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Motivation

• Unified description of Nature

• Extra dimensions (HD Gauge sector=4D gauge+Higgs)
• Supersymmetry (inclusion of fermions)

→ Everything in a HD vector supermultiplet

• Extra gauge symmetry (GUTs)
• Less free parameters

• Upshot: From higher dimensions to a (Supersymmetric)
extension of the Standard Model



Theoretical
Part



Coset Space Dimensional Reduction (CSDR)
1. Compactification
B - compact space
dimB = D − 4 = d
D dims → 4 dims

MD →M4 ×B
| | |
xM xµ ya

2. Dimensional Reduction: HD L independent of the extra coords ya:
• “Naive” way: No field dependence on ya coords (cylinder condition)
• Elegant way: Allow field dependence on ya

→ employ a symmetry of L to compensate → Gauge Symmetry

3. CSDR: Special case: B = S/R Witten (1977); Forgacs, Manton (1980);
Chapline, Slansky (1982); Kapetanakis, Zoupanos - Phys.Rept. (1992)

Kubyshin, Mourao, Rudolph, Volobujev - Book (1989)
− Allow a non-trivial field dependence on ya

− But impose the condition that a symmetry transformation by an
element of the isometry group S of B (coord transformation) is
counterbalanced by a gauge transformation of the gauge group G

→ L is independent of ya because it is gauge invariant !



Reduction of a D-dim Y-M Lagrangian
Consider a Yang-Mills-Dirac theory in D dims based on group G
defined on MD →M4 × S/R, D = 4 + d. Due to compactification:

gMN =
(
ηµν 0
0 −gab

)
d = dimS − dimR

ηµν = diag(1,−1,−1,−1)
gab − coset space metric

S =
∫
d4xddy

√
−g

[
− 1

4Tr(FMNFKΛ)gMKgNΛ + i

2ψΓMDMψ

]

where:

DM = ∂M − θM − igAM the covariant derivative of MD

θM = 1
2θMNΛΣNΛ the spin connection of MD

FMN = ∂MAN − ∂NAM − ig[AM , AN ] the field strength tensor of AM

while ψ is in rep F of G and AM in the adjoint of G.



The Constraints
Demand: any transformation by an element of S acting on S/R

is compensated by gauge transformations
→ Constraints on the fields of the theory:

δAAα = ξ βA ∂βAα + ∂αξ
β
A Aβ

!= ∂αWA − [WA, Aα]

δAψ = ξ αA ∂αψ −
1
2GAbcΣ

bcψ
!= D(WA)ψ

− ξαA are the Killing vectors of S/R,
− δA is an infinitessimal coord transformation
− D(WA) is a gauge transformation in the appropriate rep

Solution of the constraints:
• Remaining gauge invariance H = CG(RG) i.e. G ⊃ RG ×H
• Surviving fields in 4 dims:

• Scalars: S ⊃ R (compare adjG and adjS rep decomps)
• Fermions: SO(d) ⊃ R (compare F of G and σd rep decomps)

• Obtain the expression of the 4-dim scalar potential
• Note: 4-dim chiral theories only if D = 4n+ 2 (Weyl+Majorana)



The 4-dim Theory
Integrate out the extra coordinates (+ take into account constraints):

S = C

∫
d4x tr

[
−1

8FµνF
µν − 1

4(Dµφa)(Dµφa)
]

+ V (φ) + i

2 ψ̄ΓµDµψ −
i

2 ψ̄ΓaDaψ

− Dµ = ∂µ − igAµ
− Da = ∂a− θa− igφa

− C: coset space volume
− φa ≡ Aa

V (φ) = −1
8g

acgbdTr
{

(fCabφC − ig[φa, φb])(fDcdφD − ig[φc, φd])
}

• Last: in case G ⊃ S ⇒ H breaks to K = CG(S):

G ⊃ S ×K ← gauge group after SSB
∪ ∩

G ⊃ R×H ← gauge group in 4 dims
Harnad, Shnider, Tafel (1980)



Reduction of 10-dim, N = 1, E8 over S/R = SU(3)/U(1)× U(1)
Manousselis, Zoupanos (2001-2004)

The non-symmetric coset space SU(3)/U(1)× U(1):
• 6-dim (nearly-Kähler) compact manifold
• admits torsion and may have different radii
• Nice feature: produces soft supersymmetry breaking terms

Therefore in this case the setup is:
• 10-dim gauge group G = E8
• Isometry group of coset space S = SU(3)
• Homotopy group of coset space R = U(1)A × U(1)B
• Using the decomposition:

E8 ⊃ E6 × SU(3) ⊃ E6 × U(1)A × U(1)B

→ the 4-dim gauge group is
H = CE8(U(1)A × U(1)B) = E6 × U(1)A × U(1)B

• Since S ⊂ G, H breaks to
K = CG(S) = E6 × [U(1)× U(1)]global



The 4-dim multiplets and scalar potential

After the dimensional reduction:
• Surviving gauge fields in N = 1 vector supermultiplet
• Surviving matter fields in six N = 1 chiral supermultiplets

• 3 of them are E6 singlets
A : 1(3,1/2) , B : 1(−3,1/2) , C : 1(0,−1)

• 3 of them are in fundamental of E6
Ai : 27(3,1/2) , B

i : 27(−3,1/2) , C
i : 27(0,−1)

• Gaugino mass M = (1 + 3τ)R
2
1+R2

2+R2
3

8
√
R2

1R
2
2R

2
3

• The scalar potential expression admits the following identification

V = c(Ri) + VF + VD + Vsoft

• Singlets α and β are chosen to acquire vevs →
E6 × U(1)A × U(1)B → E6

→ U(1)A × U(1)B remain as global symmetries



Need for another GUT gauge group

• 10-dim N = 1 E8 gauge theory → 4-dim (broken) N = 1 E6
GUT with U(1)A × U(1)B global symmetry

• Remarkable virtue: SUSY already broken (unlike the CY case) +
explanation of the origin of the SSB sector

• BUT E6 is not a nice gauge group for a GUT to accommodate
Standard Model or its extensions

• We need to break it down to a more appropriate one

• Employ the Wilson Flux Breaking mechanism



Wilson Flux Breaking Mechanism
Hosotani (1983); Witten (1985); Zoupanos (1988);

Kozimirov, Kuzmin, Tkachev (1989); Kapetanakis, Zoupanos (1989)
• So far CSDR occurs over the simply connected manifold
B0 = SU(3)/U(1)× U(1)

• On simply connected manifolds: F = 0⇒ A = 0
• Instead of B0 employ B = B0/F

S/R, FS/R a freely acting
discrete symmetry −→ multiply-connected

• A flat potential F = 0 can have non-trivial physical effects
(Bohm-Aharonov)

• For every g ∈ FS/R an element Ug ∈ H is corresponded - a
Wilson line

• The “multiplication” of two loops is a homomorphism of FS/R in
H with image TH = {Ug}

• H breaks to the subgroup CH(TH) Green, Schwarz, Witten (1987)
• The surviving matter fields are the ones invariant under
FS/R ⊕ TH



Irges, Zoupanos (2011)
• In our case FS/R = Z3 and B = SU(3)/U(1)× U(1)× Z3

• The gauge group H = E6 breaks to SU(3)c × SU(3)L × SU(3)R

E6 ⊃ SU(3)c × SU(3)L × SU(3)R 27 = (1, 3, 3̄)⊕ (3, 3̄, 1)⊕ (3̄, 1, 3)

Kephart, Vaughn (1981)
Surviving matter content of the projected theory:
• α3 ≡ Ψ1 ≡ qc ∼ (3̄, 1, 3)(3, 1

2 ), β2 ≡ Ψ2 ≡ Q ∼ (3, 3̄, 1)(−3, 1
2 ),

γ1 ≡ Ψ3 ≡ L ∼ (1, 3, 3̄)(0,−1), γ ≡ θ ∼ (1, 1, 1)(0,−1)

Non-trivial monopole charges in R → three generations:
Ψ(l)

1 , Ψ(l)
2 , Ψ(l)

3 , γ(l)

Dolan (2003)

qc =

(
dc1

R uc1
R Dc1

R

dc2
R uc2

R Dc2
R

dc3
R uc3

R Dc3
R

)
, Q =

( −d1
L −d2

L −d3
L

u1
L u2

L u3
L

D1
L D2

L D3
L

)
, L =

(
H0

d H+
u νL

H−d H0
u eL

νc
R ec

R S

)



The components of the scalar potential are (one generation)
2
g2 VD = 1

2D
ADA + 1

2D1D1 +D
1
2D2D2 , DA = 1√

3
〈
Ψi|GA|Ψi

〉
D1 = 3

√
10
3 (Tr(qc†qc)− Tr(Q†Q))

D2 =
√

10
3 (Tr(qc†qc) + Tr(Q†Q)− 2Tr(L†L)− 2|θ|2)

2
g2VF = 360tr(q̂c

†
q̂c + Q̂†Q̂+ L̂†L̂)

2
g2Vsoft =

(
4R2

1
R2

2R
2
3
− 8
R2

1

)〈
Ψ1|Ψ1

〉
+
(

4R2
2

R2
1R

2
3
− 8
R2

2

)〈
Ψ2|Ψ2

〉
+
(

4R2
3

R2
1R

2
2
− 8
R2

3

)
(
〈
Ψ3|Ψ3

〉
+ |θ|2)

+ 80
√

2
(

R1

R2R3
+ R2

R1R3
+ R3

R1R2

)
(dabcΨa

1Ψb
2Ψc

3 + h.c)

= m2
1
〈
Ψ1|Ψ1

〉
+m2

2
〈
Ψ2|Ψ2

〉
+m2

3

(〈
Ψ3|Ψ3

〉
+ |θ|2

)
+ (αabcΨa

1Ψb
2Ψc

3 + h.c)

Note: SUSY is broken by D, F besides SSB terms



Further Gauge Breaking of SU(3)3
Babu, He, Pakvasa (1986); Ma, Mondragon, Zoupanos (2004);

Leontaris, Rizos (2006); Sayre, Wiesenfeldt, Willenbrock (2006)
• Two generations of L acquire vevs that break the GUT:

〈L(3)
s 〉 =

 0 0 0
0 0 0
0 0 V

 , 〈L(2)
s 〉 =

 0 0 0
0 0 0
V 0 0


• Each one alone not enough to produce the (MS)SM gauge group:

SU(3)c × SU(3)L × SU(3)R → SU(3)c × SU(2)L × SU(2)R × U(1)
SU(3)c × SU(3)L × SU(3)R → SU(3)c × SU(2)L × SU(2)′R × U(1)′

• Their combination gives the desired breaking:

SU(3)c × SU(3)L × SU(3)R → SU(3)c × SU(2)L × U(1)Y
• The potential after GUT breaking allows the following

configuration for θ’s vevs:

→ 〈θ(3)〉 ∼ O(TeV ) , 〈θ(1,2)〉 ∼ O(MGUT )
• Electroweak breaking then proceeds by: 〈L(3)

s 〉 = diag(vd, vu, 0)



Theoretical Recap

• Begin with 10-dim, N = 1 E8 YM-D theory

• Compactification of the extra dimensions

• Dimensional reduction over SU(3)/U(1)× U(1)× Z3

• Wilson Flux Breaking mechanism leads to an SU(3)3 GUT with
specific particle spectrum (three generations)

• GUT symmetry breaking leads to a (broken) supersymmetric
extension of the SM

• The scalar potential includes F-terms, D-terms and SSB terms



Phenomenological
Part



Choice of Radii → Split-like scenario

Manolakos, Patellis, Zoupanos (2020)
• Small and equal Ri → high scale SUSY breaking

• Small Ri ∼
1

MGUT
with R3 slightly different in a specific

configuration
→ Split-like SUSY scenario Arkani-Hamed, Dimopoulos (2004);

Giudice, Romanino (2004);
Arkani-Hamed, Dimopoulos, Giudice, Romanino (2004)

→ m2
3 ∼ −O(TeV 2), m2

1,2 ∼ −O(M2
GUT ), aabc &MGUT

− supermassive squarks
− TeV-scale sleptons
− TeV-scale soft Higgs squared masses

Reminder: in this scenario MC = MGUT



Lepton Yukawas and µ terms

• The two global U(1)s forbid Yukawa terms for leptons
→ introduce higher-dimensional operators: LeHd

(
K
M

)3

• µ terms for each generation of Higgs doublets are absent
→ solution through higher-dimensional operators: H

(i)
u H

(i)
d θ

(i) K
M

− K is the vev of the conjugate scalar component of either S(i), ν
(i)
R or θ(i),

or any combination of them
The configuration:

〈θ(3)〉 ∼ O(TeV ) , 〈θ(1,2)〉 ∼ O(MGUT )

leads to a 2HDM below GUT scale



Approximate Scale of Parameters

Parameter Scale
soft trilinear couplings O(GUT )
squark masses O(GUT )
slepton masses O(TeV )
soft Higgs masses O(TeV )
µ(3) O(TeV )
µ(1,2) O(GUT )
unified gaugino mass MU O(TeV )



Gauge Unification
Since many SUSY parameters are comparable to MGUT , we consider
them to decouple at an intermediate scale Mint

The 1-loop gauge β-functions are

2πβi = biα
2
i

− bi depends on particle content

Scale b1 b2 b3

MEW -MT eV
21
5 −3 −7

MT eV -Mint
11
2 − 1

2 −5
Mint-MGUT

39
5 3 −3

• α1,2 are used as input to determine MGUT - α3 to confirm
• 0.3% uncertainty at the unification boundary
→ α3 is predicted within 2σ of the experimental value

as(MZ) = 0.1218

aEXPs (MZ) = 0.1187± 0.0016

Scale GeV
MGUT ∼ 1.7× 1015

Mint ∼ 9× 1013

MTeV ∼ 1500

XNo proton decay problem: U(1)A = − 1
9B



Higgs Potential - All contributions
The analysis is restricted to the third generation

VHiggs =
(

3|µ(3)|2 +m2
3

)(
|H0

d |2 + |H−d |
2
)

+
(

3|µ(3)|2 +m2
3

)(
|H0

u|2 + |H+
u |2
)

+ b(3)
[
(H+

u H
−
D −H

0
uH

0
D) + c.c.

]
+ 10

3 g
2
[
|H0

d |4 + |H−d |
4 + |H0

u|4 + |H+
u |4+

2|H0
d |2|H−d |

2 + 2|H−d |
2|H0

u|2 + 2|H0
d |2|H+

u |2 + 2|H0
u|2|H+

u |2
]

+ 20
3 g

2
[
|H0

d |2|H0
u|2 + |H−d |

2|H+
u |2
]
− 20g2

[
H0

dH
−
d H

0
uH

+
u + c.c.

]
→ Comparison with standard 2 Higgs doublet potential gives:

Gunion, Haber (1986); Quiros (1997);
Branco, Ferreira, Lavoura, Rebelo, Sher, Silva (2012)

• λ1 = λ2 = λ3 = 20
3 g

2

• λ4 = 20g2

• λ5 = λ6 = λ7 = 0
− λ5,6,7 = 0 as expected in a SUSY theory

− These relations are boundary conditions at MGUT



Boundary Conditions and Uncertainties

At the unification scale we have the following boundary conditions
and their respective uncertainties due to threshold corrections (such
uncertainties also appear at the TeV boundary):

Kubo, Mondragon, Olechowski, Zoupanos (1996)

GUT BC GUT Unc. TeV Unc.
g3 = g 0.3%
Yt,b = g 6% 2%
λ1,2 = 20

3 g
2 8% 8%

λ3 = 20
3 g

2 7% 5%
λ4 = 20g2 7% 5%

The τ lepton Yukawa emerges from a higher-dimensional operator
and has significantly wider freedom. The standard τ lepton mass is
used as input.



1-loop Results

1-loop β-functions used throughout the analysis that change between
the three landmark scales MGUT , Mint and MTeV .

→ mb(MZ) and m̂t are predicted within 2σ of the experimental
values
• mb(MZ) = 3.00 GeV mEXP

b (MZ) = 2.83±0.10 GeV
• m̂t = 171.6 GeV m̂EXP

t = 172.4± 0.7 GeV
→ mh is predicted within 1σ of the experimental value
• mh = 125.18 GeV mEXP

h = 125.10± 0.14 GeV

− Large tan β ∼ 48
− MA ∼ 2000− 3000 GeV X

− LSP ∼ 1500 GeV



Work in preparation/planned

• 2-loop analysis
• Full (light) SUSY spectrum
• Application of B-physics constraints
o Calculation of CDM relic density
o Investigation of discovery potential at existing and future

colliders

− Examination of higher-dimensional potential → test agreement
with observed value of cosmological constant
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attention!


