New physics in $b \rightarrow se^+e^-$: A model independent analysis

Suman Kumbhakar

Indian Institute of Science
Bangalore

Based on Nucl.Phys.B 967 (2021) 115419; arXiv:2011.14668 with A K Alok (IIT Jodhpur), J. Saini (IIT Jodhpur) and S Uma Sankar (IIT Bombay)

The XXVIII SUSY 2021, Beijing

Outline

- ▶ Lepton Flavor Universality and its violation in $b \rightarrow s\ell^+\ell^-$
- ▶ New Physics solutions in $b \rightarrow se^+e^-$
- ▶ Methods to discriminate the new physics scenarios
- Conclusions

The Standard Model

- → The SM becomes highly successful after the Higgs discovery in 2012.
- ⇒ All interactions are gauge interactions.
- ⇒ The gauge interactions are identical for three generations/ flavors.

Lepton Flavor Universality

Testing LFU through flavor ratios

$$R_K = \frac{Br(B \to K \mu^+ \mu^-)}{Br(B \to K e^+ e^-)} \quad R_{K^*} = \frac{Br(B \to K^* \mu^+ \mu^-)}{Br(B \to K^* e^+ e^-)}$$

▶ Measured values are $\sim 2.5 - 3.1\sigma$ lower than the SM prediction.

Violation of LFU ⇒ Hint of new physics

Additional measurements on the branching ratio of $B_s \to \phi \mu^+ \mu^-$ and the angular observables in $B \to (K, K^*) \mu^+ \mu^-$. [arXiv:1506.08777, arXiv:2003.04831] Deviation at the level of $3-3.5\sigma$ in $Br(B_s \to \phi \mu^+ \mu^-)$ and P_5' . These are subject to significant hadronic uncertainties dominated by undermined power corrections. see e.g. T Hurth et al., arXiv:2006.04213

The SM Effective Hamiltonian

Effective Hamiltonian for $b o s \ell^+ \ell^-$ process is given by

$$\mathcal{H}^{\mathrm{SM}} = -\frac{4G_F}{\sqrt{2}\pi} V_{ts}^* V_{tb} \left[\sum_{i=1}^6 C_i(\mu) \mathcal{O}_i(\mu) + C_7 \frac{e}{16\pi^2} [\bar{s}\sigma_{\mu\nu} (m_s P_L + m_b P_R) b] F^{\mu\nu} \right.$$

$$\left. + C_9 \frac{\alpha_{em}}{4\pi} (\bar{s}\gamma^{\mu} P_L b) (\bar{\ell}\gamma_{\mu}\ell) + C_{10} \frac{\alpha_{em}}{4\pi} (\bar{s}\gamma^{\mu} P_L b) (\bar{\ell}\gamma_{\mu}\gamma_5 \ell) \right],$$

where G_F is the Fermi constant, V_{ts} and V_{tb} are the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements and $P_{L,R}=(1\mp\gamma^5)/2$ are the projection operators. The effect of the operators $\mathcal{O}_i,\ i=1-6,8$ can be embedded in the redefined effective Wilson coefficients (WCs) as $C_7(\mu)\to C_7^{\mathrm{eff}}(\mu,q^2)$ and $C_9(\mu)\to C_9^{\mathrm{eff}}(\mu,q^2)$.

New Physics only in $b \to s \mu^+ \mu^-$

New Physics in the form of vector and axial vector

$$\begin{split} \mathcal{H}_{\mathrm{NP}} &= & -\frac{\alpha_{\mathrm{em}}\,G_F}{\sqrt{2}\pi}\,V_{ts}^*\,V_{tb}\left[C_9^{\mathrm{NP}}(\bar{s}\gamma^\mu P_L b)(\overline{\mu}\gamma_\mu\mu) + C_{10}^{\mathrm{NP}}(\bar{s}\gamma^\mu P_L b)(\overline{\mu}\gamma_\mu\gamma_5\mu) \right. \\ & \left. + C_9^{'\mathrm{NP}}(\bar{s}\gamma^\mu P_R b)(\overline{\mu}\gamma_\mu\mu) + C_{10}^{'\mathrm{NP}}(\bar{s}\gamma^\mu P_R b)(\overline{\mu}\gamma_\mu\gamma_5\mu)\right] + h.c. \end{split}$$

Several global fit analysis Alguer et al, arXiv:1903.09578; Alok et al, arXiv:1903.09617; Ciuchini et al, arXiv:1903.09632; Aebischer et al, arXiv:1903.10434; Kowalska et al, arXiv:1903.10932; Arbey et al, arXiv:1904.08399.....

⇒ A common conclusion: Three distinct NP solutions

(arXiv:1903.09617)

NP scenarios	Best fit value	$pull = \sqrt{\chi^2_{\mathrm{SM}} - \chi^2_{\mathrm{min}}}$
(I) C_9^{NP}	-1.01 ± 0.15	6.9
(II) $C_9^{\text{NP}} = -C_{10}^{\text{NP}}$	-0.49 ± 0.07	7.0
(III) $C_9^{\text{NP}} = -C_9^{\prime \text{NP}}$	-1.03 ± 0.15	6.7

⇒ A possible methods to discriminate between these solutions are discussed in Alok et al, arXiv:2001.04395; Li et al, arXiv:2105.06768

New Physics only in $b \rightarrow se^+e^-$

The effective Hamiltonian in the presence of vector, axial-vector, scalar, pseudoscalar and tensor NP operators is given by

$$\mathcal{H}_{eff}(b \rightarrow se^+e^-) = \mathcal{H}_{SM} + \mathcal{H}_{VA}^{NP} + \mathcal{H}_{SP}^{NP} + \mathcal{H}_{T}^{NP},$$

$$\begin{split} \mathcal{H}_{\mathrm{VA}}^{\mathrm{NP}} &= -\frac{\alpha_{\mathrm{em}}G_{F}}{\sqrt{2}\pi} V_{ts}^{*} V_{tb} \left[C_{9}^{\mathrm{NP,\,e}} \left(\bar{s} \gamma^{\mu} P_{L} b \right) \left(\bar{e} \gamma_{\mu} e \right) + C_{10}^{\mathrm{NP,\,e}} \left(\bar{s} \gamma^{\mu} P_{L} b \right) \left(\bar{e} \gamma_{\mu} \gamma_{5} e \right) \right. \\ &+ C_{9}^{\prime,\,e} \left(\bar{s} \gamma^{\mu} P_{R} b \right) \left(\bar{e} \gamma_{\mu} e \right) + C_{10}^{\prime,\,e} \left(\bar{s} \gamma^{\mu} P_{R} b \right) \left(\bar{e} \gamma_{\mu} \gamma_{5} e \right) \right] , \\ \mathcal{H}_{\mathrm{SP}}^{\mathrm{NP}} &= -\frac{\alpha_{\mathrm{em}} G_{F}}{\sqrt{2}\pi} V_{ts}^{*} V_{tb} \left[C_{SS}^{e} \left(\bar{s} b \right) \left(\bar{e} e \right) + C_{SP}^{e} \left(\bar{s} b \right) \left(\bar{e} \gamma_{5} e \right) \right. \\ &+ C_{PS}^{e} \left(\bar{s} \gamma_{5} b \right) \left(\bar{e} e \right) + C_{PP}^{e} \left(\bar{s} \gamma_{5} b \right) \left(\bar{e} \gamma_{5} e \right) \right] , \\ \mathcal{H}_{\mathrm{T}}^{\mathrm{NP}} &= -\frac{\alpha_{\mathrm{em}} G_{F}}{\sqrt{2}\pi} V_{ts}^{*} V_{tb} \left[C_{T}^{e} \left(\bar{s} \sigma^{\mu\nu} b \right) \left(\bar{e} \sigma_{\mu\nu} e \right) + C_{T5}^{e} \left(\bar{s} \sigma^{\mu\nu} b \right) \left(\bar{e} \sigma_{\mu\nu} \gamma_{5} e \right) \right] \end{split}$$

Constraints on (Pseudo)-scalar and Tensor operators

Scalar/pseudoscalar NP:

- ▶ The scalar NP operators $(\bar{s}b)$ can lead to $B \to K$ but not to $B \to K^*$.
- ▶ The pseudo-scalar NP operator $(\bar{s}\gamma_5 b)$ can not lead to $B \to K$ transition.
- ▶ Hence scalar or pseudo-scalar NP can not explain R_K and R_{K^*} simultaneously.
- ▶ In addition, a tight constraint comes from the upper limit of $Br(B_s \to e^+e^-) < 9.4 \times 10^{-9}$ (at C.L. 90%) [LHCb, arXiv:2003.03999]

$$|C_{PS}^{\rm e}|^2 + |C_{PP}^{\rm e}|^2 \lesssim 0.01$$

٠

lacktriangle However, the experimental measurement of $R_{K^*}^{low}$ and $R_{K^*}^{central}$ lead to

$$120 \lesssim |C_{PS}^{\rm e}|^2 + |C_{PP}^{\rm e}|^2 \lesssim 345, \quad 9 \lesssim |C_{PS}^{\rm e}|^2 + |C_{PP}^{\rm e}|^2 \lesssim 29,$$

▶ Hence, none of the scalar and pseudo-scalar NP operators can explain the $b \rightarrow se^+e^-$ data.

Tensor NP:

- ▶ Tensor NP operator is constrained by inclusive $Br(B \to X_s e^+ e^-)$ and radiative $b \to s \gamma$. Hiller and Schmaltz, PRD90(2014),054014
- ▶ Only tensor NP can not accommodate the recent data on $b \to s\ell^+\ell^-$ transition.

(Axial)-Vector New Physics

$$\chi^2(C_i) = \sum_{\text{all obs.}} \frac{\left(O^{\text{th}}(C_i) - O^{\text{exp}}\right)^2}{\sigma_{\text{exp}}^2 + \sigma_{\text{th}}^2}.$$

Measurements included into fit:

- ▶ R_K , $R_{K^*}^{low}$ and $R_{K^*}^{central}$ by LHCb and R_{K^*} by the Belle collaboration in $0.045 < q^2 < 1.1 \text{ GeV}^2$, $1.1 < q^2 < 6.0 \text{ GeV}^2$ and $15.0 < q^2 < 19.0 \text{ GeV}^2$ bins for both B^0 and B^+ decay modes,
- ▶ $Br(B_s \rightarrow e^+e^-) < 9.4 \times 10^{-9}$ at 90% C.L. by the LHCb,
- ▶ The differential branching fraction of $B \to K^*e^+e^-$
- K* longitudinal polarization fraction by LHCb
- ▶ $Br(B o X_s e^+ e^-)$ by the BaBar cn. in both $1.0 < q^2 < 6.0$ GeV 2 and $14.2 < q^2 < 25.0$ GeV 2 bins
- P_4' and P_5' in $B o K^*e^+e^-$ decay by the Belle cn in $1.0 < q^2 < 6.0$ GeV 2 and $14.18 < q^2 < 19.0$ GeV 2 bins

Fitting Methodology:

- We use CERN minimization code Minuit library to minimize the χ^2 .
- ▶ We use Flavio package to calculate the theoretical expressions of the observables.
- We perform the minimization in two ways: (A) one NP operator at a time and (B) two similar NP operators at a time.

Allowed NP solutions in form of (Axial)-Vector

Solution	Wilson Coefficient(s)	Best fit value(s)	pull	R_K	$R_{K^*}^{\mathrm{low}}$	$R_{K^*}^{\text{central}}$	
	Expt. 1σ rai	nge	[0.784, 0.908]	[0.547, 0.773]	[0.563, 0.807]		
	2D Scenarios						
I	$(C_q^{NP,e}, C_q^{\prime,e})$	(-3.61, -4.76)	3.1	0.867 ± 0.050	0.757 ± 0.007	0.625 ± 0.024	
H H		(-3.52, 4.29)	0.832 ± 0.001	0.798 ± 0.028	0.707 ± 0.090		
III	$(C_{10}^{\mathrm{NP,e}}, C_{10}^{\prime,e})$	(3.64, 5.33)	3.0	0.860 ± 0.015	0.788 ± 0.014	0.645 ± 0.015	

Angular distribution in $B o K^*(o K\pi)e^+e^-$

How to distinguish these solutions? ⇒ Angular observables

3 angles

Lepton angle θ_l

Kaon angle θ_{K}

Decay plane angle ϕ

$$\frac{d^4\Gamma}{dq^2\,d\cos\theta_e\,d\cos\theta_K\,d\phi} = \frac{9}{32\pi}I(q^2,\theta_e,\theta_K,\phi),$$

where [Altmannshofer et al JHEP 01 (2009),019]

$$\begin{split} I(q^2,\theta_e,\theta_K,\phi) &= I_1^s \sin^2\theta_K + I_1^c \cos^2\theta_K + (I_2^s \sin^2\theta_K + I_2^c \cos^2\theta_K) \cos 2\theta_e \\ &+ I_3 \sin^2\theta_K \sin^2\theta_e \cos 2\phi + I_4 \sin 2\theta_K \sin 2\theta_e \cos \phi \\ &+ I_5 \sin 2\theta_K \sin \theta_e \cos \phi \\ &+ (I_6^s \sin^2\theta_K + I_6^c \cos^2\theta_K) \cos \theta_e + I_7 \sin 2\theta_K \sin \theta_e \sin \phi \\ &+ I_8 \sin 2\theta_K \sin 2\theta_e \sin \phi + I_9 \sin^2\theta_K \sin^2\theta_e \sin 2\phi. \end{split}$$

Angular observables

CP averaged angular observables: [Descotes-Genon et al JHEP 01 (2013), 048]

$$\begin{split} S_i^{(a)}(q^2) &= \frac{I_i^{(a)}(q^2) + \overline{I}_i^{(a)}(q^2)}{d(\Gamma + \overline{\Gamma})/dq^2}.\\ A_{FB} &= \frac{3}{8}\left(2S_6^s + S_6^c\right), \quad F_L = -S_2^c.\\ P_1 &= \frac{2S_3}{1 - F_L}, \quad P_2 = \frac{S_6^s}{2(1 - F_L)}, \quad P_3 = \frac{-S_9}{1 - F_L},\\ P_4' &= \frac{2S_4}{\sqrt{F_L(1 - F_L)}}, \quad P_5' = \frac{S_5}{\sqrt{F_L(1 - F_L)}}, \quad P_6' = \frac{-S_7}{\sqrt{F_L(1 - F_L)}}, \quad P_8' = \frac{-2S_8}{\sqrt{F_L(1 - F_L)}}. \end{split}$$

Distinguishing power of A_{FB}

- ▶ In low q^2 region, the SM prediction of $A_{FB}(q^2)$ has a zero crossing at $\sim 3.5~{\rm GeV}^2$. For the NP solutions, the predictions are negative throughout the low q^2 range. However, the $A_{FB}(q^2)$ curve is almost the same for S-I and S-II whereas for S-III, it is markedly different. Therefore an accurate measurement of q^2 distribution of A_{FB} can discriminate between S-III and the remaining two NP solutions.
- ▶ In high q^2 region, the SM prediction of A_{FB} is 0.368 ± 0.018 whereas the predictions for the three solutions are almost zero.

Distinguishing power of F_L

The S-I and S-II scenarios can marginally suppress the value of F_L in low q^2 region compared to the SM whereas for S-III, the predicted value is consistent with the SM. In high q^2 region, F_L for all three scenarios are close to the SM value. Hence F_L cannot discriminate between the allowed V/A solutions.

Most suitable is P_1

Observable	SM	S-I	S-II	S-III
$P_1[1-6] \; {\sf GeV}^2$	-0.113 ± 0.032	0.507 ± 0.064	-0.627 ± 0.035	-0.291 ± 0.034

The observable P_1 in the low q^2 region can discriminate between all three NP solutions, particularly S-I and S-II. The sign of P_1 is opposite for these scenarios. Hence an accurate measurement of P_1 can distinguish between S-I and S-II solutions. In fact, measurement of P_1 with an absolute uncertainty of 0.05 can confirm or rule out S-I and S-II solutions by more than 4σ .

Conclusions

- ▶ Assuming new physics in $b \to se^+e^-$ transition, we identify the allowed solutions which can explain the deviations in R_K/R_{K^*} measurements.
- ▶ We show that none of the (pseudo)-scalar or tensor new physics can explain the $b \rightarrow s e^+ e^-$ data.
- ▶ Only three vector/axial-vector new physics solutions (2D fit) can explain the present measurement of R_K/R_{K^*} within 1σ .
- ▶ The A_{FB} and F_L in $(B \to K^* e^+ e^-)$ decay have poor ability to discriminate between three new physics solutions.
- ▶ In order to discriminate three solutions uniquely, $P_1(B \to K^*e^+e^-)$ is the most suitable angular observable. If it is measured with a 5% accuracy, P_1 can distinguish all three solutions.

Thank You!

Extra Slides

1D and 2D Fit results

Wilson Coefficient(s)	Best fit value(s)	$\chi^2_{\rm min}$	pull				
$C_i = 0 \text{ (SM)}$	_	27.42					
1D Scenarios							
$C_9^{ m NP,e}$	0.91 ± 0.28	15.21	3.5				
$C_{10}^{ m NP,e}$	-0.86 ± 0.25	12.60	3.8				
$C_9^{\prime,e}$	0.24 ± 0.24	26.40	1.0				
$C_{10}^{\prime,e}$	-0.17 ± 0.21	26.70	0.8				
2	D Scenarios						
$(C_9^{\mathrm{NP,e}}, C_{10}^{\mathrm{NP,e}}) $ $(C_9^{\mathrm{NP,e}}, C_9^{\mathrm{r,e}})$	(-1.03, -1.42)	11.57	3.9				
$(C_9^{\mathrm{NP,e}}, C_9^{\prime,e})$	(-3.61, -4.76)	17.65	3.1				
	(-3.52, 4.29)	15.71	3.4				
	(1.21, -0.54)	12.83	3.8				
$(C_9^{ m NP,e},C_{10}^{\prime,e})$	(1.21, 0.69)	12.39	3.9				
$(C_9'^{,e}, C_{10}^{NP,e})$ $(C_9'^{,e}, C_{10}'^{,e})$	(-0.50, -1.03)	11.30	4.0				
$(C_9^{\prime,e},C_{10}^{\prime,e})$	(2.05, 2.33)	10.41	4.1				
101	(-2.63, -1.86)	12.71	3.8				
$(C_{10}^{\mathrm{NP,e}}, C_{10}^{\prime,e})$	(3.64, 5.33)	18.50	3.0				
10,	(-1.04, 0.38)	11.14	4.0				
	(4.56, -5.24)	16.58	3.3				

Table: The best fit values of NP WCs in $b \to s e^+ e^-$ transition for 1D and 2D scenarios. The value of $\chi^2_{\rm SM}$ is 27.42.

Good fit scenarios

Wilson Coefficient(s)	Best fit value(s)	pull	R_K	$R_{K^*}^{\mathrm{low}}$	$R_{K^*}^{\mathrm{central}}$	
Expt. 1σ range			[0.784, 0.908]	[0.547, 0.773]	[0.563, 0.807]	
1D Scenarios						
$C_9^{ m NP,e}$	0.91 ± 0.28	3.5	0.806 ± 0.001	0.883 ± 0.008	0.832 ± 0.009	
$C_{10}^{\mathrm{NP,e}}$	-0.86 ± 0.25	3.8	0.805 ± 0.005	0.855 ± 0.007	0.778 ± 0.012	
		2D Sc	enarios			
$\frac{(C_9^{\text{NP,e}}, C_{10}^{\text{NP,e}})}{(C_9^{\text{NP,e}}, C_9'^{,e})}$	(-1.03, -1.42)	3.9	0.825 ± 0.011	0.832 ± 0.007	0.745 ± 0.026	
$(C_{\mathfrak{q}}^{\mathrm{NP,e}}, C_{\mathfrak{q}}^{\prime,e})$	(-3.61, -4.76)	3.1	0.867 ± 0.050	0.757 ± 0.007	0.625 ± 0.024	
	(-3.52, 4.29)	3.4	0.832 ± 0.001	0.798 ± 0.028	0.707 ± 0.090	
	(1.21, -0.54)	3.8	0.853 ± 0.001	0.825 ± 0.018	0.701 ± 0.012	
$(C_9^{\text{NP,e}}, C_{10}^{\prime,e})$	(1.21, 0.69)	3.9	0.855 ± 0.004	0.819 ± 0.016	0.691 ± 0.011	
$(C_0^{\prime,e}, C_{10}^{NP,e})$	(-0.50, -1.03)	4.0	0.844 ± 0.007	0.812 ± 0.012	0.690 ± 0.009	
$(C_9^{\prime,e}, C_{10}^{\prime,e})$	(2.05, 2.33)	4.1	0.845 ± 0.010	0.808 ± 0.014	0.683 ± 0.029	
,	(-2.63, -1.86)	3.8	0.856 ± 0.020	0.808 ± 0.015	0.684 ± 0.010	
$(C_{10}^{\text{NP,e}}, C_{10}^{\prime,e})$	(3.64, 5.33)	3.0	0.860 ± 0.015	0.788 ± 0.014	0.645 ± 0.015	
	(-1.04, 0.38)	4.0	0.846 ± 0.004	0.809 ± 0.013	0.686 ± 0.014	
	(4.56, -5.24)	3.3	0.842 ± 0.004	0.809 ± 0.015	0.685 ± 0.019	

Table: The predictions of R_K , $R_{K^*}^{\mathrm{low}}$ and $R_{K^*}^{\mathrm{central}}$ for the good fit scenarios obtained in previous slide.

Predictions for angular observables

Observable	a ² bin	SM	S-I	S-II	S-III
Observable	7		~ .	~	
P_1	[1.1, 6]	-0.113 ± 0.032	0.507 ± 0.064	-0.627 ± 0.035	-0.291 ± 0.034
	[15, 19]	-0.623 ± 0.044	-0.602 ± 0.042	-0.609 ± 0.040	-0.700 ± 0.037
P ₂	[1.1, 6]	0.023 ± 0.090	-0.263 ± 0.020	-0.267 ± 0.021	-0.046 ± 0.030
	[15, 19]	0.372 ± 0.013	-0.005 ± 0.004	0.002 ± 0.004	0.027 ± 0.004
P ₃	[1.1, 6]	0.003 ± 0.008	0.018 ± 0.036	-0.017 ± 0.032	0.002 ± 0.006
	[15, 19]	-0.000 ± 0.000	-0.045 ± 0.004	0.045 ± 0.004	-0.000 ± 0.000
P'_4	[1.1, 6]	-0.352 ± 0.038	-0.256 ± 0.033	-0.605 ± 0.011	-0.447 ± 0.027
•	[15, 19]	-0.635 ± 0.008	-0.631 ± 0.008	-0.632 ± 0.008	-0.650 ± 0.008
P_5'	[1.1, 6]	-0.440 ± 0.106	0.336 ± 0.060	0.358 ± 0.045	0.487 ± 0.079
, and the second	[15, 19]	-0.593 ± 0.036	-0.001 ± 0.005	-0.014 ± 0.006	-0.032 ± 0.005
P_6'	[1.1, 6]	-0.046 ± 0.102	-0.025 ± 0.053	-0.028 ± 0.066	-0.042 ± 0.093
•	[15, 19]	-0.002 ± 0.001	-0.002 ± 0.001	-0.002 ± 0.001	-0.002 ± 0.001
P' ₈	[1.1, 6]	-0.015 ± 0.035	-0.006 ± 0.032	0.012 ± 0.027	-0.009 ± 0.023
Ü	[15, 19]	0.001 ± 0.000	$\boldsymbol{0.036 \pm 0.002}$	-0.036 ± 0.003	0.000 ± 0.000

Table: Average values of $P_{1,2,3}$ and $P_{4,5,6,8}'$ in $B\to K^*e^+e^-$ decay for the three allowed V/A NP solutions as well as for the SM.

$P_1(q^2)$ and $P_2(q^2)$

$P_3(q^2)$ and $P_4(q^2)$

$P_5'(q^2)$ and $P_6'(q^2)$

$P_8(q^2)$

