Angular Distribution of polarised Λ_{b} decay with NP operators

Based on the paper "Phys. Rev. D 104 (2021) 1, 013002" in collab. with Dr. Diganta Das

Ria Sain

Delhi University
and
Institute of Mathematical Sciences, Chennai
August 27, 2021

Motivation

- In recent years, special attention has been given in the semileptonic $b \rightarrow s \ell^{+} \ell^{-}$decays.
- In the rare decay $\left.B \rightarrow K^{(} *\right) \ell^{+} \ell^{-}$involves a $b \rightarrow s$ flavor changing loop induced transition at the quark level making it sensitive to physics beyond the Standard Model.

Figure: quark level diagram for $b \rightarrow s \ell^{+} \ell^{-}$decay

$b \rightarrow s \ell^{+} \ell^{-}$decay

- There are several discrepancies observed when compared to the SM predictions, among these, $R_{\left.K^{(}\right)}$, the ratio of the differential decay rate $d\left(B \rightarrow K^{(*)} \ell^{+} \ell^{-}\right) / d q^{2}$, for $\ell=\mu$ and e, has generated a great deal of interest.
- $R_{K^{*}{ }^{*}}$ is defined within a given range of the dilepton mass squared $q_{\text {min }}^{2}$ to $q_{\text {max }}^{2}$ as,

$$
\begin{equation*}
R_{K^{(*)}}=\frac{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{d \Gamma\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{d q^{2}} d q^{2}}{\int_{q_{\min }^{2}}^{q_{\max }^{2}} \frac{d \Gamma\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}{d q^{2}} d q^{2}} \tag{1}
\end{equation*}
$$

Flavor Anomaly

The measured R_{K} and $R_{K^{*}}$, lie systematically below the SM expectations:

$$
\begin{aligned}
R_{K}\left(q^{2} \in[1.1: 6] \mathrm{GeV}^{2}\right) & =0.846_{-0.054-0.014}^{+0.060+0.016} \rightarrow 2.5 \sigma \text { from } S M, \\
R_{K^{*}}\left(q^{2} \in[0.045: 1.1] \mathrm{GeV}^{2}\right) & =0.660_{-0.0071}^{+0.110} \pm 0.024 \rightarrow 2.1 \sigma \text { from } S M, \\
R_{K^{*}}\left(q^{2} \in[1.1: 6] \mathrm{GeV}^{2}\right) & =0.685_{-0.069}^{+0.113} \pm 0.047 \rightarrow 2.4 \sigma \text { from } S M .
\end{aligned}
$$

Flavor Anomaly

Figure: Lepton Universality ratio $R_{p K}$ for $\Lambda_{b} \rightarrow p K \ell^{+} \ell^{-}$at $4.7 f b^{-1}$ JHEP05(2020)040

Motivation for $\Lambda_{b} \rightarrow \Lambda \ell^{+} \ell^{-}$decay

- Among the other $b \rightarrow s \ell^{+} \ell^{-}$processes, the baryonic decay mode $\Lambda_{b} \rightarrow \Lambda \ell^{+} \ell^{-}$can provide complementary phenomenological information
- since the weak decay of daughter $\Lambda \rightarrow p \pi, \Longrightarrow$ additional angular observables not present in B decay
- In contrast to spin- $0 B$, the Λ_{b} has spin- $\frac{1}{2}, \Longrightarrow$ polarised Λ_{b} \Longrightarrow increasing significantly the number of angular observables.

$b \rightarrow s \ell^{+} \ell^{-}$decay

In the SM the rare $b \rightarrow s \ell^{+} \ell^{-}$transition proceeds through loop diagrams which are described by

$$
\begin{gather*}
\mathcal{O}_{7}=\frac{m_{b}}{e}\left[\bar{s} \sigma^{\mu \nu} P_{R} b\right] F_{\mu \nu}, \mathcal{O}_{9}=\left[\bar{s} \gamma^{\mu} P_{L} b\right]\left[\ell \gamma_{\mu} \ell\right], \\
\mathcal{O}_{10}=\left[\bar{s} \gamma^{\mu} P_{L} b\right]\left[\ell \gamma_{\mu} \gamma_{5} \ell\right] . \tag{2}
\end{gather*}
$$

If we add new physics operators like the chiral operators and scalar operators

$$
\begin{gather*}
\mathcal{O}_{9^{\prime}}=\left[\bar{s} \gamma^{\mu} P_{R} b\right]\left[\bar{\ell} \gamma_{\mu} \ell\right], \mathcal{O}_{10^{\prime}}=\left[\bar{s} \gamma^{\mu} P_{R} b\right]\left[\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right] \\
\mathcal{O}_{S^{(\prime)}}=\left[\bar{s} P_{R(L)} b\right][\bar{\ell} \ell], \mathcal{O}_{P^{(\prime)}}=\left[\bar{s} P_{R(L)} b\right]\left[\bar{\ell} \gamma_{5} \ell\right] . \tag{3}
\end{gather*}
$$

The Wilson coefficients corresponding to $\mathcal{O}_{9^{\prime}, 10^{\prime}}, \mathcal{O}_{S^{(\prime)}, P^{(\prime)}}$ are $\mathcal{C}_{9^{\prime}, 10^{\prime}}$ and $\mathcal{C}_{S^{(\prime)}, P^{(\prime)}}$, respectively. The most general effective short distance effective Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$transition can be written as:

$$
\begin{equation*}
\mathcal{H}_{\mathrm{eff}}=-\frac{G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i}\left[\mathcal{C}_{i}(\mu) O_{i}(\mu)\right] \tag{4}
\end{equation*}
$$

$\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}:$Matrix element

- Assuming factorization between the hadronic and leptonic parts, the amplitude of the decay process
$\Lambda_{b}(p, s) \rightarrow \Lambda\left(p^{\prime}, s^{\prime}\right) j_{\text {eff }}\left(\rightarrow \mu^{+}\left(q_{+}\right) \mu^{-}\left(q_{-}\right)\right)$can be written as -

$$
\begin{equation*}
\mathcal{M}^{\lambda_{1}, \lambda_{2}}\left(s, s^{\prime}\right)=-\frac{G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \frac{\alpha_{e}}{4 \pi} \sum_{i=L, R} \sum_{\lambda}\left[\eta_{\lambda} H_{\mathrm{VA}, \lambda}^{i, s, s^{\prime}} L_{i, \lambda}^{\lambda_{1}, \lambda_{2}}+H_{\mathrm{SP}}^{i, s, s^{\prime}} L_{i}^{\lambda_{1}, \lambda_{2}}\right] \tag{5}
\end{equation*}
$$

- $p, p^{\prime}, q_{+}, q_{-}:$momentum of $\Lambda_{b}, \Lambda, \mu^{+}, \mu^{-}$
- λ_{1}, λ_{2} : helicity of μ^{+}, μ^{-}
- $H^{i, s, s}$: the hadronic helicity amplitudes
- $L_{i}^{\lambda_{1}, \lambda_{2}}$: the leptonic amplitudes

Form-factors

The matrix elements are parametrized by the following 10 form-factors (f_{i} 's):

$$
\begin{aligned}
& \left\langle\Lambda\left(p^{\prime}, s^{\prime}\right)\right| \bar{s} \gamma^{\mu} b\left|\Lambda_{b}(p, s)\right\rangle= \\
& \bar{u}_{\Lambda}\left(p^{\prime}, s^{\prime}\right)\left[f_{0}\left(q^{2}\right)\left(m_{\Lambda_{b}}-m_{\Lambda}\right) \frac{q^{\mu}}{q^{2}} \quad+f_{+}\left(q^{2}\right) \frac{m_{\Lambda_{b}}+m_{\Lambda}}{s_{+}}\left(p^{\mu}+p^{\prime \mu}-\left(m_{\Lambda_{b}}^{2}-m_{\Lambda}^{2}\right) \frac{q^{\mu}}{q^{2}}\right)\right. \\
& \left.\quad+f_{\perp}\left(q^{2}\right)\left(\gamma^{\mu}-\frac{2 m_{\Lambda}}{s_{+}} p^{\mu}-\frac{2 m_{\Lambda_{b}}}{s_{+}} p^{\prime \mu}\right)\right] u_{\Lambda_{b}}(p, s), \\
& \left\langle\Lambda\left(p^{\prime}, s^{\prime}\right)\right| \bar{s} \gamma^{\mu} \gamma_{5} b\left|\Lambda_{b}(p, s)\right\rangle= \\
& -\bar{u}_{\Lambda}\left(p^{\prime}, s^{\prime}\right) \gamma_{5}\left[g_{0}\left(q^{2}\right)\left(m_{\Lambda_{b}}+m_{\Lambda}\right) \frac{q^{\mu}}{q^{2}} \quad+g_{+}\left(q^{2}\right) \frac{m_{\Lambda_{b}}-m_{\Lambda}}{s_{-}}\left(p^{\mu}+p^{\prime \mu}-\left(m_{\Lambda_{b}}^{2}-m_{\Lambda}^{2}\right) \frac{q^{\mu}}{q^{2}}\right)\right. \\
& \left.\quad+g_{\perp}\left(q^{2}\right)\left(\gamma^{\mu}+\frac{2 m_{\Lambda}}{s_{-}} p^{\mu}-\frac{2 m_{\Lambda_{b}}}{s_{-}} p^{\prime \mu}\right)\right] u_{\Lambda_{b}}(p, s), \\
& \left\langle\Lambda\left(p^{\prime}, s^{\prime}\right)\right| \bar{s} i \sigma^{\mu \nu} q_{\nu} b\left|\Lambda_{b}(p, s)\right\rangle=-\bar{u}_{\Lambda}\left(p^{\prime}, s^{\prime}\right)\left[h_{+}\left(q^{2}\right) \frac{q^{2}}{s_{+}}\left(p^{\mu}+p^{\prime \mu}-\left(m_{\Lambda_{b}}^{2}-m_{\Lambda}^{2}\right) \frac{q^{\mu}}{q^{2}}\right)\right. \\
& \left.\quad+h_{\perp}\left(q^{2}\right)\left(m_{\Lambda_{b}}+m_{\Lambda}\right)\left(\gamma^{\mu}-\frac{2 m_{\Lambda}}{s_{+}} p^{\mu}-\frac{2 m_{\Lambda_{b}}}{s_{+}} p^{\prime \mu}\right)\right] u_{\Lambda_{b}}(p, s), \\
& \left\langle\Lambda\left(p^{\prime}, s^{\prime}\right)\right| \bar{s} i \sigma^{\mu \nu} q_{\nu} \gamma_{5} b\left|\Lambda_{b}(p, s)\right\rangle=-\bar{u}_{\Lambda}\left(p^{\prime}, s^{\prime}\right) \gamma_{5}\left[\widetilde{h}_{+}\left(q^{2}\right) \frac{q^{2}}{s_{-}}\left(p^{\mu}+p^{\prime \mu}-\left(m_{\Lambda_{b}}^{2}-m_{\Lambda}^{2}\right) \frac{q^{\mu}}{q^{2}}\right)\right. \\
& \left.\quad+\widetilde{h}_{\perp}\left(q^{2}\right)\left(m_{\Lambda_{b}}-m_{\Lambda}\right)\left(\gamma^{\mu}+\frac{2 m_{\Lambda}}{s_{-}} p^{\mu}-\frac{2 m_{\Lambda_{b}}}{s_{-}} p^{\prime \mu}\right)\right] u_{\Lambda_{b}}(p, s),
\end{aligned}
$$

$\Lambda \rightarrow p \pi$ matrix element

The secondary weak decay is governed by the Hamiltonian

$$
\begin{equation*}
H_{\Delta S=1}^{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} V_{u d}^{*} V_{u s}\left[\bar{d} \gamma_{\mu} P_{L} u\right]\left[\bar{u} \gamma^{\mu} P_{L} s\right] \tag{6}
\end{equation*}
$$

The $\Lambda\left(k, s_{\Lambda}\right) \rightarrow p\left(k_{1}, s_{p}\right) \pi\left(k_{2}\right)$ matrix elements are parametrized as

$$
\begin{align*}
H_{2}\left(s_{\Lambda}, s_{p}\right) & \equiv\left\langle p\left(k_{1}, s_{p}\right) \pi^{-}\left(k_{2}\right)\right|\left[\bar{d} \gamma_{\mu} P_{L} u\right]\left[\bar{u} \gamma^{\mu} P_{L} s\right]\left|\Lambda\left(k, s_{\Lambda}\right)\right\rangle \\
& =\left[\bar{u}\left(k_{1}, s_{p}\right)\left(\xi \gamma_{5}+\omega\right) u\left(k, s_{\Lambda}\right)\right] . \tag{7}
\end{align*}
$$

In the final distribution only the parity violating parameter is relevant

$$
\begin{equation*}
\alpha_{\Lambda}=\frac{-2 \operatorname{Re}(\omega \xi)}{\sqrt{\frac{r_{-}}{r_{+}}}|\xi|^{2}+\sqrt{\frac{r_{+}}{r_{-}}}|\omega|^{2}} \equiv \alpha^{\exp } . \tag{8}
\end{equation*}
$$

- for this decay define the angles θ_{b} and ϕ_{b} are made by the proton in the Λ rest frame.

Polarisation of Λ_{b}

- when polarization of the initial Λ_{b} is considered, define a normal vector $\hat{n}=\hat{p}_{\text {beam }}^{\{\text {lab }\}} \times \hat{p}_{\Lambda_{b}}^{\{\text {lab }\}}$ where $\hat{p}_{\text {beam }}^{\{\text {lab }\}}, \hat{p}_{\Lambda_{b}}^{\{\text {lab }\}}$ are unit vectors in the lab frame.
- The polarisation angle θ between the \hat{n} and the direction of Λ, in the Λ_{b} rest frame is defined as $\cos \theta=\hat{n} . \hat{p}_{\Lambda}^{\left\{\Lambda_{b}\right\}}$.
- The polarisation \Longrightarrow the density matrix which is defined as

$$
\rho_{\lambda, \lambda^{\prime}}=\frac{1}{2}\left(\begin{array}{cc}
1+P_{\Lambda_{b}} \cos \theta & P_{\Lambda_{b}} \sin \theta \tag{9}\\
P_{\Lambda_{b}} \sin \theta & 1-P_{\Lambda_{b}} \cos \theta
\end{array}\right)
$$

where $P_{\Lambda_{b}}$ is the polarization of the parent baryon Λ_{b}.

The Notation

The lab frame and the 3 rest frames are shown.

Leptonic Matrix Element

The leptonic helicity amplitudes are defined as

$$
\begin{align*}
L_{L(R)}^{\lambda_{1} \lambda_{2}} & =\left\langle\bar{\ell}\left(\lambda_{1}\right) \ell\left(\lambda_{2}\right)\right| \bar{\ell}\left(1 \mp \gamma_{5}\right) \ell|0\rangle, \tag{10}\\
L_{L(R), \lambda}^{\lambda_{1} \lambda_{2}} & =\bar{\epsilon}^{\mu}(\lambda)\left\langle\bar{\ell}\left(\lambda_{1}\right) \ell\left(\lambda_{2}\right)\right| \bar{\ell} \gamma_{\mu}\left(1 \mp \gamma_{5}\right) \ell|0\rangle, \tag{11}
\end{align*}
$$

- where ϵ^{μ} is the polarization of the virtual gauge boson that decays to the dilepton pair.
- $L_{L(R), \lambda}^{\lambda_{1}, \lambda_{2}}$, calculated in the dilepton rest frame, in terms of the angles θ_{ℓ} and ϕ_{ℓ} are made by the μ^{+}

transversity amplitudes

We convert the helicity amplitudes to tranversity amplitudes and for $\mathrm{SM}+\mathrm{SM}^{\prime}$ set of operators the transversity amplitudes are

$$
\begin{aligned}
A_{\perp_{1}}^{L,(R)} & =-\sqrt{2} N\left(f_{\perp}^{V} \sqrt{2 s_{-}} \mathcal{C}_{\mathrm{VA+}}^{L,(R)}+\frac{2 m_{b}}{q^{2}} f_{\perp}^{T}\left(m_{\Lambda_{b}}+m_{\Lambda}\right) \sqrt{2 s_{-}} \mathcal{C}_{7}^{\text {eff }}\right), \\
A_{\|_{1}}^{L,(R)} & =\sqrt{2} N\left(f_{\perp}^{A} \sqrt{2 s_{+}} \mathcal{C}_{\mathrm{V}--}^{L,(R)}+\frac{2 m_{b}}{q^{2}} f_{\perp}^{T 5}\left(m_{\Lambda_{b}}-m_{\Lambda}\right) \sqrt{2 s_{+}} \mathcal{C}_{7}^{\mathrm{eff}}\right), \\
A_{\perp_{0}}^{L,(R)} & =\sqrt{2} N\left(f_{0}^{V}\left(m_{\Lambda_{b}}+m_{\Lambda}\right) \sqrt{\frac{s_{-}}{q^{2}}} \mathcal{C}_{\mathrm{VA+}}^{L,(R)}+\frac{2 m_{b}}{q^{2}} f_{0}^{T} \sqrt{q^{2} s_{-}} \mathcal{C}_{7}^{\text {eff }}\right), \\
A_{\|_{0}}^{L,(R)} & =-\sqrt{2} N\left(f_{0}^{A}\left(m_{\Lambda_{b}}-m_{\Lambda}\right) \sqrt{\frac{s_{+}}{q^{2}}} \mathcal{C}_{\mathrm{VA}-}^{L,(R)}+\frac{2 m_{b}}{q^{2}} f_{0}^{T 5} \sqrt{q^{2} s_{+}} \mathcal{C}_{7}^{\mathrm{eff}}\right), \\
A_{\perp t} & =-2 \sqrt{2} N\left(\mathcal{C}_{10}+\mathcal{C}_{10^{\prime}}\right)\left(m_{\Lambda_{b}}-m_{\Lambda}\right) \sqrt{\frac{s_{+}}{q^{2}}} f_{t}^{V}, \\
A_{\| t} & =2 \sqrt{2} N\left(\mathcal{C}_{10}-\mathcal{C}_{10^{\prime}}\right)\left(m_{\Lambda_{b}}+m_{\Lambda}\right) \sqrt{\frac{s_{-}}{q^{2}}} f_{t}^{A},
\end{aligned}
$$

for scalar and pseudoscalar amplitudes

$$
\begin{aligned}
A_{\perp \mathrm{S}}^{L(R)} & =\sqrt{2} N f_{t}^{V} \frac{m_{\Lambda_{b}}-m_{\Lambda}}{m_{b}-m_{s}} \mathcal{C}_{\mathrm{SP}+}^{L(R)} \\
A_{\| \mathrm{S}}^{L(R)} & =-\sqrt{2} N f_{t}^{A} \frac{m_{\Lambda_{b}}+m_{\Lambda}}{m_{b}+m_{s}} \mathcal{C}_{\mathrm{SP}-}^{L(R)}
\end{aligned}
$$

Pol. Λ_{b} full angular distribution

the decay distribution can be expressed in terms of angular observables as

$$
\begin{align*}
\frac{\mathrm{d}^{6} \mathcal{B}}{\mathrm{~d} q^{2} \mathrm{~d} \vec{\Omega}\left(\theta_{\ell}, \phi_{\ell}, \theta_{b}, \phi_{b}, \theta\right)}=\frac{3}{32 \pi^{2}}(& \left(K_{1} \sin ^{2} \theta_{\ell}+K_{2} \cos ^{2} \theta_{\ell}+K_{3} \cos \theta_{\ell}\right)+ \\
& \left(K_{4} \sin ^{2} \theta_{\ell}+K_{5} \cos ^{2} \theta_{\ell}+K_{6} \cos \theta_{\ell}\right) \cos \theta_{b}+ \\
& \left(K_{7} \sin _{\ell \ell} \cos \theta_{\ell}+K_{8} \sin \theta_{\ell}\right) \sin \theta_{b} \cos \left(\phi_{b}+\phi_{\ell}\right)+ \\
& \left(K_{9} \sin \theta_{\ell} \cos \theta_{\ell}+K_{10} \sin \theta_{\ell}\right) \sin \theta_{b} \sin \left(\phi_{b}+\phi_{\ell}\right)+ \\
& \left(K_{11} \sin ^{2} \theta_{\ell}+K_{12} \cos ^{2} \theta_{\ell}+K_{13} \cos \theta_{\ell}\right) \cos \theta+ \\
& \left(K_{14} \sin ^{2} \theta_{\ell}+K_{15} \cos ^{2} \theta_{\ell}+K_{16} \cos \theta_{\ell}\right) \cos \theta_{b} \cos \theta+ \\
& \left(K_{17} \sin \theta_{\ell} \cos \theta_{\ell}+K_{18} \sin \theta_{\ell}\right) \sin \theta_{b} \cos \left(\phi_{b}+\phi_{\ell}\right) \cos \theta+ \\
& \left(K_{19} \sin \theta_{\ell} \cos \theta_{\ell}+K_{20} \sin \theta_{\ell}\right) \sin \theta_{b} \sin \left(\phi_{b}+\phi_{\ell}\right) \cos \theta+ \\
& \left(K_{21} \cos \theta_{\ell} \sin \theta_{\ell}+K_{22} \sin \theta_{\ell}\right) \sin \phi_{\ell} \sin \theta+ \\
& \left(K_{23} \cos \theta_{\ell} \sin \theta_{\ell}+K_{24} \sin \theta_{\ell}\right) \cos \phi_{\ell} \sin \theta+ \\
& \left(K_{25} \cos \theta_{\ell} \sin \theta_{\ell}+K_{26} \sin \theta_{\ell}\right) \sin \phi_{\ell} \cos \theta_{b} \sin \theta+ \\
& \left(K_{27} \cos \theta_{\ell} \sin \theta_{\ell}+K_{28} \sin \theta_{\ell}\right) \cos \phi_{\ell} \cos \theta_{b} \sin \theta+ \\
& \left(K_{29} \cos ^{2} \theta_{\ell}+K_{30} \sin ^{2} \theta_{\ell}+K_{35} \cos \theta_{\ell}\right) \sin \theta_{b} \sin \phi_{b} \sin \theta+ \\
& \left(K_{31} \cos ^{2} \theta_{\ell}+K_{32} \sin ^{2} \theta_{\ell}+K_{36} \cos \theta_{\ell}\right) \sin \theta_{b} \cos \phi_{b} \sin \theta+ \\
& \left(K_{33} \sin ^{2} \theta_{\ell}\right) \sin \theta_{b} \cos ^{2}\left(2 \phi_{\ell}+\phi_{b}\right) \sin \theta+ \\
& \left.\left(K_{34} \sin ^{2} \theta_{\ell}\right) \sin \theta_{b} \sin ^{2}\left(2 \phi_{\ell}+\phi_{b}\right) \sin \theta\right) . \tag{3.1}
\end{align*}
$$

Angular Co-efficient

Since we have retained the masses of the final state leptons, we write each of the K_{i} 's as

$$
\begin{equation*}
K_{\{\cdots\}}=\mathcal{K}_{\{\cdots\}}+\frac{m_{\ell}}{\sqrt{q^{2}}} \mathcal{K}_{\{\cdots\}}^{\prime}+\frac{m_{\ell}^{2}}{q^{2}} \mathcal{K}_{\{\ldots\}}^{\prime \prime} . \tag{12}
\end{equation*}
$$

The each angular co-efficient looks like, for example:

$$
\begin{aligned}
\mathcal{K}_{11} & =\frac{P_{\Lambda_{b}}}{2} \operatorname{Re}\left(2 A_{\|_{0}}^{R} A_{\perp_{0}}^{* R}-A_{\|_{1}}^{R} A_{\perp_{1}}^{* R}+\{R \leftrightarrow L\}\right. \\
& \left.+2 A_{\mathrm{S} \perp}^{R} A_{\mathrm{S} \|}^{* R}+\{R \leftrightarrow L\}\right), \\
\mathcal{K}_{11}^{\prime} & =P_{\Lambda_{b}} \operatorname{Re}\left(A_{\mathrm{S} \perp}^{R} A_{\| t}^{*}+A_{\mathrm{S} \|}^{R} A_{\perp t}^{*}-\{R \leftrightarrow L\}\right), \\
\mathcal{K}_{11}^{\prime \prime} & =-2 P_{\Lambda_{b}} \operatorname{Re}\left(A_{\|_{0}}^{R} A_{\perp_{0}}^{* R}+A_{\mathrm{S} \perp}^{R} A_{\mathrm{S} \|}^{* R}+\{R \leftrightarrow L\}-A_{\perp t} A_{\| t}^{*}\right. \\
& \left.+\left(A_{\|_{1}}^{R} A_{\perp_{1}}^{* L}-A_{\|_{0}}^{R} A_{\perp_{0}}^{* L}+A_{\mathrm{S} \perp}^{L} A_{\mathrm{S} \|}^{* R}+\{\| \leftrightarrow \perp\}\right)\right),
\end{aligned}
$$

Angular Co-efficient

- including the scalar and pseudoscalar these actually introduce 2 more angular co-efficients which are

$$
\begin{align*}
& K_{35} \cos \theta_{\ell} \sin \theta_{b} \sin \phi_{b} \sin \theta \\
& K_{36} \cos \theta_{\ell} \sin \theta_{b} \cos \phi_{b} \sin \theta \tag{13}
\end{align*}
$$

- Integrations over the angles give differential decay distribution

$$
\begin{equation*}
\frac{d \mathcal{B}}{d q^{2}}=2 K_{1}+K_{2} \tag{14}
\end{equation*}
$$

- This is used to define normalized observables as

$$
\begin{equation*}
M_{i}=\frac{K_{i}}{d \mathcal{B} / d q^{2}} \tag{15}
\end{equation*}
$$

Pol. Λ_{b} Latest measument from LHCb

Recently LHCb has measured full angular distribution of polarised Λ_{b} in [JHEP 09 (2018)] in $15<q^{2}<20 \mathrm{GeV}^{2}$ bin.

TABLE III: Angular observables combining the results of the moments obtained from Run 1 and Run 2 data The first and second uncertainties are statistical and systematic, respectively.

Obs.	Value	Obs.	Value
K_{1}	$0.346 \pm 0.020 \pm 0.004$	K_{18}	$-0.108 \pm 0.058 \pm 0.008$
K_{2}	$0.308 \pm 0.040 \pm 0.008$	K_{19}	$-0.151 \pm 0.122 \pm 0.022$
K_{3}	$-0.261 \pm 0.029 \pm 0.006$	K_{20}	$-0.116 \pm 0.056 \pm 0.008$
K_{4}	$-0.176 \pm 0.046 \pm 0.016$	K_{21}	$-0.041 \pm 0.105 \pm 0.020$
K_{5}	$-0.251 \pm 0.081 \pm 0.016$	K_{22}	$-0.014 \pm 0.045 \pm 0.007$
K_{6}	$0.329 \pm 0.055 \pm 0.012$	K_{23}	$-0.024 \pm 0.077 \pm 0.012$
K_{7}	$-0.015 \pm 0.084 \pm 0.013$	K_{24}	$0.005 \pm 0.033 \pm 0.005$
K_{8}	$-0.099 \pm 0.037 \pm 0.012$	K_{25}	$-0.226 \pm 0.176 \pm 0.030$
K_{9}	$0.005 \pm 0.084 \pm 0.012$	K_{26}	$0.140 \pm 0.074 \pm 0.014$
K_{10}	$-0.045 \pm 0.037 \pm 0.006$	K_{27}	$0.016 \pm 0.140 \pm 0.025$
K_{11}	$-0.007 \pm 0.043 \pm 0.009$	K_{28}	$0.032 \pm 0.058 \pm 0.009$
K_{12}	$-0.009 \pm 0.063 \pm 0.014$	K_{29}	$-0.127 \pm 0.097 \pm 0.016$
K_{13}	$0.024 \pm 0.045 \pm 0.010$	K_{30}	$0.011 \pm 0.061 \pm 0.011$
K_{14}	$0.010 \pm 0.082 \pm 0.013$	K_{31}	$0.180 \pm 0.094 \pm 0.015$
K_{15}	$0.158 \pm 0.117 \pm 0.027$	K_{32}	$-0.009 \pm 0.055 \pm 0.008$
K_{16}	$0.050 \pm 0.084 \pm 0.023$	K_{33}	$0.022 \pm 0.060 \pm 0.009$
K_{17}	$-0.000 \pm 0.120 \pm 0.022$	K_{34}	$0.060 \pm 0.058 \pm 0.009$

Polarized Λ_{b} baryon decay

Here we show how the polarised observables behave in SM and in presence of Scalar and Pseudo scalar operators.

HQET simplifiaction

Including one-loop corrections to the Isgur-Wise relations, the transversity amplitudes read [Boer et al. 2014]

$$
\begin{align*}
& A_{\perp_{1}}^{L(R)} \simeq-2 N \mathcal{C}_{+}^{L(R)} \sqrt{s_{-}} f_{\perp}^{V}, \quad A_{\|_{1}}^{L(R)}=2 N \mathcal{C}_{-}^{L(R)} \sqrt{s_{+}} f_{\perp}^{A} \tag{16}\\
& A_{\perp_{0}}^{L(R)} \simeq \sqrt{2} N \mathcal{C}_{+}^{L(R)} \frac{m_{\Lambda_{b}}+m_{\Lambda}}{\sqrt{q^{2}}} \sqrt{s_{-}} f_{0}^{V}, \tag{17}\\
& A_{\|_{0}}^{L(R)} \simeq-\sqrt{2} N \mathcal{C}_{+}^{L(R)} \frac{m_{\Lambda_{b}}-m_{\Lambda}}{\sqrt{q^{2}}} \sqrt{s_{+}} f_{0}^{A}, \tag{18}
\end{align*}
$$

where the Wilson coefficients are given by

$$
\begin{aligned}
& \mathcal{C}_{+}^{L(R)}=\left(\left(\mathcal{C}_{9}+\mathcal{C}_{9^{\prime}}\right) \mp\left(\mathcal{C}_{10}+\mathcal{C}_{10^{\prime}}\right)+\frac{2 \kappa m_{b} m_{\Lambda_{b}}}{q^{2}} \mathcal{C}_{7}\right), \\
& \mathcal{C}_{-}^{L(R)}=\left(\left(\mathcal{C}_{9}-\mathcal{C}_{9^{\prime}}\right) \mp\left(\mathcal{C}_{10}-\mathcal{C}_{10^{\prime}}\right)+\frac{2 \kappa m_{b} m_{\Lambda_{b}}}{q^{2}} \mathcal{C}_{7}\right) .
\end{aligned}
$$

The parameter $\kappa \equiv \kappa(\mu)=1-\left(\alpha_{s} C_{F} / 2 \pi\right) \ln \left(\mu / m_{b}\right)$ accounts for the radiative QCD corrections to the form factors relations.

HQET notation for WC

- The simplifications of the transversity amplitudes yield factorizations between short- and long-distance physics in the angular observables.
- In the factorized expressions, the vector and axial-vector Wilson coefficient contributes through the following short-distance coefficients [Boer et al. 2014]

$$
\begin{aligned}
\rho_{1}^{ \pm} & =\frac{1}{2}\left(\left|\mathcal{C}_{ \pm}^{R}\right|^{2}+\left|\mathcal{C}_{ \pm}^{L}\right|^{2}\right)=\left|\mathcal{C}_{79} \pm \mathcal{C}_{9^{\prime}}\right|^{2}+\left|\mathcal{C}_{10} \pm \mathcal{C}_{10^{\prime}}\right|^{2}, \\
\rho_{2} & =\frac{1}{4}\left(\mathcal{C}_{+}^{R} \mathcal{C}_{-}^{R *}-\mathcal{C}_{-}^{L} \mathcal{C}_{+}^{L *}\right)=\operatorname{Re}\left(\mathcal{C}_{79} \mathcal{C}_{10}^{*}-\mathcal{C}_{9^{\prime}} \mathcal{C}_{10^{\prime}}^{*}\right)-i \operatorname{Im}\left(\mathcal{C}_{79} \mathcal{C}_{9^{\prime}}^{*}+\mathcal{C}_{10} \mathcal{C}_{10^{\prime}}^{*}\right) . \\
\rho_{3}^{ \pm} & =\frac{1}{2}\left(\left|\mathcal{C}_{ \pm}^{R}\right|^{2}-\left|\mathcal{C}_{ \pm}^{L}\right|^{2}\right)=2 \operatorname{Re}\left(\mathcal{C}_{79} \pm \mathcal{C}_{9^{\prime}}\right)\left(\mathcal{C}_{10} \pm \mathcal{C}_{10^{\prime}}\right)^{*} \\
\rho_{4} & =\frac{1}{4}\left(\mathcal{C}_{+}^{R} \mathcal{C}_{-}^{R *}+\mathcal{C}_{-}^{L} \mathcal{C}_{+}^{L *}\right) \\
& =\left(\left|\mathcal{C}_{79}\right|^{2}-\left|\mathcal{C}_{9^{\prime}}\right|^{2}+\left|\mathcal{C}_{10}\right|^{2}-\left|\mathcal{C}_{10^{\prime}}\right|^{2}\right)-i \operatorname{Im} \mathcal{C}_{79} \mathcal{C}_{10^{\prime}}^{*}-\mathcal{C}_{9^{\prime}} \mathcal{C}_{10}^{*},
\end{aligned}
$$

for scalars:

$$
\begin{aligned}
& \rho_{\mathrm{S}}^{ \pm}=\left|\mathcal{C}_{\mathrm{SP} \pm}^{L}\right|^{2}+\left|\mathcal{C}_{\mathrm{SP} \pm}^{R}\right|^{2} \\
& \rho_{\mathrm{S} 1}= \\
& \underset{\text { Ria Sain }}{2\left(\mathcal{C}_{\mathrm{SP}+}^{L} \mathcal{C}_{\mathrm{SP}-}^{L *}+\mathcal{C}_{\mathrm{SP}+}^{R} \mathcal{C}_{\mathrm{SP}-}^{R *}\right) .} \quad \begin{array}{l}
\text { Pol. } \wedge_{b} \text { decay }
\end{array}
\end{aligned}
$$

Null tests

- If the SP operators are absent, then this ratio is equal to $\operatorname{Re}\left(\rho_{2}\right) / \alpha_{\Lambda} \operatorname{Re}\left(\rho_{4}\right)$.

$$
\begin{equation*}
\frac{K_{3}}{K_{5}}=-\frac{16 m_{b}^{2} f_{\perp}^{A} f_{\perp}^{V} \operatorname{Re}\left(\rho_{2}\right)}{16 \alpha_{\Lambda} m_{b}^{2} f_{\perp}^{A} f_{\perp}^{V} \operatorname{Re}\left(\rho_{4}\right)+\alpha_{\Lambda}\left(m_{\Lambda_{b}}^{2}-m_{\Lambda}^{2}\right) f_{t}^{A} f_{t}^{V} \operatorname{Re}\left(\rho_{\mathrm{S} 1}\right)} \tag{19}
\end{equation*}
$$

- the ratios K_{5} / K_{7} independent of any short distance physics but are modified in the presence of SP operators as

$$
\begin{equation*}
\frac{K_{5}}{K_{7}}=\frac{\sqrt{q^{2}}\left[32 f_{\perp}^{A} f_{\perp}^{V} \operatorname{Re}\left(\rho_{4}\right)+\left(m_{\Lambda_{b}}^{2}-m_{\Lambda}^{2}\right) f_{t}^{A} f_{t}^{V} \operatorname{Re}\left(\rho_{\mathrm{S} 1}\right)\right]}{16 m_{b}^{2} \operatorname{Re}\left(\rho_{4}\right)\left[\left(m_{\Lambda_{b}}+m_{\Lambda}\right) f_{\perp}^{A} f_{0}^{V}-\left(m_{\Lambda_{b}}-m_{\Lambda}\right) f_{0}^{A} f_{\perp}^{V}\right]}, \tag{20}
\end{equation*}
$$

Null tests

- The ratio K_{5} / K_{23} is independent of any short distance physics in SM but modified in the presence of SP operators:

$$
\begin{equation*}
\frac{K_{5}}{K_{23}}=\frac{\sqrt{q^{2}}\left[32 f_{\perp}^{A} f_{\perp}^{V} \operatorname{Re}\left(\rho_{4}\right)+\left(m_{\Lambda_{b}}^{2}-m_{\Lambda}^{2}\right) f_{t}^{A} f_{t}^{V} \operatorname{Re}\left(\rho_{S 1}\right)\right]}{16 m_{b}^{2} P_{\Lambda_{b}} \operatorname{Re}\left(\rho_{4}\right)\left[\left(m_{\Lambda_{b}}+m_{\Lambda_{b}}\right) f_{\perp}^{A} f_{0}^{V}+\left(m_{\Lambda_{b}}-m_{\Lambda}\right) f_{0}^{A} f_{\perp}^{V}\right]} \tag{21}
\end{equation*}
$$

- We find another null test of $\rho_{\mathrm{S} \pm}$ from the following combination

$$
\begin{equation*}
K_{2}+\frac{K_{15}}{P_{\Lambda_{b}} \alpha_{\Lambda}}=2\left(\left|f_{t}^{V}\right|^{2} s_{+} \frac{\left(m_{\Lambda_{b}}-m_{\Lambda}\right)^{2}}{m_{b}^{2}} \rho_{\mathrm{S}}^{+}+\left|f_{t}^{A}\right|^{2} s_{-} \frac{\left(m_{\Lambda_{b}}+m_{\Lambda}\right)^{2}}{m_{b}^{2}} \rho_{\mathrm{S}}^{-}\right) \tag{22}
\end{equation*}
$$

Polarized Λ_{b} baryon decay

Figure: These plots show how these new found observables can be used to distinguish NP scalar operators from the scenario where only SM operators are present.

Polarized Λ_{b} baryon decay: Summary

- In this work we have done the full angular distribution of Pol. Λ_{b} taking the full kinematics and retaining the lepton mass.
- the distribution is done with SM operators along with Chirality flipped counterparts and Scalar and Pseudo scalar operators.
- Applying HQET framework valid in high q^{2} region we obtain factorization of long and short-distance physics in the angular observables.
- we construct several tests of form factors and Wilson coefficients, including some null test of the Standard Model and its chirality flipped counterparts.
- Our analysis shows that new insight to $b \rightarrow s \ell^{+} \ell^{-}$transition can be obtained from this mode.

Conclusion

Thank you!

Backup slides: Expected experimental precision

Obs.	Run 1 + Run 2	$50 \mathrm{fb}^{-1}$	$300 \mathrm{fb}^{-1}$	Obs.	Run 1 + Run 2	$50 \mathrm{fb}^{-1}$	$300 \mathrm{fb}^{-1}$
M_{1}	0.020	0.006	0.002	M_{18}	0.058	0.017	0.007
M_{2}	0.040	0.011	0.005	M_{19}	0.122	0.035	0.014
M_{3}	0.029	0.008	0.0033	M_{20}	0.056	0.016	0.006
M_{4}	0.046	0.013	0.0052	M_{21}	0.105	0.030	0.012
M_{5}	0.081	0.023	0.009	M_{22}	0.045	0.013	0.005
M_{6}	0.055	0.016	0.006	M_{23}	0.077	0.022	0.009
M_{7}	0.084	0.024	0.010	M_{24}	0.033	0.009	0.004
M_{8}	0.037	0.011	0.004	M_{25}	0.176	0.050	0.020
M_{9}	0.084	0.024	0.009	M_{26}	0.074	0.021	0.008
M_{10}	0.037	0.011	0.004	M_{27}	0.140	0.040	0.016
M_{11}	0.043	0.012	0.005	M_{28}	0.058	0.017	0.007
M_{12}	0.063	0.018	0.007	M_{29}	0.097	0.028	0.011
M_{13}	0.045	0.013	0.005	M_{30}	0.061	0.017	0.007
M_{14}	0.082	0.023	0.009	M_{31}	0.094	0.027	0.011
M_{15}	0.117	0.033	0.013	M_{32}	0.055	0.016	0.006
M_{16}	0.084	0.024	0.001	M_{33}	0.060	0.017	0.006
M_{17}	0.120	0.034	0.014	M_{34}	0.058	0.017	0.006

Figure: Expected experimental precision on the angular observables achievable at the future LHCb

