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Where to look for SUSY traces??? 

 Evidently, there is no signal of SUSY in the LHC yet! (could be just around 

the TeV corner OR not…) 

 SUSY is still the most motivated BSM framework: gauge coupling 

unification, natural DM candidate, embedding gravity in SUGRA etc.                                      

If realized at high energies, we have additionally: successful prediction of 

Higgs mass, a-posteriori justification of top heaviness and partial alleviation 

of the flavour problem. 

 Yet, if the SUSY breaking scale lies in the 10-100 TeV domain, direct 

detection is out of reach for the HL-LHC.                                                                             

 In the meantime, the only option to extract any indirect information is from 

low-energy probes. 
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Atlas – Public Results 

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults


Addressing the Flavour Problem / Testing the MSSM 

 Explaining the masses and mixing of fermions remains a fundamental open 

problem and SUSY makes it even more challenging by doubling the number of 

flavoured degrees of freedom without providing a mechanism to protect FCNCs. 

 A residual flavour problem remains even at the high-scale MSSM. 

 

 We need to postulate additional, realistic hypotheses about the flavour structure. 

 We need to identify the “optimal” set of flavour observables that remain 

sensitive to MSSM contributions. 

 Do these observables remain interesting even in the long-term perspective, i.e. 

future colliders? 

 

 

problem or opportunity? 

 

FCC-ee 

FCC-hh 



Models of flavour: MFV & U(2) 

 We consider four basic hypotheses about the flavour structure. 

1. Minimal Flavour Violation (MFV): The only quantities that break the     

SM flavour symmetry: 

 

 are proportional to the SM Yukawa couplings.  

2. U(2) flavour symmetry: A theoretically well-motivated alternative is the 

following approximate flavour symmetry (for the quark sector): 

 

 acting only on the first two generations. The symmetry is broken, in analogy 

 to the MFV case (but the 3-1 and 3-2 ). 

 Special feature: The effective or split-family SUSY scenario is realizable. 
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Models of flavour: U(1) & Disoriented A-terms 

3. U(1) Froggatt-Nielsen:  Representative example of a framework with 

larger flavour-violating terms. The quarks are assigned non-trivial charges 

and the symmetry is spontaneously broken via a SM singlet flavon field S.  

 

 

 

4. Disoriented A-terms: A scenario exclusive to SUSY where flavour 

violation occurs only due to the trilinear soft-breaking terms (L-R mixing): 

4. These terms do not respect any proportionality to the    

CKM matrix. 

 

 

 

 

 

[Lalak et al] 1006.2375 

[Giudice et al] 1201.6204 



Flavour observables – Analysis strategy 

 We focus on a set of representative observables that: 

i. provide the most stringent contraints on the MSSM flavour space at the 

moment and 

ii. could exhibit significant deviations from the SM, thanks to realistic 

improvements on the experimental and/or the theoretical side in the near 

future. 

 We scrutinize the capability of each flavour model to provide a best-fit-

point that improves over the SM, setting the observables (one at a time) to 

a future scenario corresponding to a possible 3σ deviation! 

 The minimization processes is repeated from the lower present bounds to 

the point of decoupling as a function of an overall scale M (w.l.g. chosen to 

be the mass of the third generation squark). 

 



                   system: significant room for improvement on              due 

     due Lattice-QCD, irreducible theory errors on the phases 

             &             systems: only the CPV mixing amplitudes are short-

dinstance dominated and hence we consider        and                ,           is 

kept only as a control-parameter 

      

ΔF=2 processes 

SM: MSSM: 

( ) ( )d s d sB B
( )d sBM

K K D D

KM

12( )DM K KM



           : non-leptonic FCNC sensitive to NP due to accidental cancellation 

in the SM (ΔΙ = 1/2 rule), large uncertainty on the SM prediction 

                           : rare leptonic FCNC that probes the Z-penguin, the 

dominant error is experimental 

                       : radiative FCNC with theory error ≈ experimental error, 

irreducible uncertainties therefore kept as control-parameter 

 

ΔF=1 processes  

SM: MSSM: 

( )s 

( )   

/K K 



ΔF=2 processes 



ΔF=1 processes 



Discussion & Conclusions 

 

 

 

 

 Decoupling limit:  Below 50 TeV for all cases except       and                 

(sensitive up to several hundred TeV in the U(1)FN  case). 

 MFV vs U(2): Both models follow the CKM paradigm, but MFV is much 

more rigid (= no sizeable effects). In contrast, U(2) with decoupled first two 

generations can generate sizeable effects to 3-1 and 3-2 transitions. Yet, 

both scenarios fail to enhance ΔF=1 amplitudes. 

 U(1)FN: Much more flexible, but with a caveat: tuning at low energies! 

 Disoriented A-terms: Due to SU(2)L-breaking nature of the A terms, ΔF=2 

observables require dim-8 operators (= negligible contribution), BUT can 

accommodate the largest effects in ΔF=1! 

 In each observable there is at least one flavour model able to accommodate 

a significant deviation from the SM for M ≤ 10 TeV. Reversely, each model 

is associated to a characteristic signature at a given scale. 

 

K 12( )DM 



Future outlook 

 

 

 

 

[Physics at a 100 TeV 

pp collider] 1606.00947 

 Complimentarity in the regime of     (10) TeV , which can be probed at 

the FCC-hh. Models based on flavour symmetries ARE relevant at high 

energies and even more motivated than the flavour-anarchic case.  



 Thank you!!!! 
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Experimental Values / SM predictions 



Models of flavour: MFV 

 We consider four basic hypotheses about the flavour structure. 

1. Minimal Flavor Violation (MFV): The only quantities that break the     

SM flavour symmetry: 

 

 are spurion fields proportional to the SM Yukawa couplings. The soft- 

 breaking terms can be reconstructed as (convergent) series of spurions. 

 

 

 

 and similarly for the slepton mass matrices and the A-terms.  

 Keeping only the leading LFV terms, the MFV minimal version of the 

 MSSM contains a total of 15 parameters. 
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Models of flavour: U(2) & U(1)FN 

2. U(2) chiral flavour symmetry: A theoretically well-motivated alternative 

is the following approximate flavour symmetry (for the quark sector): 

 

 acting only on the first two generations. The symmetry is broken, in analogy 

 to the MFV case, by the Yukawa matrices: 

 

 Special feature: The effective or split-family SUSY scenario is realizable. 

3. Holomorphic U(1) Froggatt-Nielsen:  Representative example of a 

framework with larger flavour-violating terms. The quarks are assigned 

non-trivial charges and the symmetry is spontaneously broken via a SM 

singlet flavon field S.  
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Models of flavour: Disoriented A-terms 

 For instance, the up-Yukawa takes the form: 

 

 

 Proceeding in a similar manner we obtain the soft-breaking terms. 

4. Disoriented A-terms: A  scenario exclusive to SUSY where flavour 

violation occurs only in the L–R mixing, hence the trilinear soft-breaking 

terms: 

 

 The generic mixing angles θ do not respect exact proportionality to the 

 CKM matrix elements. 
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Generalities: MSSM mass terms 

* *U D IJ D I J IJ D I J IJ U I J

ij i j ij L i j R ij D i j R ij U i j RW H H Y H L e Y H Q d Y H Q u    

The R-parity conserving superpotential of the MSSM takes the form: 

 

The soft breaking terms are divided into the following classes: 

1.  Mass terms for the scalar fields: 

 

 

2. Mass terms for the gauginos: 

 

3. Trilinear couplings (A-terms) of the scalar fields: 
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Generalities: Diagonalization – Mass insertions δ 

For instance, the down-squark mass matrix may be written as: 

                                                              , where the mass matrices are in 

general non-diagonal 3×3 block matrices. The fields     and      mix to give 

six squark mass eigenstates     :  

 

 

We parametrize the (very) small off-diagonal corrections by defining: 

 

Any function of the diagonal masses can be then extended as follows: 
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I. MFV mass insertions 

Keeping only the leading LFV terms, the MFV minimal version of the 

MSSM contains a total of 15 parameters: 

 

 

The model contains then the following non-vanishing mass insertions: 

 

1 2 3

1 2 5

2 2 2 2 2

0

, , , , , tan

, , , , , , , ,

A

Q U L ED

M M M M

m m m xm m a x y

 

*
12 * 23 * 13 *1

1 1/2 *

1

, ,( ) ( ) ( ) ( ) ( )
1

,q q q q IJ q JItb ts
LL ts td LL tb ts LL LL LL

tb td

V Vx
V V x V V

V Vx
       



32 310

1/2 1/2
2 2

1

32 310 5

1/2 1/2
2 2

1

( ) ( )
(1 )

( ) ( )
(1 )

,U UU ts
LR ts LR

td
Q U

D DD ts
LR ts LR

td
Q D

v a V
V

Vm x m

v a y V
V

Vm x m

 

 

 


 




II. U(2) mass insertions 

In first approximation, one discards the subleading            spurions, the first 

two generations become degenerate and the squark mass matrices can be 

expressed in terms of a CKM-like parametrization: 

               

 

 

 

In the limit                    ,  the model contains only LL mass insertions: 
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III. U(1)FN mass insertions 

One can then write down the following soft breaking up to their respective 

order           coefficients: 

 

 

 

 

 

Depending on the choice of the accuracy, we may drop higher powers of ε 

and calculate the leading order mass insertions: 
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ΔΙ=1/2 rule 

 In the SM, we have: 

 

 

 While both             and             receive chiral enhancement, NP is favored 

as a modification of  the coefficient of      due to the additional 1/ω≈22. 
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