

Search for Lepton Number and Flavour Violation in K^+ and π^0 Decays

Lubos Bician (CERN)

On behalf of the NA62 Collaboration

August 25, 2021

Kaon Experiments at CERN

- NA31: 1980s, *beam:* K_L/K_S
 - First evidence of direct CPV
- NA48: 1997–2001, *beam:* K_L/K_S
 - Discovery of direct CPV
- NA48/1: 2002, *beam:* K_S/hyperons
 - Rare decay studies
- NA48/2: 2003–2004, beam: K⁺/K⁻
 - Precision measurements
- NA62-R_K: 2007–2008, *beam:* K⁺/K⁻
 - $R_K = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$
- NA62: since 2015, *beam:* K⁺ 2015: commissioning run 2016-2018: physics runs:
 - Main goal: $\mathcal{B}(\mathsf{K}^+ \to \pi^+ \nu \bar{\nu})$
 - Precision measurements (e.g. $K^+ \rightarrow \pi^+ \mu^+ \mu^-$)
 - Searches for HNL, axions, dark γ , LNV or LFV decays this talk

Motivation

- Observation of LNV or charged LFV processes would be a clear indication of BSM physics
- Previous LNV and/or LFV searches in π^0 and semileptonic K^+ decays:

Process	Previous UL on <i>B</i> @ 90% CL		
$K^+ \to \pi^- \mu^+ \mu^+$	4.2×10^{-11}	NA62, 30% of Run 1 stat., [PLB 797 (2019) 134794]	
$K^+ \to \pi^- e^+ e^+$	2.2×10^{-10}	NA62, 30% of Run 1 stat., [PLB 797 (2019) 134794]	
$K^+ ightarrow \pi^+ \mu^+ e^-$	$1.3 imes 10^{-11}$	BNL E865, [PDG]	
$K^+ \rightarrow \pi^- \mu^+ e^+$	$5.0 imes 10^{-10}$	BNL E865, [PDG], New NA62 result presented here	
$K^+ \to \pi^+ \mu^- e^+$	5.2×10^{-10}	BNL E865, [PDG], New NA62 result presented here	
$\pi^0 ightarrow \mu^- e^+$	3.4×10^{-9}	BNL E865, [PDG], New NA62 result presented here	
$\pi^0 \rightarrow \mu^+ e^-$	3.8×10^{-10}	BNL E865, [PDG]	

- The LNV decays could be mediated by Majorana neutrinos, [JHEP 0905 (2009) 030]
- The LFV decays could proceed via e.g. the exchange of leptoquarks, or a Z' boson, [JHEP 10 (2018) 148], [Rev. Mod. Phys. 81, 3 (2009)]

NA62: Beam and Detector

Main subdetectors:

- Beam tracker: GTK
- Kaon tagger: KTAG ($\sigma_t \sim 70 \text{ ps}$)
- Downstream tracker: $(\pi/\mu/e)$: Straw $\sigma_p/p = 0.3\% \bigoplus 0.005\% \cdot p[\text{GeV}/c]$
- Photon veto detectors: LAV, IRC, SAC
- Cherenkov counter: RICH

Beam parameters:

- Beam momentum: $75 \text{ GeV/c} (\pm 1\%)$
- Nominal rate: 750 MHz
- Positive beam: $\sim 6\% \text{ K}^+$

- Trigger and timing: CHOD ($\sigma_t \sim 1$ ns), NA48-CHOD ($\sigma_t \sim 200$ ps)
- Electromagnetic calorimeter: LKr $\sigma_E/E = 4.8\%/\sqrt{E} \bigoplus 11\%/E \bigoplus 0.9\%$, [E] = GeV
- Hadronic calorimeters: MUV1,2
- Muon detector: MUV3 ($\sigma_t \sim 500 \text{ ps}$)

Analysis Overview

- Improvement on ULs on $\mathcal{B}(K^+ \to \pi^{\pm} \mu^{\mp} e^+)$, and $\mathcal{B}(\pi^0 \to \mu^- e^+)$ with π^0 from $K^+ \to \pi^+ \pi^0$
 - Full 2017 + 2018 dataset used in the analysis
 - Blind analysis technique used in order to not bias the measurement
- All signal channels produce three charged tracks and nothing else
- This motivates the choice of the normalisation decay channel: $K^+ \rightarrow \pi^+ \pi^- (K_{3\pi})$:
 - Abundant: $\mathcal{B}(K_{3\pi}) = 5.583(24)\%$, [PDG]
 - Allows for similar signal and normalisation event selections
- Three physics trigger streams used to collect signal and normalisation events in parallel:

Trigger	Downscale	Description	Use in this analysis
Multi-track (MT)	~ 100	Minimum-bias multi-track trigger	$K_{3\pi}, K^+ \to \pi^{\pm} \mu^{\mp} e^+$
μ MT	~ 8	MT, $10+$ GeV in LKr, $1+\mu$ in MUV3	$K^+ \to \pi^\pm \mu^\mp e^+$
eMT	~ 8	MT, 20+ GeV in LKr,	$K^+ \to \pi^\pm \mu^\mp e^+$

• The effective number of kaon decays in [105, 180] m region: $N_K = (1.33 \pm 0.02) \times 10^{12}$

Event Selections

Part common to both signal and normalisation event selections

- Exactly one "good" in-time three-track (Straw) vertex is required
- At least one "good" in-time KTAG kaon is present

Part specific to the normalisation event selection

- Event passes the MT trigger
- Invariant mass $m(3\pi)$ of the three vertex tracks under π^{\pm} mass hypotheses has to be consistent with the charged kaon mass m_K : $|m(3\pi) m_K| < 3.5 \text{ MeV}/c^2$

Part specific to the signal event selections

- Event passes at least one of the three triggers from the previous slide
- Particle identification:
 - π^{\pm} : LKr E/p < 0.9c, and 0 associated in-time MUV3 muons
 - μ^{\pm} : LKr E/p < 0.2c, and 1 associated in-time MUV3 muon
 - e^{\pm} : LKr $E/p \in [0.95, 1.05]c$, 1 associated in-time LKr cluster, and 0 associated in-time MUV3 muons
- $K^+ \rightarrow \pi^- \mu^+ e^+$: $Z_{\text{vertex}} > 107 \text{ m}$, and Dalitz rejection cut (see next slides)
- $K^+ \rightarrow \pi^+ \mu^- e^+$: $Z_{\text{vertex}} > 111 \text{ m}$
- $\pi^0 \rightarrow \mu^- e^+$: $K^+ \rightarrow \pi^+ \mu^- e^+$ selection, and $|m_{\mu e} m_{\pi^0}| < 2 \text{ MeV}/c^2$

Trigger Efficiencies and Selection Acceptances

Trigger efficiencies

- The efficiency of MT trigger: $\varepsilon_n = (93.2 \pm 0.05)\%$
- The MUV3 condition in the μ MT has negligible inefficiency
- The efficiencies of LKr trigger conditions (10 + and 20 + GeV) depend strongly on energy:

Signal selection acceptances assuming uniform phase-space densities [%]

• $A(K^+ \to \pi^- \mu^+ e^+) = 4.90 \pm 0.02, A(K^+ \to \pi^+ \mu^- e^+) = 6.21 \pm 0.02, A(\pi^0 \to \mu^- e^+) = 3.11 \pm 0.02$

Background Mechanisms and Expectations

Two dominant background mechanisms:

- Particle misidentification (misID)
 - probabilities measured with data and applied to simulations as weights (forced misID)
- Decays in-flight (DIF):
 - $\pi^{\pm} \to \ell^{\pm} \nu_{\ell}, \ (\ell \in \{e, \mu\})$
 - $K^+ \to \pi^+ \pi^0, \, K^+ \to \pi^0 \ell^+ \nu_\ell$ followed by a Dalitz decay $\pi^0 \to e^+ e^- \gamma$

 \rightarrow suppressed by a dedicated cut in the $K^+ \rightarrow \pi^- \mu^+ e^+$ selection on $m_{\pi^-,e^+}(m_e,m_e) > 140 \text{ MeV}/c^2$

Background in control regions:

	$K^+ \rightarrow \pi^- \mu^+ e^+$		$K^+ \rightarrow \pi^+ \mu^- e^+$	
	CR1	CR2	CR1	CR2
Predicted	1.68 ± 0.20	1.66 ± 0.26	3.41 ± 0.54	1.27 ± 0.40
Observed	2	4	2	0

Bckgr. predictions in signal regions:

Source	$K^+ \to \pi^- \mu^+ e^+$	$K^+ \to \pi^+ \mu^- e^+$	$\pi^0 \rightarrow \mu^- e^+$
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.22 ± 0.15	0.84 ± 0.34	0.22 ± 0.15
$K^+ \rightarrow \pi^+ e^+ e^-$	0.63 ± 0.13	negl.	negl.
$K^+ \rightarrow \mu^+ \nu_\mu e^+ e^-$	0.13 ± 0.02	negl.	negl.
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$	0.07 ± 0.02	0.05 ± 0.03	0.01 ± 0.01
$K^+ \rightarrow \pi^+ \mu^+ \mu^-$	0.01 ± 0.01	0.02 ± 0.01	negl.
$K^+ \rightarrow e^+ \nu_e \mu^+ \mu^-$	0.01 ± 0.01	0.01 ± 0.01	negl.
Total	1.07 ± 0.20	0.92 ± 0.34	0.23 ± 0.15

L. Bician, SUSY 2021, August 25, 2021

Unblinding Signal Regions

Decay	Expected background	Observed events	UL on \mathcal{B} @ 90% CL
$K^+ \to \pi^- \mu^+ e^+$	1.07 ± 0.20	0	4.2×10^{-11}
$K^+ \to \pi^+ \mu^- e^+$	0.92 ± 0.34	2	6.6×10^{-11}
$\pi^0 \rightarrow \mu^- e^+$	0.23 ± 0.15	0	3.2×10^{-10}

Summary

- Data collected in 2017 + 2018 were used to improve limits on $\mathcal{B}(K^+ \to \pi^{\pm} \mu^{\mp} e^+)$, and $\mathcal{B}(\pi^0 \to \mu^- e^+)$ with π^0 from $K^+ \to \pi^+ \pi^0$
- Presented results improve on previous results by one order of magnitude:

	Previous UL on <i>B</i> @ 90% CL	New UL on <i>B</i> @ 90% CL
Process	BNL E865, [Phys. Rev. Lett. 85, 2877]	NA62, [arXiv:2105.06759]
$K^+ ightarrow \pi^- \mu^+ e^+$	$5.0 imes 10^{-10}$	4.2×10^{-11}
$K^+ ightarrow \pi^+ \mu^- e^+$	5.2×10^{-10}	6.6×10^{-11}
$\pi^0 \to \mu^- e^+$	3.4×10^{-9}	3.2×10^{-10}

- Searches for other LNV or LFV decays at NA62 are ongoing e.g. $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$, $K^+ \rightarrow \mu^- \nu_\mu e^+ e^+$, or $K^+ \rightarrow e^- \nu_e \mu^+ \mu^+$
- NA62 resumes data taking this year at higher beam intensity, and will benefit from new and upgraded sub-detectors
- Stay tuned for more LNV or LFV searches and other results from NA62

Backup

Schematics of Trigger Conditions

PID: LKr Misidentification Probability

Search for Lepton Number and Flavour Violation in K^+ and π^0 Decays