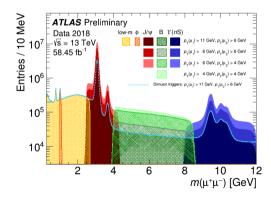
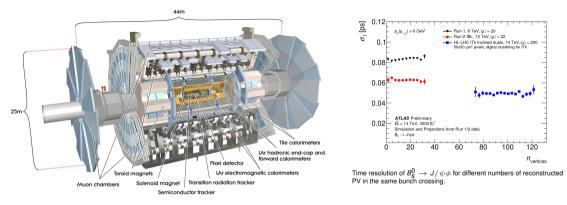
ATLAS measurements of CP violation and rare decays processes with beauty mesons.

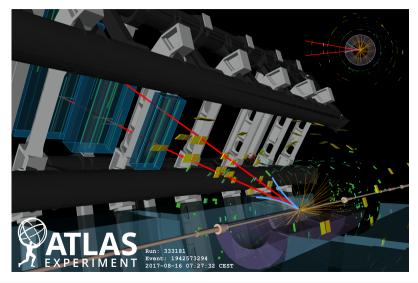

Maria Smizanska on behalf of the ATLAS collaboration

Lancaster University


SUSY2021, 23-28.Aug 2021

ATLAS data in B-physics analysis

- $\bullet\,$ ATLAS has collected 139 $\rm fb^{-1}$ of data in Run 2, and 25 $\rm fb^{-1}$ in Run 1
- Focus mostly on final states with muons
- Typical triggers di-muons with *p*_T thresholds of either 4 GeV or 6 GeV (vary over run periods)
- Additional trigger selections are applied, e.g. on di-muon masses, targeting different analysis, as shown in Fig.


ATLAS detector

- Inner Detector: PIX, SCT and TRT, $p_{\rm T}$ > 0.4 GeV, $|\eta|$ < 2.5
 - Run2: new IBL 25% improvement of time resolution with respect to Run1.
 - Time, mass resolutions remain stable within increasing pileup in Run 2
- Muon Spectrometer: triggering ($|\eta|$ < 2.4), precision tracking ($|\eta|$ < 2.7)

CP violation in $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

• Eur. Phys. J. C 81 (2021) 342, arXiv:2001.07115

Motivation

- $B_s^0 \rightarrow J/\psi \phi$ is used to measure CP-violation phase ϕ_s potentially sensitive to New Physics (NP)
- In SM ϕ_s is related to the CKM elements $\phi_s \simeq 2 \arg[-(V_{ts} V_{tb}^*)/(V_{cs} V_{cb}^*)]$ and predicted with high precision
 - $\phi_s = -0.03696^{+0.00072}_{-0.00082}$ rad by CKMFitter group PhysRevD.91.073007
 - $\phi_s = -0.03700 \pm 0.00104$ rad according to UTfit Collaboration arXiv: hep-ph/0606167 [hep-ph].
- LHC combined 2021: $\phi_s = -0.050 \pm 0.019$ rad, consistent with SM, however SM precision still 20 times better room for New physics.
- Other quantity related to B_s^0 mixing is $\Delta \Gamma_s = \Gamma_s^L \Gamma_s^H$, Γ_s^L and Γ_s^H are the decay widths of the mass eigenstates. $\Delta \Gamma_s$ was calculated in SM arXiv:1912.07621v2 [hep-ph], 2020 and new experimental results are important to tighten uncertainties and eventually get sensitivity to NP

ATLAS data in this analysis

- Results presented here use 80.5 fb⁻¹ of 2015-2017 data, statistically combined with 19.2 fb⁻¹ Run1.
- Use J/ψ → μ⁺μ[−] triggers, with cuts on di-muon mass window. No low-limit cuts on L_{xy}, or on the impact parameter applied to avoid biasing B⁰_s proper-decay time
- Events selected for analysis contained 453 570 \pm 740 $B_s^0 \rightarrow J/\psi \phi$ signals.

Angular analysis

- $B_s^0 \rightarrow J/\psi \phi$ = pseudoscalar to vector-vector
- Final state: admixture of *CP*-odd (L = 1) and *CP*-even (L = 0, 2) states
- Distinguishable through time-dependent angular analysis
- Non-resonant S-wave decay $B^0_s o J/\psi K^+ K^-$ contribute to the final state
- Included in the differential decay rate due to interference with the $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\psi(K^+K^-)$ decay

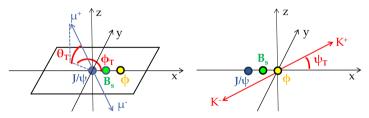


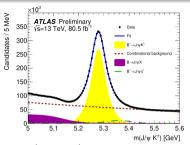
Figure: Angles between final state particles in transversity basis.

We perform unbinned maximum likelihood fit simultaneously for B_s^0 mass, decay time and the decay angles:

$$\begin{aligned} \ln \mathcal{L} &= \sum_{i=1}^{N} \{ w_{i} \cdot \ln(f_{s} \cdot \mathcal{F}_{s}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, P(B|Q), p_{\Gamma_{i}}) \\ &+ f_{s} \cdot f_{B_{d}^{0}} \cdot \mathcal{F}_{B_{d}^{0}}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, P(B|Q), p_{\Gamma_{i}}) \\ &+ f_{s} \cdot f_{\Lambda_{b}} \cdot \mathcal{F}_{\Lambda_{b}}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, P(B|Q), p_{\Gamma_{i}}) \\ &+ (1 - f_{s} \cdot (1 + f_{B_{d}^{0}} + f_{\Lambda_{b}})) \cdot \mathcal{F}_{bkg}(m_{i}, t_{i}, \sigma_{m}, \sigma_{t}, \Omega_{i}, P(B|Q), p_{\Gamma_{i}})) \} \end{aligned}$$

Physics parameters

- CPV phase ϕ_s
- Decay widths: $\Delta \Gamma_s$, Γ_s
- Decay amplitudes: $|A_0(0)|^2$, $|A_{\parallel}(0)|^2$, δ_{\parallel} , δ_{\perp}
- S-wave: |A_S(0)|², δ_S
- Δm_s fixed to PDG

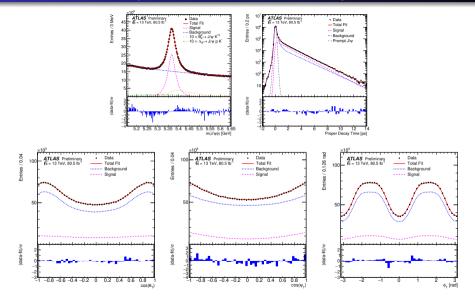

Observables

- Basic observables : m_i , t_i , Ω_i
- Conditional observables per-candidate:
 - resolutions: $\sigma_{m_i}, \sigma_{t_i}$
 - tagging probability and method: P(B|Q)

Flavour tagging

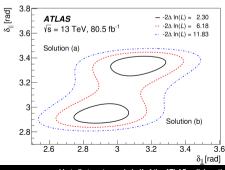
- Opposite side tagging
- Use Muon or Electron
 - $b \rightarrow I$ transitions are clean tagging method
 - $b \rightarrow c \rightarrow I$ and neutral B-meson oscillations dilute the tagging
- Jet-Charge
 - information from tracks in b-tagged jet, when no lepton is found

$$ullet$$
 Calibration using ${m B}^{\pm} o {m J}/\psi {m K}^{\pm}$ data



Inv. mass $B^\pm \to J/\psi K^\pm$. Data shown as points, overall fit result blue curve, other curves signal and background fits.

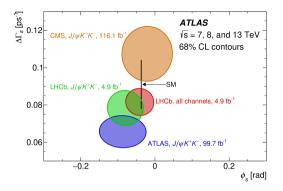
Tag method	Efficiency [%]	Effective Dilution [%]	Tagging Power [%]
Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.009
Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.004
Low- $p_{\rm T}$ muon	3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.006
Jet	5.54 ± 0.01	20.4 ± 0.1	0.231 ± 0.005
Total	14.74 ± 0.02	33.4 ± 0.1	1.65 ± 0.01


Efficiency: $\varepsilon = \frac{N_{\text{tagged}}}{N_{\text{Bcand}}}$, Dilution: D = (1 - 2w), *w* is the miss-tag probability, Tagging Power: $TP = \varepsilon D^2$

Results 2015-2017 data: Projections of the mass-lifetime-angular fit

Results 2015-2017 data: fit parameters

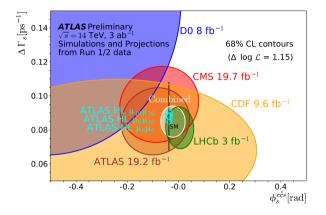
- While for most of the physics parameters, including ϕ_s , $\Delta\Gamma_s$, Γ_s , the fit determines a single solution, for the strong-phases δ_{\parallel} and δ_{\perp} two well separated local maxima of the likelihood are found, and shown as solution (a) and (b) in table of results
- The difference in likelihoods, -2Δ ln(L), between the two solutions is equal to 0.03, favouring (a) but without ruling out (b).



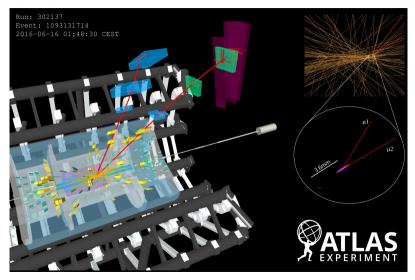
Parameter	Value	Statistical	Systematic		
		uncertainty	uncertainty		
ϕ_s [rad]	-0.081	0.041	0.022		
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.0607	0.0047	0.0043		
$\Gamma_s [\mathrm{ps}^{-1}]$	0.6687	0.0015	0.0022		
$ A_{\parallel}(0) ^2$	0.2213	0.0019	0.0023		
$ A_0(0) ^2$	0.5131	0.0013	0.0038		
$ A_S(0) ^2$	0.0321	0.0033	0.0046		
$\delta_{\perp} - \delta_S$ [rad]	-0.25	0.05	0.04		
Solution (a)					
δ_{\perp} [rad]	3.12	0.11	0.06		
δ_{\parallel} [rad]	3.35	0.05	0.09		
Solution (b)					
δ_{\perp} [rad]	2.91	0.11	0.06		
δ_{\parallel} [rad]	2.94	0.05	0.09		

ATLAS measurements of CP violation and rare decays processes with beauty mesons.

ATLAS $B_s^0 \rightarrow J/\psi\phi$ Combination Run2 + 1. Comparison with CMS and LHCb


	Solution (a)			
Parameter	Value	Statistical	Systematic	
		uncertainty	uncertainty	
ϕ_s [rad]	-0.087	0.036	0.021	
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.0657	0.0043	0.0037	
$\Gamma_s [ps^{-1}]$	0.6703	0.0014	0.0018	
$ A_{\parallel}(0) ^2$	0.2220	0.0017	0.0021	
$ A_0(0) ^2$	0.5152	0.0012	0.0034	
$ A_{S} ^{2}$	0.0343	0.0031	0.0045	
δ_{\perp} [rad]	3.22	0.10	0.05	
δ_{\parallel} [rad]	3.36	0.05	0.09	
$\delta_{\perp} - \delta_S$ [rad]	-0.24	0.05	0.04	
ATLAS				
0.1-				
0.08-			_	
0.06		5	-	
-0.2 0 0.2				
			ϕ_s [rad]	

- ϕ_s result consistent with results from CMS, LHCb and SM
- Competitive single measurement of ΔΓ_s, Γ_s and helicity parameters
- Still to add 60 fb⁻¹ from 2018


ATLAS HL-LHC prospects $B_s^0 \rightarrow J/\psi \phi$

- ATL-PHYS-PUB-2018-041
- Inner Detector upgrade: proper decay time resolution improved by 21% w.r.t. Run 2
- Three trigger scenarios for muon momenta thresholds
- ϕ_s precision improves (9 20) times w.r.t.Run1, or (4 - 9) times w.r.t. current result combining Run1 and Run2 99.7 fb⁻¹

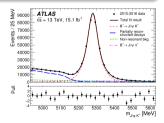
Rare decays $B^0_{(s)} \rightarrow \mu^+ \mu^-$ in ATLAS

• JHEP 04 (2019) 098, arXiv:1812.03017

ATLAS analysis rare decays $B^0_{(s)} \rightarrow \mu^+ \mu^-$ using 2015-16 data

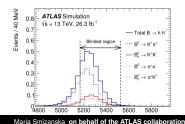
Physics Motivation

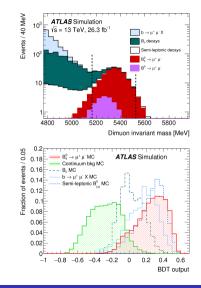
- Multiple suppressions: FCNC current, CKM and Helicity
- New physics models predict higher, also lower rate.
- SM prediction very precise 6-8% uncertainties


Run2 Analysis JHEP 04 (2019) 098 arXiv:1812.03017

- Use 2015-16 data
- Di- μ triggers with p_T thresholds 4 GeV and 6 GeV or higher. L_{xy} cuts applied online.

Normalisation B yield extraction


$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = \boxed{\frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}}} \times \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}} \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)\right]$$

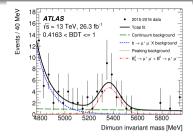

Unbinned maximum likelihood fit of the invariant mass $J/\psi K$

$B^0_{(s)} \rightarrow \mu^+ \mu^-$: Background composition

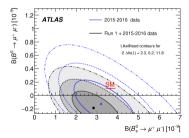
- Continuum Bg: μ's produced independently from fragmentation/decay-chains of b, b quarks.
 - Reduced by boosted decision tree (BDT) with 15 variables.
- Partially reconstructed decays:
 - same side cascades $b
 ightarrow c \mu X
 ightarrow s(d) \mu X';$
 - same vertex e.g. $B^0_{(s)} \rightarrow K^* \mu^+ \mu^-$, $B \rightarrow J/\psi \mu X$, $B_c \rightarrow J/\psi (\mu^+ \mu^-) \mu \nu$
 - Semileptonic with a hadron misidentified as a μ
- Peaking background $B \rightarrow h^+ h^-$ two hadrons misidentified as μ .
 - tight μ criteria: profile of energy deposits in the calorimeters, tighter ID–MS matching

ATLAS measurements of CP violation and rare decays processes with beauty mesons.

Extraction of the Signal yield


- Simultaneous likelihood fit to di-μ mass in 4 BDT bins, chosen to give equal sig efficiency 18%
- Signal model from MC: two Double-Gauss centred at B_d and B_s mass.
- Non-peaking backgrounds: common exponential from data in low mass sideband
- Peaking backgrounds $B
 ightarrow h^+ h^-$ Double-Gauss from MC

Results

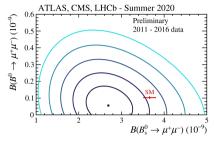

- 2015-16 yields: Ns =80 \pm 22 and Nd =-12 \pm 20 (expected from SM Ns =91 and Nd =10)
- Run2 (2015-16) + Run1 branching fractions:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(2.8^{+0.8}_{-0.7}\right) \times 10^{-9} \text{ and } \mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$$

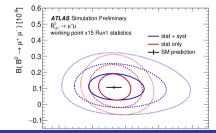
• Compatible with SM within 2.4 σ

Likelihood contours for the simultaneous fit to $B(B_S \rightarrow \mu^+ \mu^-)$ and $B(B_d \rightarrow \mu^+ \mu^-)$, for $-2\Delta \ln(L)=2.3, 6.2, 11.8$

${\cal B}^0_{(s)} \to \mu^+ \mu^-$ LHC combination 2020 ATLAS-CONF-2020-049


- Combination from binned 2D profile likelihoods
- Independent systematics, except for ratio of fragmentation fractions f_d/f_s , treated individually
- Compatible with SM within 2.1 σ (latest LHCb result not included)

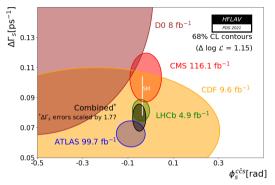
 $\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= \left(2.69 \,{}^{+0.37}_{-0.35}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 1.9 \times 10^{-10} \text{ at } 95\% \text{ CL} \end{aligned}$


$B^0_{(s)} \rightarrow \mu^+ \mu^-$ HL-LHC Prospects in ATLAS, ATL-PHYS-PUB-2018-005

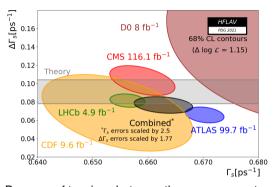
- 3 trigger scenarios for thresholds *p*_T(μ₁), *p*_T(μ₂)
- Conservative (10-10) GeV (x15 Run1); Intermediate (6-10) GeV (x60 Run1); High-yield (6-6) GeV (x75 Run1).

Likelihood contours correspond to -2∆ In(L)= 2.3, 6.2, 11.8, 19.3, 30.2

Likelihood contours for 68.3%, 95.5%, and 99.7% confidence levels


ATLAS measurements of CP violation and rare decays processes with beauty mesons.

Summary


- ATLAS analysis of $B_s^0 \rightarrow J/\psi\phi$ combining Run1 and Run2 99.7 fb⁻¹ show the CP violation phase ϕ_s compatible with SM. The search continues to include 2018 data and is prepared for Run3 data taking.
- At HL-LHC ATLAS φ_s precision will improve by (4 9) times w.r.t. current result. The measurement will benefit from both statistics and from improved time-resolution in upgraded ATLAS ID.
- In rare decays $B^0_{(s)} \rightarrow \mu^+ \mu^-$ combining 2015-16 and Run1 data, ATLAS arrives to a result compatible with SM within 2.4 σ
- LHC 2020 combination for rare decays $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ shows a compatibility with SM within 2.1 σ
- ATLAS continues analysing 2017-2018 data and is prepare for Run3.
- At HL-LHC ATLAS will increase B⁰_(s) → μ⁺μ[−] statistical precisions (3-5) times w.r.t. results expected from Total Run1+Run2, while uncertainties will still be statistically dominated.
- ATLAS B-physics program well prepared for Run3. HL-LHC studies done for principal B-physics channels, showing that ATLAS B-physics will benefit from the upgrade.

Backup Slides

$B_s^0 ightarrow J/\psi\phi$ world combination 2021

World combined 2021: $\phi_s = -0.050 \pm 0.019$ rad, consistent with SM.

Because of tensions between the measurements, the errors on Γ_s and $\Delta\Gamma_s$ have been scaled by 2.5 and 1.77, respectively (the ellipses representing the results of each experiment are shown before scaling, while the combined ellipses include the scale factors).