PAUL SCHERRER INSTITUT

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Andreas Crivellin

Theory Group of the Laboratory for Particle Physics, PSI & University of Zurich

Anomalous Magnetic Moments in and Beyond the Standard Model

SUSY, 23.08.2021

Outline

- Status of the Anomalous Magnetic Moment of the Muon
- Hadronic Vacuum polarization and Electro Weak Fit
- Explaining the anomalous magnetic moment of the muon with new physics
- $\bullet a_{\mu}$ and consequences for future measurements
- Correlations with the electron AMM and implications for the muon EDM
- Further Flavour anomalies and future prospects

SM Theory Prediction: EW and QED

- QED 5-loop contribution T. Aoyama, T. Kinoshita, M. Nio, PRD, 2018 $a_{\mu}(QED) \approx 116584718.951(0.080) \times 10^{-11}$
- EW 2-loop effect

C. Gnendiger, D. Stöckinger, H. Stöckinger-Kim, PRD (2013)

 $a_{\mu}(EW) \approx 153.6(1.0) \times 10^{-11}$

QED and EW well under control

Muon Anomalous Magnetic Moment

Theory prediction challenging (hadronic effects)

 $\Delta a_{\mu} = (251 \pm 49) \times 10^{-11}$ T. Aoyama et al., arXiv:2006.04822

- Need NP of the order of the SM EW contribution
- Chiral enhancement necessary for heavy NP
- Soon more experimental results from Fermilab
- Vanishes for $m_{\mu} \rightarrow 0 \implies measure of LFUV$

4.2σ deviation from the SM prediction

SM Theory: Hadronic Effects

Leading uncertainties from hadronic effects

Page 6

Hadronic Vacuum Polarization

Dispersive approach

$$a_{\mu}^{\text{HVP}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{s_{\text{thr}}}^{\infty} ds \, \frac{\hat{K}(s)}{s^2} R_{\text{had}}(s), \ s_{\text{thr}} = m_{\pi^0}^2$$

$$R_{\rm had}(s) = \frac{3s}{4\pi\alpha^2}\sigma(e^+e^- \to {\rm hadrons})$$

$$\Delta \alpha_{\text{had}}^{(5)} \Big|_{e^+ e^-} = 276.1(1.1) \times 10^{-4}$$

New BMWc lattice result

 $\Delta \alpha_{\text{had}}^{(5)} \Big|^{\leq M} Z = 283.8(1.3) \times 10^{-4},$ $\Delta \alpha_{\text{had}}^{(5)} \Big|^{\leq 11.2 \text{GeV}} = 280.3(1.3) \times 10^{-4},$ $\Delta \alpha_{\text{had}}^{(5)} \Big|^{\leq 1.94} = 277.9(1.1) \times 10^{-4},$

$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = \frac{\alpha M_Z^2}{3\pi} \int ds \frac{R_{\rm had}(s)}{s(M_Z^2 - s)}$

M. Davier, A. Hoecker, B. Malaescu,

A. Keshavarzi, D. Nomura, T. Teubner,

Z. Zhang, EPJC (2020)

S. Borsanyi et al., [arXiv:2002.12347 [hep-lat]].

(energy dependence not know)

PRD (2020)

BMWc result in tension with e⁺e⁻; would solve g-2

HVP enters EW fit

BMWc result leads to significant tension

Tensions in the EW fit

Tensions call for (different) NP

Explaining the AMM of the muon

Dipoles in the EFT

- Effective Hamiltonian $\mathcal{H}_{\text{eff}} = c_R^{\ell_f \ell_i} \, \bar{\ell}_f \sigma_{\mu\nu} P_R \ell_i F^{\mu\nu} + \text{h.c.}$
- Anomalous magnetic moment

$$a_{\ell_i} = -\frac{4m_{\ell_i}}{e} \operatorname{Re} c_R^{\ell_i \ell_i}$$

• Electric Dipole moment

$$d_{\ell_i} = -2 \operatorname{Im} c_R^{\ell_i \ell_i}$$

Radiative Lepton decays

$$Br[\mu \to e\gamma] = \frac{m_{\mu}^{3}}{4\pi \Gamma_{\mu}} \left(|c_{R}^{e\mu}|^{2} + |c_{R}^{\mu e}|^{2} \right)$$

Processes intrinsically connected

Explaining the Muon AMM

- PAUL SCHERRER INSTITUT
- Effect of the order of the EW-SM contribution needed

enhancement necessary

- Light particles
 - Neutral scalars
 - Neutral vector (Z' Dark Photon)
 - ALP (axion like particle)
- Chiral enhancement: Chirality flip does not come from the muon mass but rather from a NP mass inside the loop

Light particles or/and chiral enhancement

Chiral enhancement

Enhancement by the mass of the fermion in the loop

$$c_R^{fi} = \frac{e}{16\pi^2} \Gamma_{\Psi}^{\mu L^*} \Gamma_{\Psi}^{\mu R} M_{\Psi} \frac{f\left(\frac{M_{\Psi}^2}{M^2}\right) + Qg\left(\frac{M_{\Psi}^2}{M^2}\right)}{M^2}$$

 Q, M_{Ψ} A charge, mass of the fermion f, g A loop functions

- MSSM: (tan(ß))
- Leptoquarks: m_t/m_µ
- Model with vector like fermions: m_{ψ}/m_{μ}

A priori arbitrary phase

muon EDM

Indirect Limit on the Muon EDM

- MFV: $|d_{\mu}^{\rm MFV}| < 3.7 \times 10^{-24} e \, {\rm cm}$
- Contribution only starts at the 3-loop level

 $|d_e| < 8.7 \times 10^{-29} e \,\mathrm{cm}$ 90% (

• Direct limit

 $|d_{\mu}| < 1.5 \times 10^{-19} e \,\mathrm{cm}$

$$\begin{aligned} |d_{\mu}| &\leq \left[\left(\frac{15}{4} \zeta(3) - \frac{31}{12} \right) \frac{m_e}{m_{\mu}} \left(\frac{\alpha}{\pi} \right)^3 \right]^{-1} |d_e| \\ &\leq 7.5 \times 10^{-19} e \,\mathrm{cm} \qquad 90\% \,\mathrm{C.L.} \\ e| &< 8.7 \times 10^{-29} e \,\mathrm{cm} \qquad 90\% \,\mathrm{C.L.} \end{aligned}$$

$$\begin{aligned} & \mu \\ & \mathsf{Direct limit} \\ & d_{\mu}| &< 1.5 \times 10^{-19} e \,\mathrm{cm} \qquad e \end{aligned}$$

Improvement of direct limit important

Future experimental sensitivity

Dedicated experiment needed!

Heavy new scalars and fermions

Chirally enhanced effects requires three fields

	R	Ψ, Φ	Φ_L, Ψ_L	Φ_E, Ψ_E	ϕ	ℓ	e
$SU(2)_L$	121	1	2	1			
	212	2	1	2	2	2	1
	323	3	2	3			
	232	2	3	2			
Y		X	$-\frac{1}{2} - X$	-1-X	$\frac{1}{2}$	$-\frac{1}{2}$	-1

A.C., M. Hoferichter, 2104.03202

- SMEFT Matching
- Correlations with
 - Z→μμ
 - **■** h →μμ

Z,h \rightarrow µµ at future colliders

Leptoquarks in a_{...}

Chirally enhanced effects via top-loops

Correlations with $h \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$

$a_{\mu} vs h \rightarrow \mu \mu$

- Chirally enhanced effects via top-loops
- Same coupling structure \rightarrow direct correlation

A.C., D. Mueller, F. Saturnino, 2008.02643

 $h \rightarrow \mu \mu$ at future colliders

Future Implications of a_u

Flavour Anomalies

Conclusions

Leptoquarks in a_{μ}

Chirally enhanced effects via top-loops

 $Z \rightarrow \mu \mu$ at future colliders

Backup

Observable	Reference	Measurement	Posterior (1)	Pull (1)	Posterior (2)	Pull (2)	Posterior (3)	Pull (3)
$\alpha_s(M_Z)$	[1]	0.1181(11)	0.1181(10)	0.003	0.1181(10)	0.004	0.1181(10)	0.02
$M_Z [{ m GeV}]$	[2]	91.1875(21)	91.1883(20)	-0.27	91.1877(21)	-0.05	91.1891(20)	-0.55
$m_t [{ m GeV}]$	[3-5]	172.80(40)	172.95(39)	-0.27	172.85(39)	-0.09	173.09(39)	0.51
$M_H [\text{GeV}]$	[6, 7]	125.16(13)	125.16(13)	0.01	125.16(13)	0.01	125.16(13)	0.02
M_W [GeV]	[1]	80.379(12)	80.363(4)	1.25	80.372(6)	0.56	80.353(4)	2.10
Γ_W [GeV]	[1]	2.085(42)	2.088(1)	-0.09	2.089(1)	-0.10	2.088(1)	-0.07
$BR(W \to \ell \nu)$	[1]	0.1086(9)	0.10838(2)	0.25	0.10838(1)	0.25	0.10838(1)	0.25
$BR(W \rightarrow had)$	[1]	0.6741(27)	0.6749(1)	-0.28	0.6749(1)	-0.28	0.6749(1)	-0.28
$\sin^2 \theta_{\rm eff}^{\rm lept}(Q_{\rm FB}^{\rm had})$	[2]	0.2324(12)	0.2316(4)	0.63	0.2315(1)	0.77	0.2319(1)	0.44
$\sin^2 \theta_{\rm eff(Had, coll.)}^{\rm lept}$	[8, 9]	0.23143(27)	0.2316(4)	-0.78	0.2315(1)	-0.14	0.2319(1)	-1.62
P_{τ}^{pol}	[2]	0.1465(33)	0.1461(3)	0.13	0.1475(8)	-0.28	0.1443(3)	0.68
A_ℓ	[2]	0.1513(21)	0.1461(3)	2.47	0.1475(8)	1.71	0.1443(3)	3.31
$\Gamma_Z [{ m GeV}]$	[2]	2.4952(23)	2.4947(6)	0.22	2.4951(6)	0.05	2.4942(6)	0.43
σ_h^0 [nb]	[2]	41.541(37)	41.485(6)	1.50	41.485(6)	1.51	41.485(6)	1.50
R_{ℓ}^{0}	[2]	20.767(35)	20.747(7)	0.79	20.750(7)	0.66	20.743(7)	0.95
$A_{ m FB}^{0,\ell}$	[2]	0.0171(10)	0.0160(1)	1.10	0.0163(2)	0.78	0.0156(1)	1.49
R_b^0	[2]	0.21629(66)	0.21582(1)	0.71	0.21582(1)	0.71	0.21583(1)	0.70
R_c^0	[2]	0.1721(30)	0.17219(2)	-0.03	0.17220(2)	-0.03	0.17218(2)	-0.03
$A^{0,b}_{ m FB}$	[2]	0.0992(16)	0.1024(2)	-1.97	0.1034(6)	-2.46	0.1011(2)	-1.17
$A_{\mathrm{FB}}^{0,\overline{c}}$	[2]	0.0707(35)	0.0731(2)	-0.69	0.0739(4)	-0.90	0.0721(2)	-0.41
A_b	[2]	0.923(20)	0.93456(3)	-0.58	0.9347(1)	-0.58	0.93442(3)	-0.57
A_c	[2]	0.670(27)	0.6675(1)	0.09	0.6681(4)	0.07	0.6667(2)	0.12