SPS 2021 intensity ramp up and its implications for the kickers

<u>M.J. Barnes</u>, H. Bartosik, E. Carlier, L. Ducimetière, B. Goddard, T. Kramer, N. Magnin, M. Meddahi, V. Namora, G. Rumolo, L. Sermeus, V. Senaj, W. Weterings, C. Zannini

Acknowledgements:

M. Beck, A. Harrison, V. Kain, K. Kodama, L. Vega Cid, E. Veyrunes

Assumptions

Baseline:

4x72 bunches, 25ns structure; Injection bunch length ~3ns, shortening during the ramp to ~1.6ns at flat top; Scrubbing for 1.3e11 ppb so will probably target an intensity slightly above (no bunch shortening).

Possibly:

Eventually, depending on how things go, pushing forward into the LIU regime ⇒ a maximum of 2.6e11 - 2.8e11 ppb.

(This will not be for the start-up, but just to give an idea on where we will need to be heading for the coming years after LS2).

Overview

- Brief overview of SPS kicker modifications during LS2
- Reminder of interlock levels and limits for temperature and pressure
- Estimates for heating, cool down rates to help planning a schedule
- Required OP procedures and actions, expert contact persons during beam commissioning
- Beam commissioning for kickers

Modification of SPS kicker magnets during LS2

- > MKP vented with dry nitrogen (will not be DC conditioned, only pulse conditioned).
- > Neither MKE4 nor MKE6 vented.
- MKDV now consists of 3 magnets (was 2 prior to LS2, i.e. one new magnet). Ferrite yoke, not shielded, but conductors closer to beam than ferrite. Heating not expected to be an issue.

Operational scenarios

Temp. rise of MKE4, MKE6, MKD and MKP-S kicker magnets are not expected to limit SPS operation, even for HL-LHC type beams with 2.6e11 pb, 4 x 72b, 25ns (Inj. BL ~3ns, \Rightarrow ~1.6ns at flat top). But MKP-L will limit operation: Confident: OK

resulting resulting average Not OK average power loss per Risk of mechanical damage Injected Exrtracted module length module duty power loss duration Ferrite p/b p/b [W/m][W/module] Scenario cycle cycle type [m] (hours) repetition Temperature trains 2018 operation 3x48 1.33E+11 1.20E+11 50% acceleration 0.7 every 12 hours 149 104 1.5 OK 2018 MD 4x48 1.80E+11 1.80E+11 0.7 10 50% flat bottom 164 115 once per week OK scrubbing week 2021 scrubbing 4x72 1.50E+11 1.50E+11 70% flat bottom 0.7 239 167 continuous continuous OK OK typical week 2021 operation 4x48 1.44E+11 1.30E+11 acceleration 0.7 1.5 every 12 hours 50% 220 154 OK 2021 MD 4x72 1.67E+11 1.50E+11 50% acceleration 0.7 443 310 10 once per week scrubbing week 2022 scrubbing 4x72 2.00E+11 2.00E+11 70% flat bottom 0.7 424 297 continuous continuous Exceeds TC 2022 operation 4x48 1.67E+11 1.50E+11 typical week 50% acceleration 0.7 296 207 1.5 every 12 hours OK 2022 MD 4x72 2.22E+11 2.00E+11 50% acceleration 0.7 783 10 once per week Close to TC 548 scrubbing week 2023 scrubbing 4x72 2.60E+11 2.60E+11 70% flat bottom 0.7 continuous continuous Not OK 717 502 2.00E+11 1.80E+11 typical week 2023 operation 4x48 50% acceleration 0.7 1.5 every 12 hours **Exceeds TC** 424 297 2023 MD 4x72 2.56E+11 2.30E+11 50% 0.7 1074 10 acceleration 752 once per week Not OK **Exceeds TC** typical week 2024 operation 4x48 2.00E+11 1.80E+11 50% acceleration 0.7 424 every 12 hours

Could exceed Tc: rise of mis-kicking beam

2024 MD

4x72 2.56E+11 2.30E+11

50%

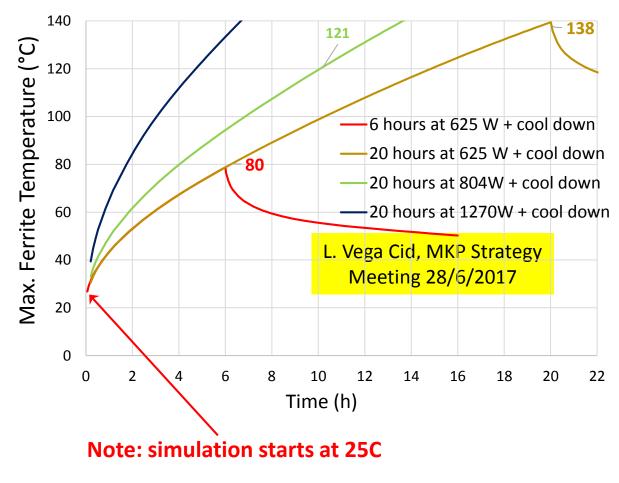
acceleration

0.7

1074

297

752


1.5

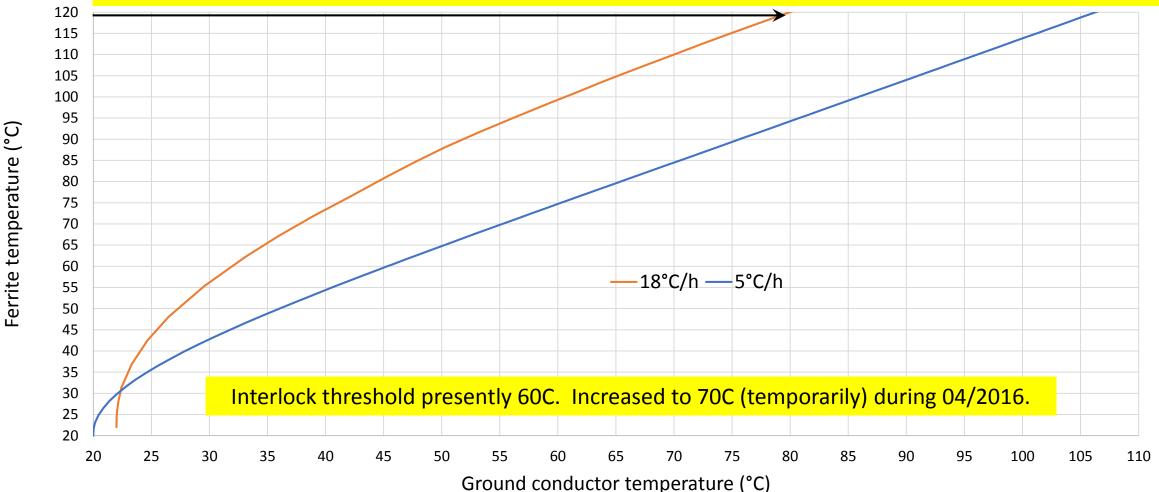
10

once per week

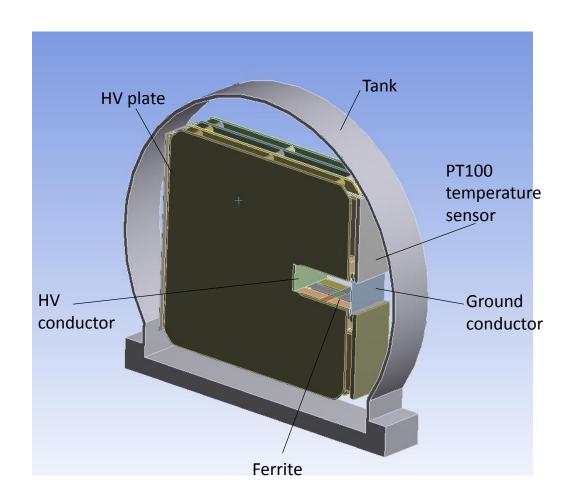
Not OK

MKP-L: Predicted (max.) ferrite temperature versus time and dissipated power

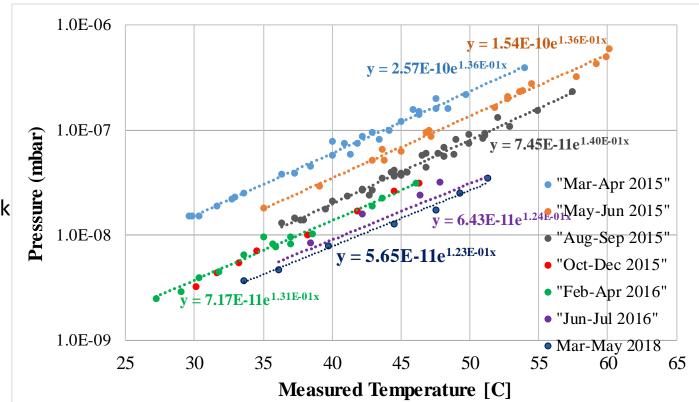
Assuming <u>10C/hr limit</u> (manufacturer suggests 15C/hr for ferrite):


Time (hrs)	•	dT/dt, 625W, (C/hr)	Temperature, 804W, [C]	dT/dt, 804W, [C/hr]
0	25		25	
0.5	37	24.0	41	32.0
1.5	48.5	11.5	56	15.0
3	61	8.3	72	10.7
6	80	6.3	95	7.7
10	100	5.0	121	6.5
-20	138	3.8	170 - 170 -	4.9

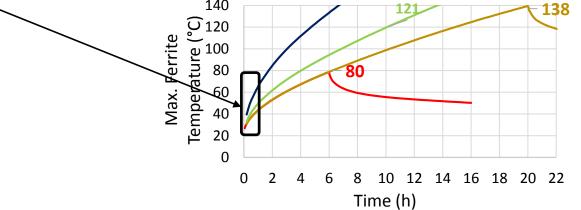
To a first approximation, heating <u>rates</u> are proportional to average dissipated power. Thus, for 300W, extrapolating:


Time (hrs)	Temperature, 300W, [C]	dT/dt, 300W, (C/hr)
0	25	
0.5	31	12.0
1.5	36.75	5.8
3	43	4.2
6	52.5	3.2
10	62.5	2.5
eetin g 0	81.5	19

MKP-L: Predicted (max.) temperatures for 2 heating rates


MKP-L Kicker Magnet (1)

- ➤ Curie temperature of ferrite would be exceeded under some scenarios ⇒ mis-injected beam.....
- PT100 does not measure well ferrite temperature for a given ferrite temperature, PT100 reading depends upon rate of heating.....
- High rate of heating (e.g. 30C/hr for 800W/module) in ferrite legs could lead to mechanical damage:
 - Cracking of ferrite 'legs' already observed (but reason for cracking unknown);
 - Local chipping of ferrite 'legs'
- Will need to gain experience, during high intensity operation of SPS kicker magnets, in particular with MKP-L, to calibrate thermal models.


MKP-L Kicker Magnet (2)

- SPS kicker magnets are NOT designed to be bakeable:
 - Elevated temperature of ferrite will lead to high outgassing, and hence higher risk of electric breakdown during injection;
 - ✓ Continuous' 2021 scrubbing will heat ferrite (~100C expected ⇒ ~85C measured) which will result in high-outgassing and possible risk of breakdown during injection, e.g.
 85C measured expected to give: ⇒
 background pressure of 2e-6mbar
 (66C ⇒ 2e-7 mbar, 77C ⇒ 7e-7 mbar).
 - With time, outgassing will slightly reduce for a given ferrite temperature.

Possible short-term 'mitigation' of issues for MKP-L

- > Thermal studies launched to study possible means of reducing risk of mechanical damage, e.g.:
 - Reduce <u>initial</u> power dissipation in ferrite by decreasing <u>initial</u> power deposition (e.g. 3 batches instead of 4) with high intensity beams;
 140

- Risk of mis-injection of beam, into SPS, could be reduced following high-intensity scrubbing/operation by pulsing MKP kicker magnets, with increasing voltage, when SPS is empty:
 - a) Used to validate that MKP-L temperature < Curie temperature, by measuring pulse properties of kicker magnets ⇒ possibility to change MKP-L temperature interlock threshold;
 - b) (Re-)condition MKP kicker magnets before injection into SPS.
- Controls to allow the above pulsing could possibly be implemented during YETS 2021/22 (fixed pulse width, only vacuum interlock, ...) budget required...
 - IPOC analysis to be fully defined for short pulse & long read-back cables;
 - Require Python script for analysis of IPOC data.

15/1/2020

Longer-term 'mitigation' of issues for MKP-L

- MKP-L with serigraphy designed and will be prototyped.... This MKP-L has ~order of magnitude less beam induced heating – hence, no thermal issues expected. Therefore, ferrite outgassing is also expected to be greatly reduced since temperature rise will be limited:
 - Theoretical calculations show that serigraphy should not degrade field rise-time (to be confirmed on the prototype);
 - Mechanical robustness to be verified on the prototype MKP-L;
 - Impedance to be verified on a prototype MKP-L;
 - > HV performance to be verified on the prototype MKP-L;
 - Alumina carrier of serigraphy may cause ecloud issues: possible solution (verified on LHC MKIs and on liners in SPS) is to coat alumina with Cr2O3;
 - Estimating price for upgrading a 4 module MKP-L;
 - > Initial planning shows that:
 - > 2 module prototype MKP-L could be assembled, measured and tested by autumn 2020;
 - If prototype is verified: Upgraded 4 module spare MKP-L would be ready for installation during YETS 2021-2022.

Temperature and Pressure Interlock Thresholds

Temperature of MKE4, MKE6 and the MKD kicker magnets are not expected to directly limit SPS operation, even for HL-LHC type beams with 2.6e11 pb, 4 x 72b, 25ns. However, background pressure at elevated temerature may be an issue (especially where nagnets have not previously been at the high temperature).

MKE4 & MKE6

Temperature interlock thresholds:

- Circulating beam 90 C (SW)
- Extraction beam 70 C (SW)

Vacuum interlock threshold for both MKE4 & MKE6: no SW interlocks . 1e-6/5e-7 mbar (HW).

<u>MKP</u>

Temperature interlock threshold: 60 C (to be increased to 70 C) Vacuum interlock thresholds:

- MKP-S (MKP1,2,3): 2.1e-7 mbar (SW). 6e-7/5e-7 mbar (HW)
- MKP-L (MKP4), Physics: 2.1e-7 mbar (SW). 8e-7/7e-7 mbar (HW)
- MKP-L (MKP4), MD or Scrubbing: 7.1e-7 mbar (SW). 8e-7/7e-7 mbar (HW)
- MKP-L (MKP4), Max: 5.1e-7 mbar (SW). 8e-7/7e-7 mbar (HW)

<u>MKD</u>

Temperature interlock threshold: no interlock Vacuum interlock threshold: no SW interlock. 5e-7/3e-7 mbar (HW)

<u>MKQ</u>

Temperature interlock threshold: no interlock Vacuum interlock threshold: no SW interlock. 1e-6/9e-7 mbar (HW)

M.J. Barnes. LIU-SPS Coordination Meeting

12

Required OP procedures and actions

Temperature

- MKP: if temperature approaches interlock threshold, reduce average power deposition in magnet (e.g. for a given scrubbing intensity, increase super-cycle duration).
- > MKE: no major issues expected: hence, if an issue, contact expert.
- > MKD: no major issues expected. Heating will cause background pressure increase. If an issue, contact expert.

Pressure

- ► MKP:
 - if pressure approaches interlock threshold, this could be due to both ecloud and background pressure due to heating. Reducing average power would reduce background pressure – but a long thermal time constant.
 - If magnets breakdown when pulsed, magnets need to be reconditioned. In absence of automatic procedure, needs to be done in BA1 by piquet.
- MKE4/6: no major issues expected in 2021. But background pressure will increase with temperature, due to outgassing
 - > if pressure approaches interlock threshold ask expert to check pressure due to ecloud and temperature
 - ➢ if magnets breakdown when pulsed, magnets need to be reconditioned by piquet.
- MKD: new MKDV will require (potentially long) conditioning: hence, if an issue, contact expert. After extended scrubbing or high intensity MD, is pressure > 1e-8 mbar, magnets need to be reconditioned, in situ, by piquet.

Expert contact persons during beam commissioning

ΜΚΡ

Generator: Peter BURKEL Magnet: Mike BARNES Controls: Nicolas VOUMARD ABP: Francesco VELOTTI

MKE4/6

Generator: Peter BURKEL Magnet: Mike BARNES Controls: Christophe LOLLIOT ABP: Francesco VELOTTI

MKQ

Generator: Peter BURKEL Magnet: Peter BURKEL Controls: Lorane ALLONNEAU ABP: Francesco VELOTTI

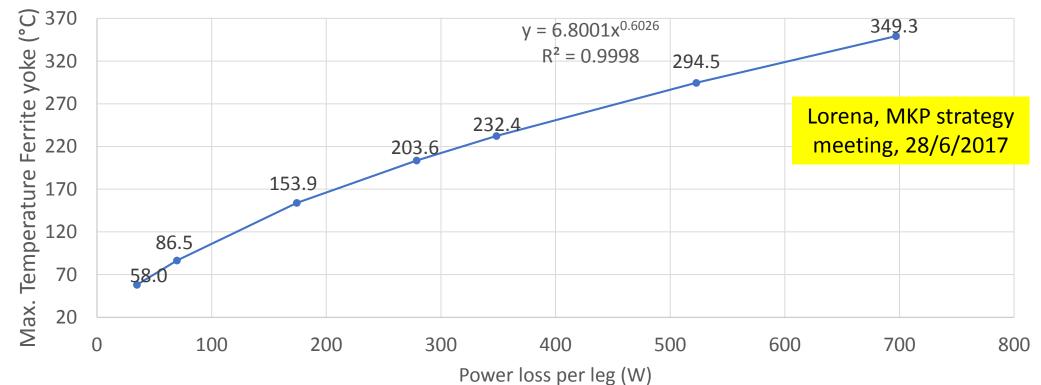
MKDH

Generator: Viliam SENAJ Magnet: Vasco NAMORA Controls: Pieter VAN TRAPPEN ABP: Francesco VELOTTI

MKDV

MKDV Generator: Viliam SENAJ MKDV Magnet: Gael BELLOTTO MKDV Controls: Pieter VAN TRAPPEN ABP: Francesco VELOTTI

Conclusions (to end of 2021)


- > No thermal issues expected for MKP-S, MKE or MKD kicker magnets
- > MKP-L expected to be OK, thermally, during 2021 scrubbing and operation
 - ➢ However, 'continuous' 2021 scrubbing will heat ferrite (~100C expected ⇒ ~85C measured) which will result in high-outgassing and possible risk of breakdown during injection
- For MKP-L small risk of mechanical damage during 2021 MD mitigating measures under study
- > Prototyping of MKP-L with serigraphy (for mitigating heating) ongoing:
 - Prototype MKP-L could be measured and tested by autumn 2020;
 - If prototype is verified: upgraded 4 module spare MKP-L would be ready for installation during YETS 2021-2022.

Thank you for your attention.

Questions ?

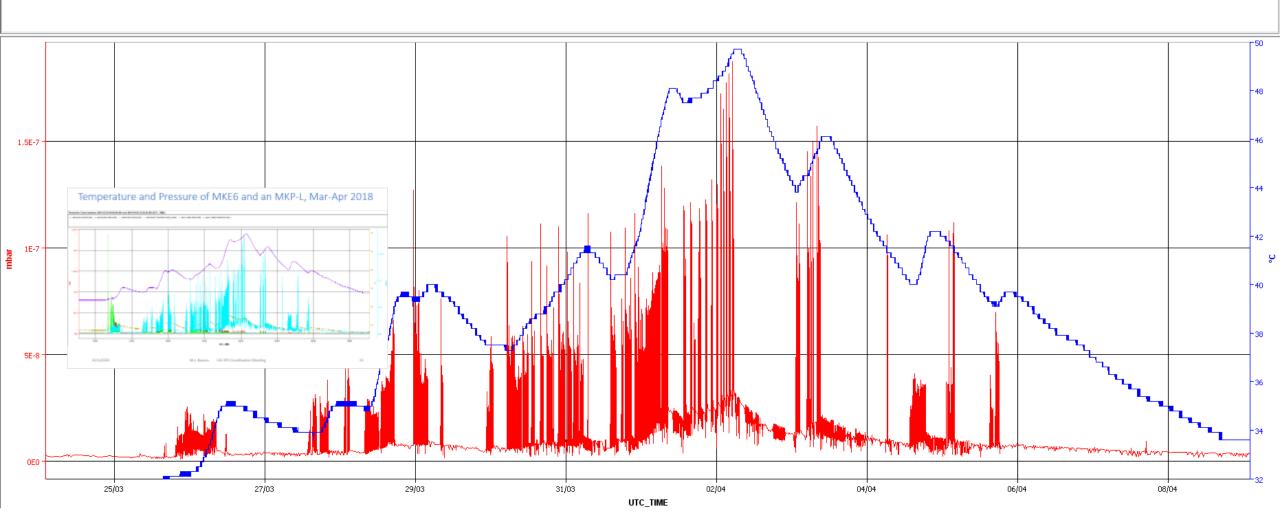
Spare slides

Steady state calculations

- The maximum temperature reached in the yokes can be calculated with this graph for different scenarios.
- The results are pessimistic due to the long thermal time constant of the magnet: several hours are needed to reach the steady-state regime.

Operational scenarios

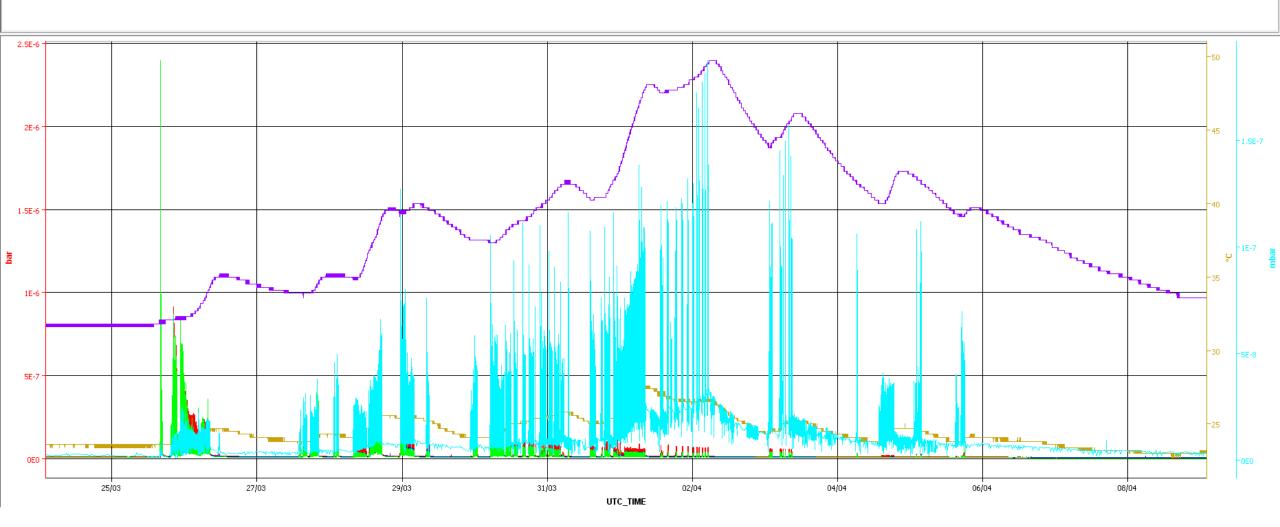
Temperature rise of MKE4, MKE6, MKD and MKP-S kicker magnets are not expected to limit SPS operation, even for HL-LHC type beams with 2.6e11 pb, 4 x 72b, 25ns. But MKP-L will limit operation: Confident: OK


Could exceed Tc: rise of mis-kicking beam

Not OK								resulting	resulting average					
Risk of	mechanica	al da	mage					average	power loss per				Continuous	
				Exrtracted	duty		module length	power loss	module	duration		Ferrite	OP (Plot 1)	
Scen	ario	trains	p/b	p/b	, cycle	cycle type	[m]	[W/m]	[W/module]	(hours)	repetition	Temperature	[C]	T+
												· · · · · ·		
	2018 operation	3x48	1.33E+11	1.20E+11	50%	acceleration	0.7	149	104	1.5	every 12 hours	ОК	74	53.6
	2018 MD	4x48	1.80E+11	1.80E+11	50%	flat bottom	0.7	164	115	10	once per week	ОК	78	63.7
scrubbing week	2021 scrubbing	4x72	1.50E+11	1.50E+11	70%	flat bottom	0.7	239	167	continuous	continuous	ОК	98	
typical week	2021 operation	4x48	1.44E+11	1.30E+11	50%	acceleration	0.7	220	154	1.5	every 12 hours	ОК	93	55.3
	2021 MD	4x72	1.67E+11	1.50E+11	50%	acceleration	0.7	443	310	10	once per week	ОК	142	87.1
scrubbing week	2022 scrubbing	4x72	2.00E+11	2.00E+11	70%	flat bottom	0.7	424	297	continuous	continuous	Exceeds TC	138	
typical week	2022 operation	4x48	1.67E+11	1.50E+11	50%	acceleration	0.7	296	207	1.5	every 12 hours	ОК	111	57.1
	2022 MD	4x72	2.22E+11	2.00E+11	50%	acceleration	0.7	783	548	10	once per week	Close to TC	200	115.5
scrubbing week	2023 scrubbing	4x72	2.60E+11	2.60E+11	70%	flat bottom	0.7	717	502	continuous	continuous	Not OK	190	
l														
typical week	2023 operation	4x48	2.00E+11	1.80E+11	50%	acceleration	0.7	424	297	1.5	every 12 hours	Exceeds TC	138	60.8
l	2023 MD	4x72	2.56E+11	2.30E+11	50%	acceleration	0.7	1074	752	10	once per week	Not OK	242	161.7
	1													
typical week	2024 operation			1.80E+11	50%	acceleration	0.7	424	297	1.5	every 12 hours	Exceeds TC	138	60.8
1	2024 MD	4x72	2.56E+11	2.30E+11	50%	acceleration	0.7 arnes. LIU	1074 SPS Coordinat	752	10	once per week	Not OK	242 ₁₉	161.7

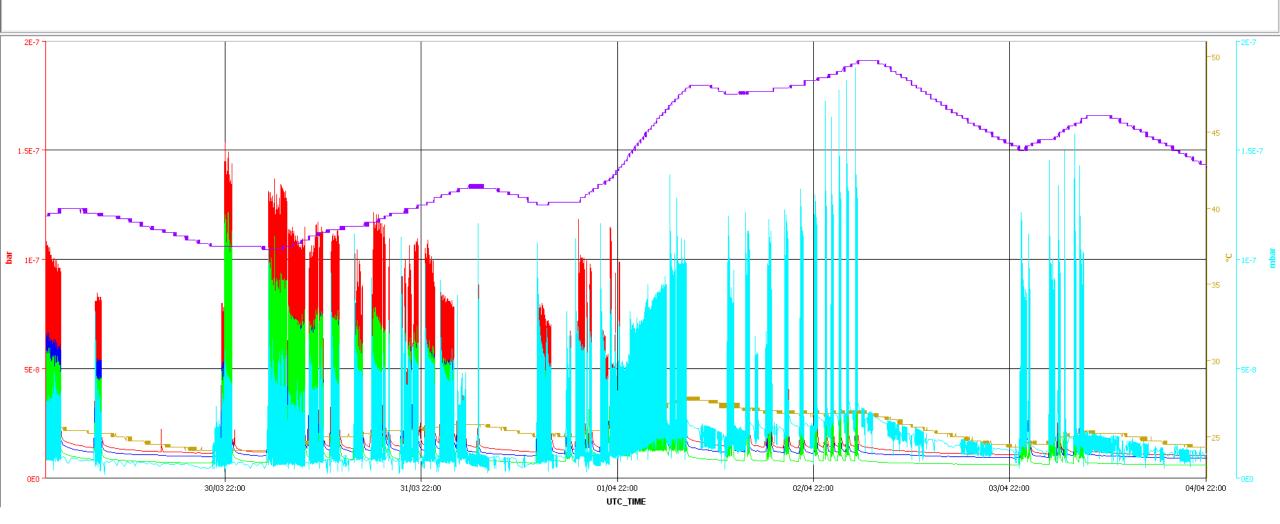
Temperature and Pressure of an MKP-L, Mar-Apr 2018

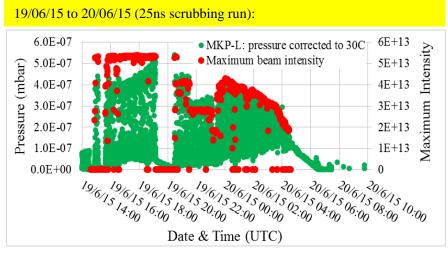
Timeseries Chart between 2018-03-25 00:00:00.000 and 2018-04-09 23:59:59.000 (UTC_TIME)


- MKP.11955:PRESSURE - MKP.11955:TEMPERATURE.1

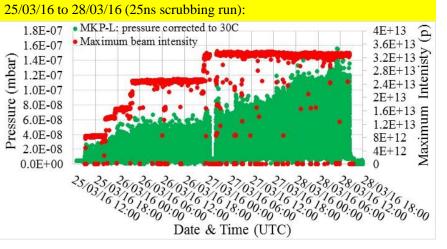
Temperature and Pressure of MKE6 and an MKP-L, Mar-Apr 2018

Timeseries Chart between 2018-03-25 00:00:00.000 and 2018-04-09 23:59:59.000 (UTC_TIME)


🔶 MKE.81631:PRESSURE 🗢 MKE.61634:PRESSURE 🔸 MKE.61637:PRESSURE 🔸 MKE.61637:TEMPERATURE_DDWN 🐳 MKP.11955:PRESSURE 🐳 MKP.11955:TEMPERATURE.1


Temperature and Pressure of MKE6 and an MKP-L, Mar-Apr 2018

Timeseries Chart between 2018-03-30 00:00:00.000 and 2018-04-06 23:59:59.000 (UTC_TIME)


🔶 MKE.81631:PRESSURE 🗢 MKE.61634:PRESSURE 🐳 MKE.81637:PRESSURE 🔸 MKE.61637:TEMPERATURE_DOWN 🐳 MKP.11955:PRESSURE 🐳 MKP.11955:TEMPERATURE.1

Fast Pressure Rise Corrected for Temp.

- Normalized pressure, corrected to 30°C measured, is ~1x10⁻²⁰ mbar/proton.
- Operation at an elevated temperature seems to have reduced subsequent outgassing.

- Normalized pressure, corrected to 30°C measured, is ~4x10⁻²¹ mbar/proton. Hence some limited conditioning over the last 9 months.
- In general the corrected pressure and beam intensity curves have the same shape, indicating that the fast pressure rise is attributable to multipacting;
- Methods of reducing SEY are being considered (e.g. LESS and aC) but would need extensive testing (HV, UFOs, etc.);
- Studies of multipacting commenced by G. Rumolo et al to determine whether it would be expected for MKP-L.

LIU-SPS Coordination M.J. Barnes. Meeting

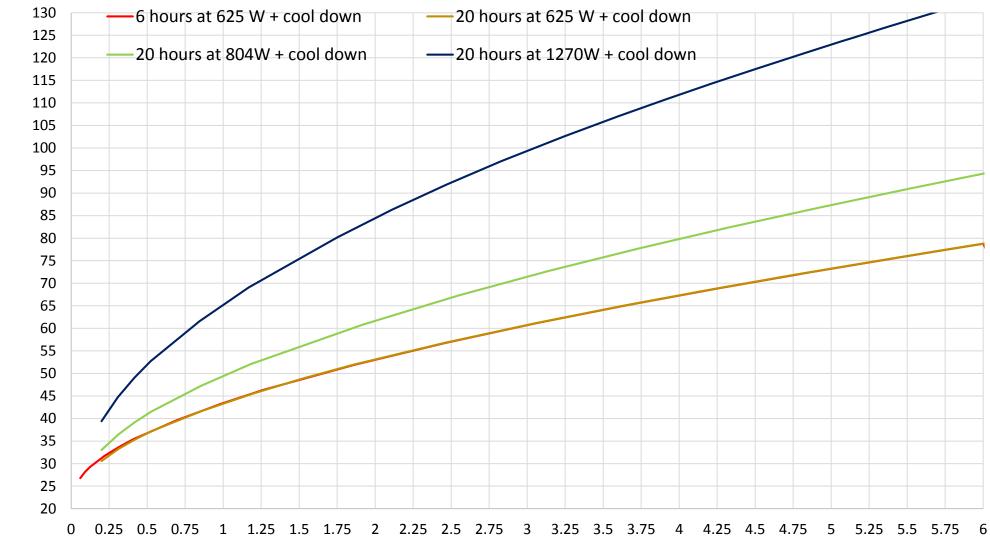
24

Temperature rise of MKP

Note: MKP-L dissipation is 3-4 time greater than MKP-S, thus only MKP-L temperature is expected to heat significantly.

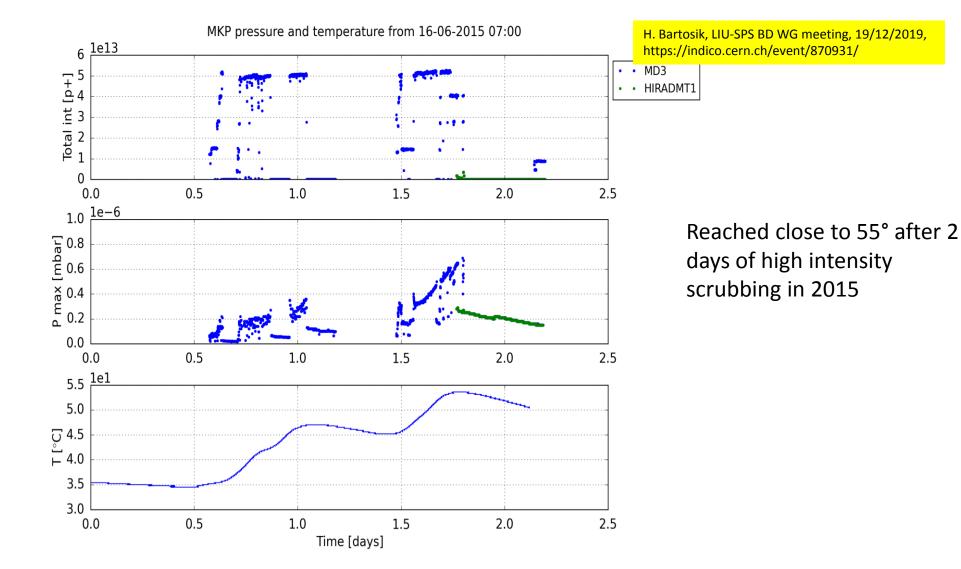
 For 1.6e11 ppb, 4 x 72b, 25ns, accelerated (taking into account changing beam spectrum): Courtesy of M. Beck, MKP ~650W/MKP-L; Strategy Meeting 13/4/2017

 For 2.2e11 ppb, 4 x 72b, 25ns, accelerated (taking into account changing beam spectrum): ~1200W/MKP-L;


140 138 121

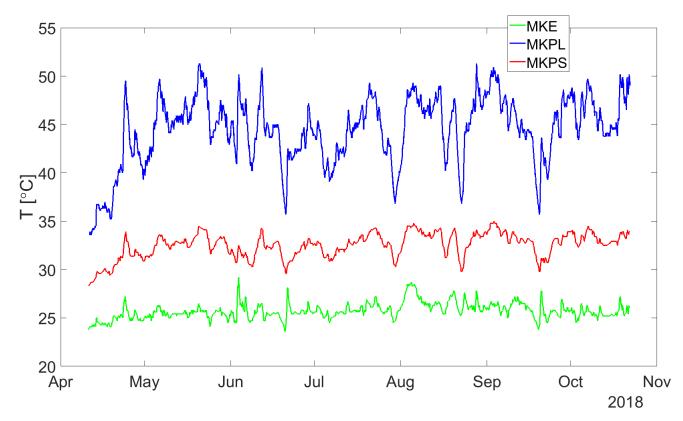
Starting with ferrite at ambient temperature:

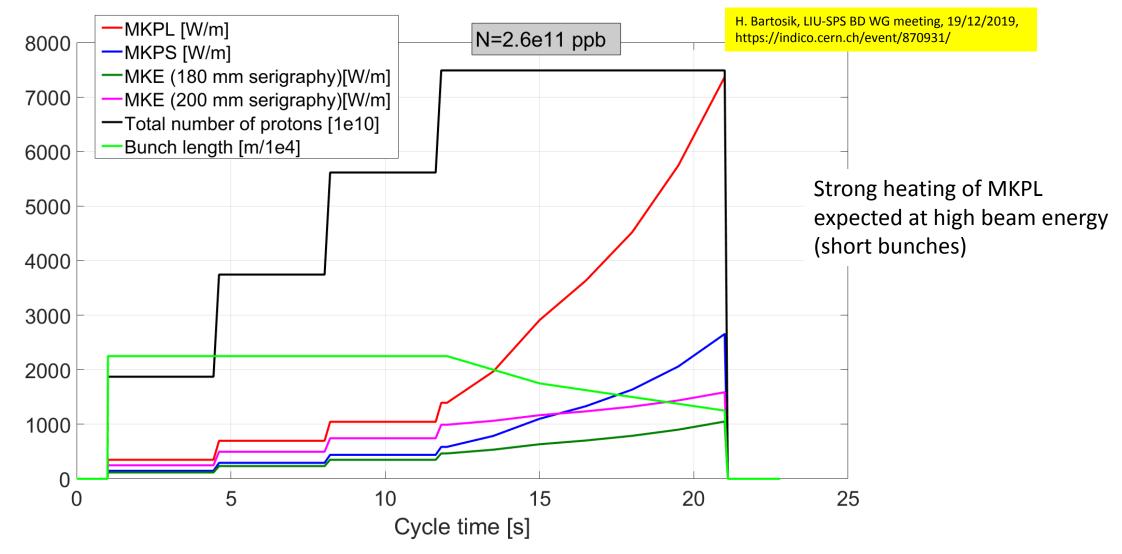
- For 1.6e11 ppb, 4 x 72b, 25ns, accelerated (650W) ⇒ ~15hrs.
 - Require 2hrs without beam to cool by ~20C.
 - > Can then scrub at this intensity again for ~4hrs.
- For 2.2e11 ppb, 4 x 72b, 25ns, accelerated (~1200W) ⇒ ~4hrs.
 - Require 2hrs without beam to cool by ~20C.
 - Can then scrub at this intensity again for ~2hrs.


Max. Ferrite Temperature (°C) 120 100 Courtesy of L. Vega Cid, MKP Strategy Meeting 28/6/2017 80 80 60 6 hours at 625 W + cool down 40 -20 hours at 625 W + cool down 20 20 hours at 804W + cool down -20 hours at 1270W + cool down 0 12 16 18 20 22 0 2 Δ 8 10 14 Time (h)

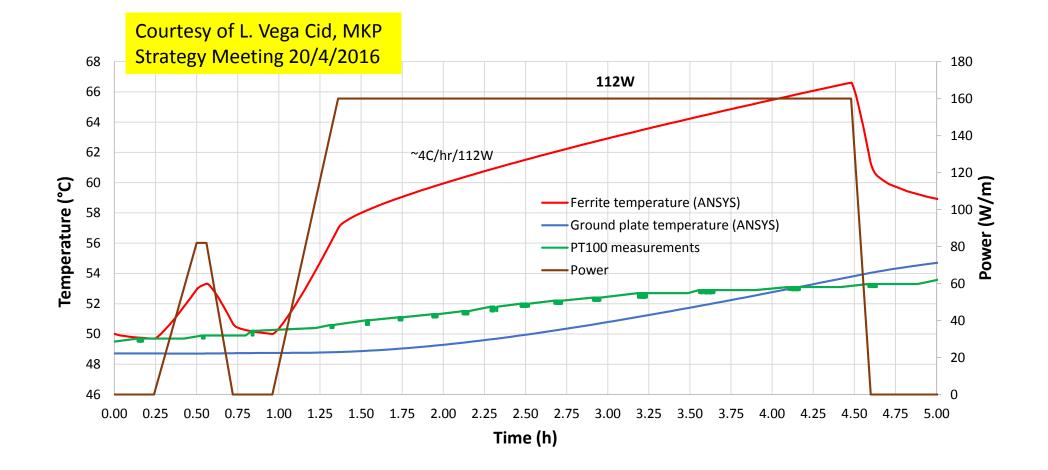
MKP: Lorena predictions 13/4/2017

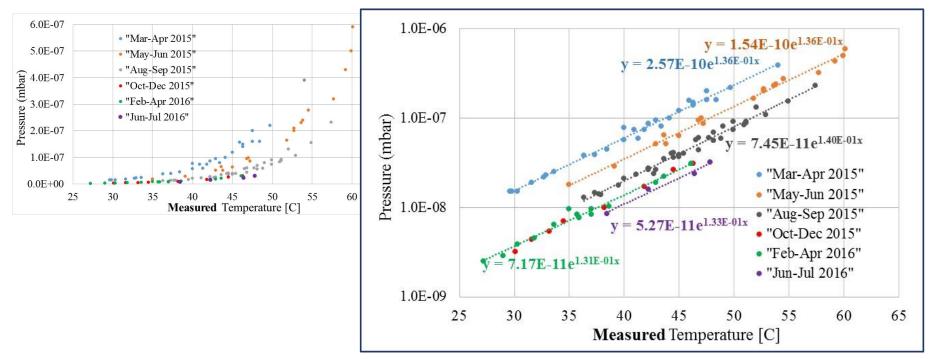
Max. Ferrite Temperature (°C)


Operational limitations from MKPL in 2015


Operational limitations from MKPL in 2018

H. Bartosik, LIU-SPS BD WG meeting, 19/12/2019, https://indico.cern.ch/event/870931/


• Reached high temperatures even without dedicated scrubbing, just from nominal operation and high intensity studies on Thursdays


Power loss in kickers along cycle

Predicted heating of MKP-L

MKP-L Outgassing due to Heating

Since LS1 there have been periods of significant vacuum pressure rise in the MKP-L. The high pressure results in an important increase in the electrical breakdown rate. However:

- For a given measured temperature, there has been a reduction in pressure by a factor of 5-6 between Mar-Apr. 2015 and Jun-Jul 2016 (5.5 at 40°C).
- Thermal treatment of Peraluman plates could not be carried out on MKP-L exchanged during LS1: vacuum tests on plates show no difference in outgassing for sample plates which did and didn't undergo thermal treatment.