New physics in $b \rightarrow s e^{+} e^{-}$: A model independent analysis

Suman Kumbhakar

Based on Nucl.Phys.B 967 (2021) 115419; arXiv:2011.14668
with A K Alok (IIT Jodhpur), J. Saini (IIT Jodhpur) and S Uma Sankar (IIT Bombay)

The XXVIII SUSY 2021, Beijing

Outline

- Lepton Flavor Universality and its violation in $b \rightarrow s \ell^{+} \ell^{-}$
- New Physics solutions in $b \rightarrow s e^{+} e^{-}$
- Methods to discriminate the new physics scenarios
- Conclusions

The Standard Model

\Longrightarrow The SM becomes highly successful after the Higgs discovery in 2012.
\Longrightarrow All interactions are gauge interactions.
\Longrightarrow The gauge interactions are identical for three generations/ flavors.
Lepton Flavor Universality

Testing LFU through flavor ratios

$$
R_{K}=\frac{\operatorname{Br}\left(B \rightarrow K \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B \rightarrow K e^{+} e^{-}\right)} \quad R_{K^{*}}=\frac{\operatorname{Br}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)}{\operatorname{Br}\left(B \rightarrow K^{*} e^{+} e^{-}\right)}
$$

- Measured values are $\sim 2.5-3.1 \sigma$ lower than the SM prediction.

Violation of LFU \Longrightarrow Hint of new physics

Additional measurements on the branching ratio of $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$and the angular observables in $B \rightarrow\left(K, K^{*}\right) \mu^{+} \mu^{-}$. [arXiv:1506.08777, arXiv:2003.04831] Deviation at the level of $3-3.5 \sigma$ in $\operatorname{Br}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$and P_{5}^{\prime}.
These are subject to significant hadronic uncertainties dominated by undermined power corrections. see e.g. T Hurth et al., arXiv:2006.04213

The SM Effective Hamiltonian

Effective Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$process is given by

$$
\begin{aligned}
\mathcal{H}^{\mathrm{SM}}= & -\frac{4 G_{F}}{\sqrt{2} \pi} V_{t s}^{*} V_{t b}\left[\sum_{i=1}^{6} C_{i}(\mu) \mathcal{O}_{i}(\mu)+C_{7} \frac{e}{16 \pi^{2}}\left[\bar{s} \sigma_{\mu \nu}\left(m_{s} P_{L}+m_{b} P_{R}\right) b\right] F^{\mu \nu}\right. \\
& \left.+C_{9} \frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} \ell\right)+C_{10} \frac{\alpha_{e m}}{4 \pi}\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right)\right]
\end{aligned}
$$

where G_{F} is the Fermi constant, $V_{t s}$ and $V_{t b}$ are the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and $P_{L, R}=\left(1 \mp \gamma^{5}\right) / 2$ are the projection operators. The effect of the operators $\mathcal{O}_{i}, i=1-6,8$ can be embedded in the redefined effective Wilson coefficients (WCs) as $C_{7}(\mu) \rightarrow C_{7}^{\text {eff }}\left(\mu, q^{2}\right)$ and $C_{9}(\mu) \rightarrow C_{9}^{\text {eff }}\left(\mu, q^{2}\right)$.

New Physics only in $b \rightarrow s \mu^{+} \mu^{-}$

New Physics in the form of vector and axial vector

$$
\begin{aligned}
\mathcal{H}_{\mathrm{NP}}= & -\frac{\alpha_{\mathrm{em}} G_{F}}{\sqrt{2} \pi} V_{t s}^{*} V_{t b}\left[C_{9}^{\mathrm{NP}}\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\mu} \gamma_{\mu} \mu\right)+C_{10}^{\mathrm{NP}}\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right)\right. \\
& \left.+C_{9}^{\prime \mathrm{NP}}\left(\bar{s} \gamma^{\mu} P_{R} b\right)\left(\bar{\mu} \gamma_{\mu} \mu\right)+C_{10}^{\mathrm{NP}}\left(\bar{s} \gamma^{\mu} P_{R} b\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right)\right]+ \text { h.c. }
\end{aligned}
$$

Several global fit analysis Alguer et al, arXiv:1903.09578; Alok et al, arXiv:1903.09617; Ciuchini et al, arXiv:1903.09632; Aebischer et al, arXiv:1903.10434; Kowalska et al, arXiv:1903.10932; Arbey et al, arXiv:1904.08399.....
\Longrightarrow A common conclusion: Three distinct NP solutions

(arXiv:1903.09617)		
NP scenarios	Best fit value	pull $=\sqrt{\chi_{\text {SM }}^{2}-\chi_{\min }^{2}}$
(I) $C_{9}^{\text {NP }}$	-1.01 ± 0.15	6.9
(II) $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$	-0.49 ± 0.07	7.0
(III) $C_{9}^{N P}=-C_{9}^{\text {NP }}$	-1.03 ± 0.15	6.7

\Longrightarrow A possible methods to discriminate between these solutions are discussed in Alok et al, arXiv:2001.04395; Li et al, arXiv:2105.06768

New Physics only in $b \rightarrow s e^{+} e^{-}$

The effective Hamiltonian in the presence of vector, axial-vector, scalar, pseudoscalar and tensor NP operators is givem by

$$
\begin{gathered}
\mathcal{H}_{e f f}\left(b \rightarrow s e^{+} e^{-}\right)=\mathcal{H}_{S M}+\mathcal{H}_{V A}^{N P}+\mathcal{H}_{S P}^{N P}+\mathcal{H}_{T}^{N P} \\
\mathcal{H}_{\mathrm{VA}}^{\mathrm{NP}}=-\frac{\alpha_{\mathrm{em}} G_{F}}{\sqrt{2} \pi} V_{t s}^{*} V_{t b}\left[C_{9}^{\mathrm{NP}, \mathrm{e}}\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{e} \gamma_{\mu} e\right)+C_{10}^{\mathrm{NP}, \mathrm{e}}\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{e} \gamma_{\mu} \gamma_{5} e\right)\right. \\
\\
\\
\left.+C_{9}^{\prime, \mathrm{e}}\left(\bar{s} \gamma^{\mu} P_{R} b\right)\left(\bar{e} \gamma_{\mu} e\right)+C_{10}^{\prime, \mathrm{e}}\left(\bar{s} \gamma^{\mu} P_{R} b\right)\left(\bar{e} \gamma_{\mu} \gamma_{5} e\right)\right] \\
\mathcal{H}_{\mathrm{SP}}^{\mathrm{NP}}= \\
\\
\\
\\
\\
\mathcal{H}_{\mathrm{T}}^{\mathrm{NP}}=\frac{\alpha_{\mathrm{em}} G_{F}}{\sqrt{2} \pi} V_{t s}^{*} V_{t b}\left[C_{S S}^{\mathrm{e}}(\bar{s} b)(\bar{e} e)+C_{S P}^{\mathrm{e}}(\bar{s} b)\left(\bar{e} \gamma_{5} e\right)\right. \\
\end{gathered}
$$

Constraints on (Pseudo)-scalar and Tensor operators

Scalar/pseudoscalar NP:

- The scalar NP operators ($\bar{s} b$) can lead to $B \rightarrow K$ but not to $B \rightarrow K^{*}$.
- The pseudo-scalar NP operator ($\bar{s} \gamma_{5} b$) can not lead to $B \rightarrow K$ transition.
- Hence scalar or pseudo-scalar NP can not explain R_{K} and $R_{K^{*}}$ simultaneously.
- In addition, a tight constraint comes from the upper limit of

$$
\operatorname{Br}\left(B_{s} \rightarrow e^{+} e^{-}\right)<9.4 \times 10^{-9} \text { (at C.L. 90\%) [LHCb, arXiv:2003.03999] }
$$

$$
\left|C_{P S}^{\mathrm{e}}\right|^{2}+\left|C_{P P}^{\mathrm{e}}\right|^{2} \lesssim 0.01
$$

- However, the experimental measurement of $R_{K^{*}}^{\text {low }}$ and $R_{K^{*}}^{\text {central }}$ lead to

$$
120 \lesssim\left|C_{P S}^{\mathrm{e}}\right|^{2}+\left|C_{P P}^{\mathrm{e}}\right|^{2} \lesssim 345, \quad 9 \lesssim\left|C_{P S}^{\mathrm{e}}\right|^{2}+\left|C_{P P}^{\mathrm{e}}\right|^{2} \lesssim 29,
$$

- Hence, none of the scalar and pseudo-scalar NP operators can explain the $b \rightarrow s e^{+} e^{-}$data.

Tensor NP:

- Tensor NP operator is constrained by inclusive $\operatorname{Br}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$and radiative $b \rightarrow s \gamma$. Hiller and Schmaltz, PRD90(2014),054014
- Only tensor NP can not accommodate the recent data on $b \rightarrow s \ell^{+} \ell^{-}$transition.

(Axial)-Vector New Physics

$$
\chi^{2}\left(C_{i}\right)=\sum_{\text {all obs. }} \frac{\left(O^{\mathrm{th}}\left(C_{i}\right)-O^{\exp }\right)^{2}}{\sigma_{\exp }^{2}+\sigma_{\mathrm{th}}^{2}}
$$

Measurements included into fit:

- $R_{K}, R_{K^{*}}^{\text {low }}$ and $R_{K^{*}}^{\text {central }}$ by LHCb and $R_{K^{*}}$ by the Belle collaboration in $0.045<q^{2}<1.1 \mathrm{GeV}^{2}, 1.1<q^{2}<6.0 \mathrm{GeV}^{2}$ and $15.0<q^{2}<19.0 \mathrm{GeV}^{2}$ bins for both B^{0} and B^{+}decay modes,
- $\operatorname{Br}\left(B_{s} \rightarrow e^{+} e^{-}\right)<9.4 \times 10^{-9}$ at 90% C.L. by the LHCb,
- The differential branching fraction of $B \rightarrow K^{*} e^{+} e^{-}$
- K^{*} longitudinal polarization fraction by LHCb
- $\operatorname{Br}\left(B \rightarrow X_{s} e^{+} e^{-}\right)$by the BaBar cn. in both $1.0<q^{2}<6.0 \mathrm{GeV}^{2}$ and $14.2<q^{2}<25.0 \mathrm{GeV}^{2}$ bins
- P_{4}^{\prime} and P_{5}^{\prime} in $B \rightarrow K^{*} e^{+} e^{-}$decay by the Belle on in $1.0<q^{2}<6.0 \mathrm{GeV}^{2}$ and $14.18<q^{2}<19.0 \mathrm{GeV}^{2}$ bins

Fitting Methodology:

- We use CERN minimization code Minuit library to minimize the χ^{2}.
- We use Flavio package to calculate the theoretical expressions of the observables.
- We perform the minimization in two ways: (A) one NP operator at a time and (B) two similar NP operators at a time.

Allowed NP solutions in form of (Axial)-Vector

Solution	Wilson Coefficient(s)	Best fit value(s)	pull	R_{K}	$R_{K^{*}}^{\text {low }}$	$R_{K^{*}}^{\text {central }}$
Expt. 1σ range						
2 D Scenarios						
I	$\left(C_{9}^{\text {NP,e }}, C_{9}^{\prime, e}\right)$	$(-3.61,-4.76)$	3.1	0.867 ± 0.050	0.757 ± 0.007	0.625 ± 0.024
II		$(-3.52,4.29)$	3.4	0.832 ± 0.001	0.798 ± 0.028	0.707 ± 0.090
III	$\left(C_{10}^{\mathrm{NP}, \mathrm{e}}, C_{10}^{\prime, e}\right)$	$(3.64,5.33)$	3.0	0.860 ± 0.015	0.788 ± 0.014	0.645 ± 0.015

Solution-I and II

Solution-III

Angular distribution in $B \rightarrow K^{*}(\rightarrow K \pi) e^{+} e^{-}$

How to distinguish these solutions? \Longrightarrow Angular observables

3 angles

Lepton angle θ_{1} Kaon angle θ_{K}
Decay plane angle ϕ

$$
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{e} d \cos \theta_{K} d \phi}=\frac{9}{32 \pi} I\left(q^{2}, \theta_{e}, \theta_{K}, \phi\right)
$$

where [Altmannshofer et al JHEP 01 (2009),019]

$$
\begin{aligned}
I\left(q^{2}, \theta_{e}, \theta_{K}, \phi\right)= & I_{1}^{s} \sin ^{2} \theta_{K}+I_{1}^{c} \cos ^{2} \theta_{K}+\left(I_{2}^{s} \sin ^{2} \theta_{K}+I_{2}^{c} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{e} \\
& +I_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{e} \cos 2 \phi+I_{4} \sin 2 \theta_{K} \sin 2 \theta_{e} \cos \phi \\
& +I_{5} \sin 2 \theta_{K} \sin \theta_{e} \cos \phi \\
& +\left(I_{6}^{s} \sin ^{2} \theta_{K}+I_{6}^{c} \cos ^{2} \theta_{K}\right) \cos \theta_{e}+I_{7} \sin 2 \theta_{K} \sin \theta_{e} \sin \phi \\
& +I_{8} \sin 2 \theta_{K} \sin 2 \theta_{e} \sin \phi+I_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{e} \sin 2 \phi
\end{aligned}
$$

Angular observables

CP averaged angular observables:[Descotes-Genon et al JHEP 01 (2013), 048]

$$
\begin{gathered}
S_{i}^{(a)}\left(q^{2}\right)=\frac{l_{i}^{(a)}\left(q^{2}\right)+\bar{I}_{i}^{(a)}\left(q^{2}\right)}{d(\Gamma+\bar{\Gamma}) / d q^{2}} . \\
A_{F B}=\frac{3}{8}\left(2 S_{6}^{s}+S_{6}^{c}\right), \quad F_{L}=-S_{2}^{c} . \\
P_{1}=\frac{2 S_{3}}{1-F_{L}}, \quad P_{2}=\frac{S_{6}^{s}}{2\left(1-F_{L}\right)}, \quad P_{3}=\frac{-S_{9}}{1-F_{L}}, \\
P_{4}^{\prime}=\frac{2 S_{4}}{\sqrt{F_{L}\left(1-F_{L}\right)}}, \quad P_{5}^{\prime}=\frac{S_{5}}{\sqrt{F_{L}\left(1-F_{L}\right)}}, \quad P_{6}^{\prime}=\frac{-S_{7}}{\sqrt{F_{L}\left(1-F_{L}\right)}}, \quad P_{8}^{\prime}=\frac{-2 S_{8}}{\sqrt{F_{L}\left(1-F_{L}\right)}} .
\end{gathered}
$$

Distinguishing power of $A_{F B}$

- In low q^{2} region, the SM prediction of $A_{F B}\left(q^{2}\right)$ has a zero crossing at $\sim 3.5 \mathrm{GeV}^{2}$. For the NP solutions, the predictions are negative throughout the low q^{2} range. However, the $A_{F B}\left(q^{2}\right)$ curve is almost the same for S-I and S-II whereas for S-III, it is markedly different. Therefore an accurate measurement of q^{2} distribution of $A_{F B}$ can discriminate between S-III and the remaining two NP solutions.
- In high q^{2} region, the SM prediction of $A_{F B}$ is 0.368 ± 0.018 whereas the predictions for the three solutions are almost zero.

Distinguishing power of F_{L}

The S-I and S-II scenarios can marginally suppress the value of F_{L} in low q^{2} region compared to the SM whereas for S-III, the predicted value is consistent with the SM. In high q^{2} region, F_{L} for all three scenarios are close to the $S M$ value. Hence F_{L} cannot discriminate between the allowed V/A solutions.

Most suitable is P_{1}

Observable	SM	S-I	S-II	S-III
$P_{1}[1-6] \mathrm{GeV}^{2}$	-0.113 ± 0.032	0.507 ± 0.064	-0.627 ± 0.035	-0.291 ± 0.034

The observable P_{1} in the low q^{2} region can discriminate between all three NP solutions, particularly S-I and S-II. The sign of P_{1} is opposite for these scenarios. Hence an accurate measurement of P_{1} can distinguish between S-I and S-II solutions. In fact, measurement of P_{1} with an absolute uncertainty of 0.05 can confirm or rule out S-I and S-II solutions by more than 4σ.

Conclusions

- Assuming new physics in $b \rightarrow s e^{+} e^{-}$transition, we identify the allowed solutions which can explain the deviations in $R_{K} / R_{K^{*}}$ measurements.
- We show that none of the (pseudo)-scalar or tensor new physics can explain the $b \rightarrow s e^{+} e^{-}$data.
- Only three vector/axial-vector new physics solutions (2D fit) can explain the present measurement of $R_{K} / R_{K^{*}}$ within 1σ.
- The $A_{F B}$ and F_{L} in $\left(B \rightarrow K^{*} e^{+} e^{-}\right)$decay have poor ability to discriminate between three new physics solutions.
- In order to discriminate three solutions uniquely, $P_{1}\left(B \rightarrow K^{*} e^{+} e^{-}\right)$is the most suitable angular observable. If it is measured with a 5% accuracy, P_{1} can distinguish all three solutions.

Thank You!

Extra Slides

1D and 2D Fit results

Wilson Coefficient(s)	Best fit value(s)	$\chi_{\text {min }}^{2}$	pull
$C_{i}=0$ (SM)	-	27.42	
1D Scenarios			
$C_{9}^{\text {NP,e }}$	0.91 ± 0.28	15.21	3.5
$C_{10}^{\text {NP, }}$	-0.86 ± 0.25	12.60	3.8
$C_{9}^{1, e}$	0.24 ± 0.24	26.40	1.0
$C_{10}^{1, e}$	-0.17 ± 0.21	26.70	0.8
2D Scenarios			
$\left(C_{9}^{\mathrm{NP}, \mathrm{e}}, C_{10}^{\mathrm{NP}, \mathrm{e}}\right)$	($-1.03,-1.42$)	11.57	3.9
$\left(C_{9}^{\text {NP,ee }}, C_{9}^{\prime, e e}\right)$	(-3.61, -4.76)	17.65	3.1
	(-3.52, 4.29)	15.71	3.4
	$(1.21,-0.54)$	12.83	3.8
$\left(C_{9}^{\text {NP,e }}, C_{10}^{\prime, \mathrm{e}}\right)$	(1.21, 0.69)	12.39	3.9
$\left(C_{9}^{\prime, e}, C_{10}^{\text {NP,ee }}\right)$	(-0.50, -1.03)	11.30	4.0
$\left(C_{9}^{\prime, e}, C_{10}^{\prime, e}\right)$	$(2.05,2.33)$	10.41	4.1
	$(-2.63,-1.86)$	12.71	3.8
$\left(C_{10}^{\mathrm{NP}, \mathrm{e}}, C_{10}^{\prime, \mathrm{e}}\right)$	$(3.64,5.33)$	18.50	3.0
	($-1.04,0.38$)	11.14	4.0
	(4.56, -5.24)	16.58	3.3

Table: The best fit values of NP WCs in $b \rightarrow s e^{+} e^{-}$transition for 1D and 2D scenarios. The value of $\chi_{S M}^{2}$ is 27.42 .

Good fit scenarios

Wilson Coefficient(s)	Best fit value(s)	pull	R_{K}	$R_{K^{*}}^{\text {low }}$	$R_{K^{*}}^{\text {central }}$
Expt. 1σ range			[0.784, 0.908]	[0.547, 0.773]	[0.563, 0.807]
1D Scenarios					
$\mathrm{C}_{9}^{\mathrm{NP}, \mathrm{e}}$	0.91 ± 0.28	3.5	0.806 ± 0.001	0.883 ± 0.008	0.832 ± 0.009
$C_{10}^{\text {NP,e }}$	-0.86 ± 0.25	3.8	0.805 ± 0.005	0.855 ± 0.007	0.778 ± 0.012
2D Scenarios					
$\left(C_{9}^{\text {NP,e }}, C_{10}^{\text {NP,e }}\right)$	(-1.03, -1.42)	3.9	0.825 ± 0.011	0.832 ± 0.007	0.745 ± 0.026
$\left(C_{9}^{\mathrm{NP}, \mathrm{e}}, C_{9}^{\prime, \mathrm{e}}\right)$	(-3.61, -4.76)	3.1	0.867 ± 0.050	0.757 ± 0.007	0.625 ± 0.024
	(-3.52, 4.29)	3.4	0.832 ± 0.001	0.798 ± 0.028	0.707 ± 0.090
	$(1.21,-0.54)$	3.8	0.853 ± 0.001	0.825 ± 0.018	0.701 ± 0.012
$\left(C_{9}^{\text {NP,e }}, \mathrm{C}_{10}^{\prime, \mathrm{e}}\right)$	(1.21, 0.69)	3.9	0.855 ± 0.004	0.819 ± 0.016	0.691 ± 0.011
$\left(C_{9}^{\prime, e}, C_{10}^{N P, e}\right)$	(-0.50, -1.03)	4.0	0.844 ± 0.007	0.812 ± 0.012	0.690 ± 0.009
$\left(C_{9}^{1, e}, C_{10}^{\prime, e}\right)$	$(2.05,2.33)$	4.1	0.845 ± 0.010	0.808 ± 0.014	0.683 ± 0.029
	$(-2.63,-1.86)$	3.8	0.856 ± 0.020	0.808 ± 0.015	0.684 ± 0.010
$\left(C_{10}^{\text {NP,e }}, C_{10}^{\prime, \mathrm{e}}\right)$	(3.64, 5.33)	3.0	0.860 ± 0.015	0.788 ± 0.014	0.645 ± 0.015
	$(-1.04,0.38)$	4.0	0.846 ± 0.004	0.809 ± 0.013	0.686 ± 0.014
	$(4.56,-5.24)$	3.3	0.842 ± 0.004	0.809 ± 0.015	0.685 ± 0.019

Table: The predictions of $R_{K}, R_{K^{*}}^{\text {low }}$ and $R_{K^{*}}^{\text {central }}$ for the good fit scenarios obtained in previous slide.

Predictions for angular observables

Observable	q^{2} bin	SM	S-I	S-II	S-III
P_{1}	$[1.1,6]$	-0.113 ± 0.032	0.507 ± 0.064	-0.627 ± 0.035	-0.291 ± 0.034
	$[15,19]$	-0.623 ± 0.044	-0.602 ± 0.042	-0.609 ± 0.040	-0.700 ± 0.037
P_{2}	$[1.1,6]$	0.023 ± 0.090	-0.263 ± 0.020	-0.267 ± 0.021	-0.046 ± 0.030
	$[15,19]$	0.372 ± 0.013	-0.005 ± 0.004	0.002 ± 0.004	0.027 ± 0.004
P_{3}	$[1.1,6]$	0.003 ± 0.008	0.018 ± 0.036	-0.017 ± 0.032	0.002 ± 0.006
	$[15,19]$	-0.000 ± 0.000	-0.045 ± 0.004	0.045 ± 0.004	-0.000 ± 0.000
P_{4}^{\prime}	$[1.1,6]$	-0.352 ± 0.038	-0.256 ± 0.033	-0.605 ± 0.011	-0.447 ± 0.027
	$[15,19]$	-0.635 ± 0.008	-0.631 ± 0.008	-0.632 ± 0.008	-0.650 ± 0.008
P_{5}^{\prime}	$[1.1,6]$	-0.440 ± 0.106	0.336 ± 0.060	0.358 ± 0.045	0.487 ± 0.079
	$[15,19]$	-0.593 ± 0.036	-0.001 ± 0.005	-0.014 ± 0.006	-0.032 ± 0.005
P_{6}^{\prime}	$[1.1,6]$	-0.046 ± 0.102	-0.025 ± 0.053	-0.028 ± 0.066	-0.042 ± 0.093
	$[15,19]$	-0.002 ± 0.001	-0.002 ± 0.001	-0.002 ± 0.001	-0.002 ± 0.001
P_{8}^{\prime}	$[1.1,6]$	-0.015 ± 0.035	-0.006 ± 0.032	0.012 ± 0.027	-0.009 ± 0.023
	$[15,19]$	0.001 ± 0.000	0.036 ± 0.002	-0.036 ± 0.003	0.000 ± 0.000

Table: Average values of $P_{1,2,3}$ and $P_{4,5,6,8}^{\prime}$ in $B \rightarrow K^{*} e^{+} e^{-}$decay for the three allowed V/A NP solutions as well as for the SM.

$P_{1}\left(q^{2}\right)$ and $P_{2}\left(q^{2}\right)$

$P_{3}\left(q^{2}\right)$ and $P_{4}\left(q^{2}\right)$

$P_{8}\left(q^{2}\right)$

