A closer look at the extraction of $|V_{ub}|$ from $B \to \pi l \nu$.

Ipsita Ray

XXVIII International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2021)

Based on : JHEP 07 (2021) 082 In collaboration with Soumitra Nandi, Sunando Patra and Aritra Biswas.

・ロト ・ 同ト ・ ヨト ・ ヨト

The Standard model

• The theory describing three of the four known fundamental forces.

• Classifies all known elementary particles.

メロト メポト メミト メヨト

э

The Standard model

• Charged-current W^{\pm} couplings to quarks in the mass basis -

$$\mathcal{L} = -\frac{g}{\sqrt{2}}\bar{u}_L\gamma^\mu d_L W^+_\mu + h.c. \to -\frac{g}{\sqrt{2}}\bar{U}_L\gamma^\mu V_{CKM} D_L W^+_\mu + h.c. \tag{1}$$

- Basis rotation and the fact that one cannot simultaneously diagonalize all of the flavor matrices in the Standard Model \rightarrow CKM matrix.
- Mixing of flavor through CKM matrix -

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
(2)

• Parameterized by three mixing angles and the CP-violating phase.

Parameterizations of the CKM matrix

- Precision determinations of CKM elements necessary to probe the quark mixing mechanism of the Standard Model.
- Wolfenstein parameterization -

$$\begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$
(3)

・ロト ・日 ・ エー・ エー・ うへつ

- To leading order, complex numbers only in the 1-3 and 3-1 mixing elements.
- B hadron decays important probes of CP violation.
- $V_{ub} \rightarrow$ Source of CP violation within the SM.

• The transition $b \rightarrow u l \bar{\nu}$ provides two avenues for determining $|V_{ub}|$ -

• Inclusive (Sum over all possible hadronic states.)

• Exclusive

(Decays involving a specific meson in the final state.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

- Experimental and theoretical techniques for these two approaches different and largely independent \rightarrow Important cross checks of our understanding.
- Mutual disagreement between exclusive and inclusive measurements.

 $|V_{ub}|^{exc} = (3.70 \pm 0.16) \times 10^{-3}, \quad |V_{ub}|^{inc} = (4.25 \pm 0.12^{+0.15}_{-0.14}) \times 10^{-3},$ (4) differ by $\geq 2.2 \sigma$.

$|V_{ub}|$ from inclusive decays

- The theoretical description of inclusive $\bar{B} \to X_u l \bar{\nu}$ decays based on the Heavy Quark Expansion.
- Total decay rate hard to measure due to the large background from $\bar{B} \rightarrow X_c l \bar{\nu}$ transitions \rightarrow experimental cuts are necessary.
- In regions of phase space where $\bar{B} \to X_c l \bar{\nu}$ decays are suppressed, can't use HQE \to introduce non-perturbative distribution functions(SF).
- Different approaches to model the shape function \rightarrow extracted values of $|V_{ub}|$ model dependent.
- Recent analysis of the inclusive spectra with hadronic-tagging by Belle -

$$|V_{ub}|^{inc} = (4.10 \pm 0.09 \pm 0.22 \pm 0.15) \times 10^{-3} \,. \tag{5}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへの

$|V_{ub}|$ from exclusive decays

• Exclusive determinations require knowledge of the form factors.

$$\langle \pi(p_{\pi})|V_{\mu}|B(p_{B})\rangle = f_{+}(q^{2}) \Big[p_{B}^{\mu} + p_{\pi}^{\mu} - \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} \Big] + f_{0}(q^{2}) \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu}$$
(6)

• $f_+(q^2=0) = f_0(q^2=0) \rightarrow$ cancel the divergence at $q^2=0$.

$$\frac{d\Gamma}{dq^2} \left(\bar{B^0} \to \pi^+ l^- \bar{\nu}_l \right) = \frac{G_F^2 |V_{ub}|^2}{24\pi^3 m_{B^0}^2 q^4} \left(q^2 - m_l^2 \right)^2 \left| p_\pi(m_{B^0}, m_{\pi^+}, q^2) \right| \times \left[\left(1 + \frac{m_l^2}{2q^2} \right) m_{B^0}^2 \left| p_\pi(m_{B^0}, m_{\pi^+}, q^2) \right|^2 \left| f_+ \left(q^2 \right) \right|^2 + \frac{3m_l^2}{8q^2} \left(m_{B^0}^2 - m_{\pi^+}^2 \right)^2 \left| f_0 \left(q^2 \right) \right|^2.$$
(7)

• Model-independent parametrization based on general properties of analyticity, unitarity, and crossing symmetry.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへの

Form factor parametrization

• The z expansion \rightarrow mapping the variable q^2 to a new variable z.

$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$
(8)

- Choosing $t_0 = (M_B + M_\pi) (\sqrt{M_B} \sqrt{M_\pi})^2$ restricts z to |z| < 0.28 \longrightarrow rapid convergence of the expansion.
- BCL parametrization -

$$f_{+}(z) = \frac{1}{1 - q^2 / m_{B^*}^2} \sum_{n=0}^{N_z - 1} b_n^+ \left[z^n - (-1)^{n - N_z} \frac{n}{N_z} z^{N_z} \right], \qquad (9)$$
$$f_0(z) = \sum_{n=0}^{N_z - 1} b_n^0 z^n . \qquad (10)$$

• BSZ parametrization -

$$f_i(q^2) = \frac{1}{1 - q^2/m_{R,i}^2} \sum_{k=0}^N a_k^i \left[z(q^2) - z(0) \right]^k \tag{11}$$

• $\bar{B} \to \pi l \bar{\nu}_l \to$ the most promising decay mode for both experiment and theory.

Four most precise measurements by **BABAR** and **Belle** -

- BABAR untagged $B^0 + B^+$ (6 q^2 bins) [arXiv:1005.3288v2] \rightarrow BaBar(11)
- BABAR untagged $B^0 + B^+$ (12 q^2 bins) [arXiv:1201.1253] \rightarrow BaBar(12)
- Belle untagged B^0 [arXiv:1012.0090] \rightarrow Belle(11)
- Belle hadronic tagged B^0 and B^+ [arXiv:1306.2781] \rightarrow Belle(13)
- Non-perturbative methods for the calculation of the form factors -Lattice QCD (LQCD) \rightarrow high momentum transfer q^2 to leptons. (RBC/UKQCD and MILC) Light-cone sum rules (LCSR) \rightarrow low q^2 region. (arXiv:1811.00983)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへの

Form-factors extracted only from the LCSR and lattice inputs

BSZ							
$\chi^2_{\rm min}/{ m DOF}$	p-value(%)	Parameters	Values				
4.48/15	99.6	a_0^+	0.213(22)				
		a_1^+	-0.65(14)				
		a_2^+	0.263(425)				
		a_3^+	0.67(31)				
		a_{1}^{0}	0.41(17)				
		a_{2}^{0}	1.46(51)				
		a_{3}^{0}	1.78(49)				
BCL							
$\chi^2_{ m min}/ m DOF$	p-value(%)	Parameters	Values				
12.88/15	61	b_{0}^{+}	0.396(13)				
		b_1^+	-0.707(70)				
		b_2^+	-0.36(18)				
		b_{3}^{+}	0.77(32)				
		b_{0}^{0}	0.521(17)				
		b_1^0	-1.756(78)				
		b_{2}^{0}	1.15(16)				

・ロト ・聞ト ・ヨト ・ヨト

3

Binned differential branching fraction plots

Different scenarios

- <u>Fit 1</u>: B^0 decays from Belle (2011) and Belle (2013); B^- decays from Belle (2013); the combined modes from BaBar (2011) and BaBar (2012).
 - <u>*Fit 1A*</u>: Experimental data (Fit 1) + synthetic Lattice data points,
 - <u>Fit 1B</u>: Experimental data (Fit 1) + synthetic Lattice data points + LCSR.
- <u>Fit 2</u>: B^0 decays from Belle (2011), BaBar (2012), and Belle (2013); B^- decays from BaBar (2012) and Belle (2013).
 - <u>*Fit 2A*</u>: Experimental data (Fit 2) + synthetic Lattice data points,
 - <u>Fit 2B</u>: Experimental data (Fit 2) + synthetic Lattice data points + LCSR.
- <u>Fit 3</u>: The combined modes from BaBar (2011) along with the Fit 2 dataset.
 - <u>*Fit 3A*</u>: Experimental data (Fit 3) + synthetic Lattice data points,
 - $\underline{Fit 3B}$: Experimental data (Fit 3) + synthetic Lattice data points + LCSR.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

Different scenarios

BSZ Parametrization							
Run Name	Full			Dropped Pull > 2			
	$\chi^2_{\rm min}/{\rm DOF}$	p-value(%)	$V_{ub} \times 10^3$	$\chi^2_{\rm min}/{\rm DOF}$	p-value(%)	$V_{ub} \times 10^3$	
			Frequentist			Frequentist	
Fit 1A	73.4/56	5.92	3.69(14)	46.6/52	68.68	3.79(15)	
Fit 1B	77./65	14.57	3.74(13)	49.3/61	85.77	3.83(14)	
Fit 2A	59.5/61	53.17	3.81(14)	46/59	89.26	3.86(15)	
Fit 2B	62./70	74.23	3.85(14)	48.3/68	96.63	3.91(14)	
Fit 3A	82.2/67	9.98	3.70(14)	53.3/62	77.56	3.76(14)	
Fit 3B	85.9/76	20.54	3.75(13)	62./73	81.79	3.84(14)	
BCL Parametrization							
Run Name	Full		Dropped Pull > 2				
	$\chi^2_{\rm min}/{\rm DOF}$	p-value(%)	$V_{ub} \times 10^3$	$\chi^2_{\rm min}/{\rm DOF}$	p-value(%)	$V_{ub} \times 10^3$	
			Frequentist			Frequentist	
Fit 1A	73.5/56	5.84	3.69(14)	46.7/52	68.34	3.79(15)	
Fit 1B	92.1/65	1.51	3.79(13)	63.2/61	39.84	3.89(14)	
Fit 2A	60.1/61	50.8	3.81(14)	46.5/59	88.19	3.87(15)	
Fit 2B	75.9/70	29.42	3.91(14)	58.3/67	76.64	3.96(14)	
Fit 3A	82.7/67	9.35	3.70(14)	57.8./63	66.09	3.77(14)	
Fit 3B	101.4/76	2.73	3.80(13)	76.3/73	37.27	3.90(14)	
				1			

Few observations

$$pull_i = \frac{\mathcal{O}_i^{exp} - \mathcal{O}_i^{fit}}{\sigma_i^{exp}} \,. \tag{12}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

- BSZ parametrization \rightarrow the quality of fit improves when one includes LCSR. BCL parametrization \rightarrow the fit worsens with the inclusion of LCSR.
- With both Lattice and LCSR data, using the BCL form-factor parametrization results in a slightly larger $|V_{ub}|$ than that obtained from BSZ.
- Extracted $|V_{ub}|$ increases by $\geq 1\%$ with the inclusion of the new LCSR inputs.
- Irrespective of the fit scenario, the extracted $|V_{ub}|$ increases after dropping the data-points with pull > 2.

Comparison of $|V_{ub}|$ results

Comparison of $|V_{ub}|^{exc.}$ obtained in this work

- <u>Fit 2B-I</u>: Input used in Fit 2B without the data on $\mathcal{B}(B^0 \to \pi^-)^{[18,20]}(Belle2011).$
- <u>Fit 3B-I</u>: Input used in Fit 3B without the data on $\mathcal{B}(B^0 \to \pi^-)^{[20,26,4]}(BaBar2011).$
- <u>Fit 3B-II</u>: Input used in Fit 3B without the data on $\mathcal{B}(B^0 \to \pi^-)^{[18,20]}(Belle2011)$ and $\mathcal{B}(B^0 \to \pi^-)^{[20,26,4]}(BaBar2011)$.

Fit	BSZ		BCL			
Scenario	$\chi^2/{ m DOF}$	p-value(%)	$V_{ub} \times 10^3$	$\chi^2/{ m DOF}$	p-value(%)	$V_{ub} \times 10^3$
F2B-I	55.4/69	88.14	3.90(14)	68.85/69	48.25	3.96(14)
F3B-I	78.86/75	35.8	3.83(14)	93.6/75	7.19	3.89(14)
F3B-II	72.96/74	51.25	3.88(14)	87.2/74	13.99	3.94(14)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

- We have extracted $|V_{ub}|$ analyzing all the available inputs on the exclusive $B \rightarrow \pi l \nu$ decays. This includes the data on the partial decay rates, inputs from lattice, and those from LCSR.
- We have identified BaBar(11) data (at least a part of it) as a probable source of bad quality fit. The fit scenarios (Fit 2A and 2B) without that data-set has an appreciable fit-probability.
- We found a very small number of data-points that compromise the fit-quality, and at the same time, influence the extraction of $|V_{ub}|$.
- From the full dataset after dropping $\mathcal{B}(B^0 \to \pi^-)^{[18,20]}$ (Belle(11)) and $\mathcal{B}(B^0 \to \pi^-)^{[20,26.4]}$ (BaBar(11)), the extracted $|V_{ub}| = (3.94(14)) \times 10^{-3}$. \to Consistent with the recent one extracted from inclusive $B \to X_u \ell \nu_\ell$ decay by Belle within 1 σ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

THANK YOU

Ipsita Ray SUSY 2021

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ▲臣 - のへで