim. Dirac chain can be converted to a
single 2-dim. sigma chain:

〈u|ω−γµγν · · · |v〉 = 〈u−|σµσν · · · |v±〉 ,
〈u|ω+γµγν · · · |v〉 = 〈u+|σµσν · · · |v∓〉 .

T. Hahn, FeynArts and FormCalc – p.18

Fierz Identities

With the Fierz identities for sigma matrices it is possible to
remove all Lorentz contractions between sigma chains, e.g.

〈A|σµ |B〉 〈C|σµ |D〉 = 2 〈A|D〉 〈C|B〉

A B

C D

σµ

σµ

= 2

A

D

B

C

T. Hahn, FeynArts and FormCalc – p.19

Implementation

• Objects (arrays): |u±〉 ∼
(

u1
u2

)
, (σ · k) ∼

(
a b
c d

)

• Operations (functions):

〈u|v〉 ∼ (u1 u2) ·
(

v1
v2

)
SxS

(()σ · k) |v〉 ∼
(

a b
c d

)
·
(

v1
v2

)
VxS, BxS

Sufficient to compute any sigma chain:

〈u|σµσνσρ |v〉 kµ1 kν2 kρ3 = SxS(u, VxS(k1, BxS(k2, VxS(k3, v))))

T. Hahn, FeynArts and FormCalc – p.20

More Freebies

• Polarization does not ‘cost’ extra:
= Get spin physics for free.

• Better numerical stability because components of kµ are
arranged as ‘small’ and ‘large’ matrix entries, viz.

σµkµ =

(
k0 + k3 k1 − ik2

k1 + ik2 k0 − k3
↓

)

Large cancellations of the form
√

k2 + m2 −
√

k2 when
m� k are avoided: better precision for mass effects.

T. Hahn, FeynArts and FormCalc – p.21

Mathematica Interface

The new Mathematica Interface turns the generated
stand-alone Fortran code into a Mathematica function for
evaluating the cross-section or decay rate as a function of
user-selected model parameters.

The benefits of such a function are obvious, as the whole
instrumentarium of Mathematica commands can be applied to
them. Just think of

FindMinimum[sigma[TB, MA0], {{TB, 5}, {MA0, 250}}]

ContourPlot[sigma[TB, MA0], {TB, 5}, {MA0, 250}]

...

T. Hahn, FeynArts and FormCalc – p.22

Mathematica Interface – Input

The changes to the code are minimal.

Example line in �� ��� � for Stand-alone Fortran code:
#define LOOP1 do 1 TB = 5, 50, 5

Change for the Mathematica Interface:
#define LOOP1 call MmaGetReal(TB)

The variable �� is ‘imported’ from Mathematica now, i.e. the
cross-section function in Mathematica becomes a function of

� � hereby.

The user has full control over which variables are ‘imported’
from Mathematica and which are set in Fortran.

T. Hahn, FeynArts and FormCalc – p.23

Mathematica Interface – Output

Similar to the ��� � ��� � �� � 	 invocations, the Fortran program
can also ‘export’ variables to Mathematica.

For example, the line that prints a parameter in the
stand-alone code is

#define PRINT1 SHOW "TB", TB

becomes
#define PRINT1 call MmaPutReal("TB", TB)

for the Mathematica Interface and transmits the value of � � to
Mathematica.

T. Hahn, FeynArts and FormCalc – p.24

Mathematica Interface – Usage

Once the changes to �� �� � are made, the program �� � is
compiled as usual:

./configure

make

It is then loaded in Mathematica with
Install["run"]

Now a Mathematica function of the same name, �� �, is
available. There are two ways of invoking it:

Compute a differential cross-section at
√

s = sqrtS:
run[sqrtS, arg1, arg2, ...]

Compute a total cross-section for sqrtSfrom 6
√

s 6 sqrtSto:
run[{sqrtSfrom, sqrtSto}, arg1, arg2, ...]

T. Hahn, FeynArts and FormCalc – p.25

Mathematica Interface – Data Retrieval

The output of the function �� � is an integer which indicates
how many records have been transferred. For example:

Para[1] = {TB -> 5., MA0 -> 250.}

Data[1] = {DataRow[{500.}, {0.0539684, 0.}, {2.30801 10^-21, 0.}],

DataRow[{510.}, {0.0515943, 0.}, {4.50803 10^-22, 0.}]}

� � � � contains the parameters exported from the Fortran code.

� � � � contains:

• the independent variables,
here e.g. {500.} = {√s},

• the cross-sections,
here e.g. {0.0539684, 0.} = {σtree

tot , σ
1-loop
tot }, and

• the integration errors,
here e.g. {2.30801 10^-21, 0.} = {∆σtree

tot ,∆σ
1-loop
tot }.

T. Hahn, FeynArts and FormCalc – p.26

Code-generation Functions

FormCalc’s code-generation functions are now public and
disentangled from the rest of the code. They can be used to
write out an arbitrary Mathematica expression as optimized
Fortran code:

• handle = OpenFortran["file.F"]
opens file.F as a Fortran file for writing,

• WriteExpr[handle, {var -> expr, ...}]

writes out Fortran code which calculates expr and stores
the result in var,

• Close[handle]
closes the file again.

T. Hahn, FeynArts and FormCalc – p.27

Code generation

• Expressions too large for Fortran are split into parts, as in

var = part1

var = var + part2

...

• High level of optimization, e.g. common subexpressions
are pulled out and computed in temporary variables.

• Many ancillary functions, e.g.
PrepareExpr, OnePassOrder, SplitSums,
$Prefix, CommonDecl, SubroutineDecl, etc.

make code generation versatile and highly automatable,
such that the resulting code needs few or no changes by
hand.

T. Hahn, FeynArts and FormCalc – p.28

Scripting Mathematica

Efficient batch processing with Mathematica:

Put everything into a script, using sh’s Here documents:

#! /bin/sh Shell Magic

math << _EOF_ start Here document (note the \)

<< FeynArts‘

<< FormCalc‘

top = CreateTopologies[...];

...

EOF end Here document

Everything between “<< \tag” and “tag” goes to Mathematica
as if it were typed from the keyboard.

Note the “\” before tag, it makes the shell pass everything
literally to Mathematica, without shell substitutions.

T. Hahn, FeynArts and FormCalc – p.29

Scripting Mathematica

• Everything contained in one compact shell script, even if
it involves several Mathematica sessions.

• Can combine with arbitrary shell programming, e.g. can
use command-line arguments efficiently:

#! /bin/sh

math -run "arg1=$1" -run "arg2=$2" ... << \END

...

END

• Can easily be run in the background, or combined with
utilities such as make.

Debugging hint: � � flag makes shell echo every statement,
#! /bin/sh -x

T. Hahn, FeynArts and FormCalc – p.30

Three Levels of Fields

Generic level, e.g. F, F, S

C(F1, F2, S) = G−ω− + G+ω+

Kinematical structure completely fixed, most algebraic
simplifications (e.g. tensor reduction) can be carried out.

Classes level, e.g. -F[2], F[1], S[3]

¯̀ iν jG : G− = − i e m`,i√
2 sin θw MW

δi j , G+ = 0

Coupling fixed except for i, j (can be summed in do-loop).

Particles level, e.g. -F[2,{1}], F[1,{1}], S[3]

insert fermion generation (1, 2, 3) for i and j

T. Hahn, FeynArts and FormCalc – p.31

The Model Files

One has to set up, once and for all, a

• Generic Model File (seldomly changed)
containing the generic part of the couplings,

Example: the FFS coupling

C(F, F, S) = G−ω− + G+ω+ = ~G ·
(
ω−
ω+

)

AnalyticalCoupling[s1 F[j1, p1], s2 F[j2, p2], s3 S[j3, p3]]

== G[1][s1 F[j1], s2 F[j2], s3 S[j3]] .

{ NonCommutative[ChiralityProjector[-1]],

NonCommutative[ChiralityProjector[+1]] }

T. Hahn, FeynArts and FormCalc – p.32

The Model Files

One has to set up, once and for all, a

• Classes Model File (for each model)
declaring the particles and the allowed couplings

Example: the ¯̀ iν jG coupling in the Standard Model

~G(¯̀ i, ν j,G) =

(
G−
G+

)
=

(
− i e m`,i√

2 sin θw MW
δi j

0

)

C[-F[2,{i}], F[1,{j}], S[3]]

== { {-I EL Mass[F[2,{i}]]/(Sqrt[2] SW MW) IndexDelta[i, j]},

{0} }

T. Hahn, FeynArts and FormCalc – p.33

Tweaking Model Files

Or, How to efficiently make changes in an existing model file.

Bad: Copy the model file, modify the copy. — Why?

• It is typically not very transparent what has changed.

• If the original model file changes (e.g. bug fixes), these do
not automatically propagate into the derivative model
file.

Better: Create a new model file which reads the old one and
modifies the particles and coupling tables.

• � � � 	 �� � � � � � � � � � � � ��� � = list of particle definitions,

• � � �� � � 	 � � � � � � � � � � � = list of couplings.

T. Hahn, FeynArts and FormCalc – p.34

Tweaking Model Files

Example: Introduce enhancement factors for the b–b̄–h0 and
b–b̄–H0 Yukawa couplings in the MSSM.

LoadModel["MSSM"]

EnhCoup[(lhs:C[F[4,{g_,_}], -F[4,_], S[h:1|2]]) == rhs_] :=

lhs == Hff[h,g] rhs

EnhCoup[other_] = other

M$CouplingMatrices = EnhCoup/@ M$CouplingMatrices

To see the effect, make a printout with the � � � � � �� � � � 	 �

utility of FeynArts.

T. Hahn, FeynArts and FormCalc – p.35

Not the Cross-Section

Or, How to get things the Standard Setup won’t give you.

Example: extract the Wilson coefficients for b→ sγ .
tops = CreateTopologies[1, 1 -> 2]

ins = InsertFields[tops, F[4,{3}] -> {F[4,{2}], V[1]}]

vert = CalcFeynAmp[CreateFeynAmp[ins], FermionChains -> Chiral]

mat[p_Plus] := mat/@ p

mat[r_. DiracChain[s2_Spinor, om_, mu_, s1:Spinor[p1_, m1_, _]]] :=

I/(2 m1) mat[r DiracChain[sigmunu[om]]] +

2/m1 r Pair[mu, p1] DiracChain[s2, om, s1]

mat[r_. DiracChain[sigmunu[om_]], SUNT[Col1, Col2]] :=

r O7[om]/(EL MB/(16 Pi^2))

mat[r_. DiracChain[sigmunu[om_]], SUNT[Glu1, Col2, Col1]] :=

r O8[om]/(GS MB/(16 Pi^2))

coeff = Plus@@ vert //. abbr /. Mat -> mat

c7 = Coefficient[coeff, O7[6]]

c8 = Coefficient[coeff, O8[6]]

T. Hahn, FeynArts and FormCalc – p.36

Not the Cross-Section

Using FormCalc’s output functions it is also pretty
straightforward to generate your own Fortran code:

file = OpenFortran["bsgamma.F"]

WriteString[file,

SubroutineDecl["bsgamma(C7,C8)"] <>

"\tdouble complex C7, C8\n" <>

"#include \"looptools.h\"\n"]

WriteExpr[file, {C7 -> c7, C8 -> c8}]

WriteString[file, "\tend\n"]

Close[file]

T. Hahn, FeynArts and FormCalc – p.37

Summary and Outlook

• Serious perturbative calculations these days can
generally no longer be done by hand:
• Required accuracy, Models with many particles, . . .

• Hybrid programming techniques are necessary:
• Computer algebra is an indispensable tool because many

manipulations must be done symbolically.
• Fast number crunching can only be achieved in a compiled

language.

• Software engineering and further development of the
existing packages is a must:
• As we move on to ever more complex computations (more loops,

more legs), the computer programs must become more
“intelligent,” i.e. must learn all possible tricks to still be able to
handle the expressions.

T. Hahn, FeynArts and FormCalc – p.38

Finally

Using FeynArts and FormCalc is a lot like driving a car:

• You have to decide where to go (this is often the hardest
decision).

• You have to turn the ignition key, work gas and brakes,
and steer.

• But you don’t have to know, say, which valve has to
open at which time to keep the motor running.

• On the other hand, you can only go where there are
roads. You can’t climb a mountain with your car.

T. Hahn, FeynArts and FormCalc – p.39

	Contradiction
	Automated Diagram Evaluation
	FeynArts
	Algebraic Simplification
	FormCalc
	Numerical Evaluation in Fortran 77
	Sample CreateFeynAmp output
	Sample CreateFeynAmp output
	Sample CreateFeynAmp output
	Sample CreateFeynAmp output
	Sample Paint output
	FormCalc Output
	Abbreviations
	Categories of Abbreviations
	External Fermion Lines
	Problems with the Trace Technique
	Sigma Chains
	Fierz Identities
	Implementation
	More Freebies
	Mathematica Interface
	Mathematica Interface -- Input
	Mathematica Interface -- Output
	Mathematica Interface -- Usage
	Mathematica Interface -- Data Retrieval
	Code-generation Functions
	Code generation
	Scripting Mathematica
	Scripting Mathematica
	Three Levels of Fields
	The Model Files
	The Model Files
	Tweaking Model Files
	Tweaking Model Files
	Not the Cross-Section
	Not the Cross-Section
	Summary and Outlook
	Finally

