Measurement of the very rare $K^+ ightarrow \pi^+ u \overline{ u}$ decay

Zuzana Kučerová

Comenius University Bratislava

On behalf of the NA62 Collaboration

August 23 - August 28, 2021 SUSY 2021

$K^+ ightarrow \pi^+ u \overline{ u}$: theoretical status

- FCNC loop process rare meson decay naturally suppressed by the GIM mech.
- Sensitive to contributions of physics BSM
 - MSSM [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27], [Isidori et al. JHEP 0608 (2006) 064]
 - Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
 - Simplified Z, Z' models [Buras et al. High Energ. Phys. (2015)166], [Aebischer et al. JHEP12 (2020)097]
 - Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
 - LFU violation models [Bordone, M., Buttazzo, D., Isidori, G. et al. Eur. Phys. J. C (2017) 77: 618]
 - Leptoquarks [Fajfer,Kosnik,Vale Silva,Eur. Phys. J.C78, 275 (2018)]
- SM prediction [Buras.et.al., JHEP11(2015) 033]:

$\mathcal{B}_{\mathcal{SM}}(\mathcal{K}^+ ightarrow \pi^+ u \overline{ u}) = (\mathbf{8.4} \pm \mathbf{1.0}) imes \mathbf{10}^{-11}$

- Uncertainty coming mostly from CKM parameters (γ , $|V_{cb}|$)
- In agreement with the very recent result [Brod,Gorbahn,Stamou,arXiv:2105.02868]

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: experimental status

Previous measurement at BNL:

- Experiments E787 and E949
- Technique: stopped kaon beam, decays at rest
- Final results published in 2009 [E949, Phys.Rev.D 79, 092004 (2009)]
- Observed 7 events in total
- Branching fraction measurement:

$${\cal B}({K^+} o {\pi^+}
u \overline{
u}) = (1.73^{+1.15}_{-1.05}) imes 10^{-10}$$

New measurement at CERN (this talk):

- NA62 collaboration
- Technique: kaon decays in flight
- Data taking in 2016 2018 (Run 1)
- Integrated luminosity: 2.2×10^{18} POT $\Rightarrow 3 \times 10^{12}$ K⁺ decays

NA62 Beam and Detector

[JINST 12(2017) P05025]

Beam:

- 400 GeV/*c* primary proton beam from SPS
- 2×10^{12} protons per 3.5 s spill
- Beryllium target
- Secondary hadron beam, \sim **75 GeV/c**, content: *K*⁺ (6%), π^+ (70%), p (24%)
- 75 m long decay region, vacuum
- $\bullet\,$ Kaon decay rate \sim 3 MHz

Detectors:

- KTAG Cherenkov det., K⁺ tagging
- GTK beam spectrometer
- STRAW downstream spectrometer
- CHOD charged particle hodoscope
- LAV, IRC, SAC photon veto
- RICH, LKr Cherenkov detector and calorimeter for PID
- MUV3 muon veto
- CHANTI, HASC, MUV0-2

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at NA62: measurement and analysis strategy

- PNN and min-bias trigger streams
- Blind analysis
- Signal normalized to $K^+ o \pi^+ \pi^0$
- Two signal regions (R1, R2)

Keystones:

- Time coincidence resolution $\mathcal{O}(100 \text{ ps})$
- Kinematic background suppression $\sim {\cal O}(10^4)$
- PID background suppression:

•
$$\mu^+$$
 (from $K_{\mu 2}$) > 10⁷

•
$$\pi^0$$
 (from $K_{2\pi}$) > 10⁷

Signal selection strategy:

- Kaon tagging
- Kaon and pion momentum reconstruction
- Kaon-pion matching
- $\bullet \ \pi^+$ identification
- Background suppression

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at NA62: backgrounds

• K⁺ decays

Decay channel	Branching fraction [PDG]	Estimated with
$K^+ ightarrow \mu^+ u \ (K_{\mu 2})$	$(63.56 \pm 0.11) imes 10^{-2}$	data
$K^+ ightarrow \pi^+ \pi^0 (K_{2\pi})$	$(20.67\pm0.08) imes10^{-2}$	data
$K^+ \to \pi^+ \pi^+ \pi^- (K_{3\pi})$	$(5.583\pm0.024) imes10^{-2}$	data, MC
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu (K_{e4})$	$(4.247\pm0.024) imes10^{-5}$	MC
Other		MC

• Upstream events \longrightarrow data-driven estimation

Dominant background in 2017 and 2018 data.

Changes in 2018 data taking and analysis

• Replacement of the final collimator

- to suppress upstream events
- installed in June 2018
- 2018 data divided into S1 (old collimator, 20%) and S2 (new collimator, 80%)

Signal selection optimization

- Signal region 2 extended to 45 GeV
- Relaxed criteria against upstream background, use BDT
- PID conditions optimized in bins of π^+ momentum
- Enlargement of the fiducial volume
- Improvement of γ and multi-track veto

\Rightarrow Increase in signal acceptance

Kinematic cuts to define signal regions R1 and R2

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at NA62: results

	2016 data	2017 data	2018 S1 data	2018 S2 data
SES (×10 ¹⁰)	3.15 ± 0.24	0.39 ± 0.02	0.54 ± 0.04	0.14 ± 0.01
$A(\pi u u) imes 10^2$	4.0 ± 0.4	3.0 ± 0.3	4.0 ± 0.4	6.4 ± 0.6
$N_{exp}(\pi\nu\nu)$	0.27 ± 0.04	2.16 ± 0.13	1.56 ± 0.10	6.02 ± 0.39
$N_{exp}(bkg)$	$0.15\substack{+0.093\\-0.035}$	1.46 ± 0.33	$1.11\substack{+0.40\\-0.22}$	$4.31^{+0.91}_{-0.72}$
Nobserved	1	2	2	15

 $\mathcal{B}^{\textit{NA62}}_{16+17+18}(\textit{K}^+
ightarrow \pi^+
u \overline{
u}) = (1.06^{+0.40}_{-0.34}|_{\it stat} \pm 0.09_{\it syst}) imes 10^{-10}$ @ 68% CL

[NA62 Collab., JHEP06(2021)093]

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at NA62: results

Zuzana Kučerová

$K^+ ightarrow \pi^+ X$

Interpretation of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ result in terms of $K^+ \rightarrow \pi^+ X$, $X \rightarrow invis$.

- X is a scalar or pseudo-scalar particle
- Same signature as $K^+
 ightarrow \pi^+ \nu \overline{
 u}$
- Two body decay \Rightarrow peak in m^2_{miss} spectrum at m^2_X

Peak search:

- Using sample selected in $K^+
 ightarrow \pi^+ \nu \overline{
 u}$ measurement
- Peak search with fully frequentist hypothesis testing via shape analysis of m_{miss}^2 distribution
- Dominant background is $K^+
 ightarrow \pi^+ \nu \overline{
 u}$

Results evaluated for [NA62 Collab., JHEP06(2021)093]:

- stable or invisibly decaying particle X (top)
- X decaying to visible SM particles (center)
 - Exclusion limits in BC4 model [Beacham et al., J.Phys.G 47, 010501 (2020)] with X = dark scalar mixing with Higgs boson (bottom)

Prospects for Run 2

Goal: $\mathcal{B}(K^+ \to \pi^+ \nu \overline{\nu})$ measurement with $\mathcal{O}(10\%)$ precision

- Data-taking re-started in July 2021
- Expected to run at full intensity until LS3

Focus on:

- Analysis optimization for full intensity
- Upstream background reduction
 - optimized beam achromat
 - additional beam spectrometer station
 - new veto counter
- Reduction of background from kaon decays
 - new calorimeter on the side of beam pipe

Complete result from Run 1 (2016+2017+2018):

- Observed events: 20
- Expected background: \sim 7
- $\mathcal{B}(\mathcal{K}^+ o \pi^+ \nu \overline{
 u}) = (1.06^{+0.40}_{-0.34}|_{\textit{stat}} \pm 0.09_{\textit{syst}}) \times 10^{-10}$ @ 68% CL
 - \Rightarrow most precise measurement so far
 - \Rightarrow 3.4 σ significance
 - \Rightarrow looking forward to NA62 Run 2 data