

Electroweak Phase Transitions with BSM Fermions

[arXiv:2107.09617]

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller | 26. August 2021

SUSY XXVIII 2021

Motivation

The 2HDM + Electroweakinos

Strength of the Electroweak Phasetransition in the 2HDM+EWinos

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

(日) (過) (見) (見)

2) The 2HDM + Electroweakinos

3 Strength of the Electroweak Phase Transition in the 2HDM+EWinos

 Motivation
 The 2HDM + Electroweakinos

 •000
 000

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

◆ロ → ◆屈 → ◆ 三 → ◆ 三 = ◆ ○ へ ○ →

Electroweakinos (i.e. weak fermions)	Extended Higgs sectors (e.g. MSSM inspired 2HDM)	Coloured Scalars (e.g. stops)
$m_{\chi_1^0}\gtrsim 50 ext{-}200 ext{GeV}$ $m_{\chi_1^\pm}\gtrsim 94 ext{GeV}$	$m_A\gtrsim 500\text{-}600 ext{GeV}$ tan $eta\gtrsim 1-2_{ ext{[Bahl et. al]}}$	$m_{ ilde{t}_1}\gtrsim 1$ -2 TeV
suggest a hierach	y between scalars and ferr	nions ($ ightarrow$ split SUSY)
2HDM+EWi	nos	split-MSSM

m_Z m_X m_A m_L SM+EWinos m_L Motivation The 2HDM + Electroweakinos Strength of the Electroweak Phase Transition in the 2HDM+EWinos ⊙⊙⊙⊙ Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller – EWPTs with BSM Fermions 26. August 2021 3/16

Electroweakinos (i.e. weak fermions)	Extended Higgs sectors (e.g. MSSM inspired 2HDM)	Coloured Scalars (e.g. stops)
$m_{\chi_1^0}\gtrsim 50 ext{-}200\mathrm{GeV}$ $m_{\chi_1^\pm}\gtrsim 94\mathrm{GeV}$	$e_{ m V}$ $m_{ m A}\gtrsim 500\text{-}600{ m GeV}$ tan $eta\gtrsim 1-2_{ ext{[Bahl et. al]}}$	$m_{ ilde{t}_1}\gtrsim$ 1-2 TeV
suggest a hie	rachy between scalars and fer	mions ($ ightarrow$ split SUSY)
2HDM-	+EWinos	split-MSSM
$m_Z m_\chi$ SM+EWinos	m _A	$m_{\tilde{t}}$
	4	D > < 문 > < 분 > < 분 > 분 = 의 < 이 < C
Motivation The 2HD ○●○○ ○○ Martin Gabelmann, M. Margarete M	M + Electroweakinos Strength of the Elect 00000000 Aühlleitner, Jonas Müller – EWPTs with BSM Fermions	roweak Phase Transition in the 2HDM+EWinos 26. August 2021 3/16

Electroweakinos (i.e. weak fermions)	Extended Higgs sectors (e.g. MSSM inspired 2HDM)	Coloured Scalars (e.g. stops)
$m_{\chi_1^0}\gtrsim$ 50-200 ${ m GeV}$	$m_A\gtrsim 500\text{-}600\mathrm{GeV}$	$m_{ ilde{t}_1}\gtrsim extsf{1-2} extsf{TeV}$
$m_{\chi_1^\pm}\gtrsim$ 94 ${ m GeV}$	$ aneta\gtrsim 1-2_{ extsf{[Bahl et. al]}}$	

... suggest a hierachy between scalars and fermions (\rightarrow split SUSY)

Electroweakinos (i.e. weak fermions)	Extended Higgs sectors (e.g. MSSM inspired 2HDM)	Coloured Scalars (e.g. stops)
$m_{\chi_1^0}\gtrsim 50 ext{-}200 ext{GeV}$ $m_{\chi^\pm}\gtrsim 94 ext{GeV}$	$m_{A}\gtrsim 500\text{-}600 ext{GeV}$ tan $eta\gtrsim 1-2_{ ext{[Bahl et. al]}}$	$m_{ ilde{t}_1}\gtrsim$ 1-2 ${ m TeV}$
X1 ···		

... suggest a hierachy between scalars and fermions (\rightarrow split SUSY)

Electroweak Phase Transitions

Strong first order EW phase transition (SFOEWPT):

- € ξ_c = v_c/τ_c ≳ 1 necessary requirement for baryogeneses [Sakharov]
- not possible in the SM (m_h < 70 GeV) [Kajantie et. al]
- extended Higgs sectors: many models favour light scalar masses (e.g. 2HDM [Basler et. al])

Motivation Th 0000 00

The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

Electroweak Phase Transitions

Strong first order EW phase transition (SFOEWPT):

- € ξ_c = v_c/τ_c ≳ 1 necessary requirement for baryogeneses [Sakharov]
- not possible in the SM (m_h < 70 GeV) [Kajantie et. al]
- extended Higgs sectors: many models favour light scalar masses (e.g. 2HDM [Basler et. al])

Motivation 0000 The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

Implications of Electroweak Phasetransitions

(vanilla) MSSM

- scalar potential governed by gauge sector $\lambda_i \propto g_1^2, g_2^2$
- $\xi_c > 1$ requires $m_{\tilde{t}} < 115 \,\mathrm{GeV}$

[Carena et. al]

(vanilla) **2HDM**

- $\xi_c > 1$ possible [Bochkarev et. al]
- increasing tension due to constraints on m_A, m_H±, m_H
 [Black et. al]

ightarrowQuestion:

- Q1: can split-SUSY fermions relax tensions in the 2HDM?
- Q2: can it emerge from non-minimal split-SUSY?

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

The 2HDM + Electroweakinos

3 Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Motivation 0000 The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos $_{\rm OOOOOOO}$

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

Scalar Sector

Type II 2HDM with a soft \mathbb{Z}_2 -breaking term:

$$\begin{split} V_{\text{2HDM}} &= \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 \\ &+ \left(\frac{\lambda_5}{2} \left(\Phi_1^{\dagger} \Phi_2 \right)^2 - m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c. \right) + m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 \end{split}$$

Spectrum after EWSB:

- 2 CP-even *h_{SM}* and *H*
- 1 CP-odd A
- 1 charged Higgs pair *H*[±]

Motivation

The 2HDM + Electroweakinos ○●○ Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

Fermion Sector

Similar to the MSSM, add triplet (\tilde{W}), singlet \tilde{B} and two doublets (\tilde{H}_u, \tilde{H}_d):

$$\begin{split} V_{inos} &= \frac{1}{\sqrt{2}} H_u^{\dagger} \left(g_{2u} \sigma_a \tilde{W}^a + g_{1u} \tilde{B} \right) \tilde{H}_u \ - \frac{1}{\sqrt{2}} H_d^{\dagger} \left(g_{2d} \sigma_a \tilde{W}^a + g_{1d} \tilde{B} \right) \tilde{H}_d \\ &+ \frac{M_{\tilde{W}}}{2} \tilde{W}^a \tilde{W}^a + \frac{M_{\tilde{B}}}{2} \tilde{B} \tilde{B} + \mu \tilde{H}_u (i\sigma_2) \tilde{H}_d + h.c. \end{split}$$

- 4 neutralinos χ⁰_{1,...,4}
- 2 charginos $\chi_{1,2}^{\pm}$
- Yukawa couplings g_{ij} and Majorana masses µ, M_W, M_B are free input parameters

Isospin rotation:

$$H_u = \Phi_2, \qquad H_d = -i\sigma_2\Phi_1^*$$

Motivation

The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Motivation

The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

$$V(T) = V_{ ext{2HDM}}^{ ext{(tree)}} + V_{CW}^{(1)} + V_T + V_{CT}$$

tree-level potential of the 2HDM

- one-loop effective potential $V_{CW}^{(1)}$ including effects of V_{inos}
- temperature corrections V_T (incl. V_{inos})
- Counterterm potential V_{CT}
- extended BSMPT [Basler et. al] to include the EW-ino contributions

Motivation 0000 The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

26. August 2021 10/16

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

- tree-level potential of the 2HDM
- one-loop effective potential V⁽¹⁾_{CW} including effects of V_{inos}
- temperature corrections V_T (incl. V_{inos})
- Counterterm potential V_{C1}
- extended BSMPT [Basler et. al] to include the EW-ino contributions

Motivation 0000 The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

26. August 2021 10/16

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

- tree-level potential of the 2HDM
- one-loop effective potential $V_{CW}^{(1)}$ including effects of V_{inos}
- temperature corrections V_T (incl. V_{inos})
- Counterterm potential V_{C7}
- extended BSMPT [Basier et. al] to include the EW-ino contributions

Motivation 0000 The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

26. August 2021 10/16

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

- tree-level potential of the 2HDM
- one-loop effective potential $V_{CW}^{(1)}$ including effects of V_{inos}
- temperature corrections V_T (incl. V_{inos})
- Counterterm potential V_{CT}
- extended BSMPT [Basier et. al] to include the EW-ino contributions

Motivation 0000 The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

26. August 2021 10/16

$$V(T) = V_{2HDM}^{(tree)} + V_{CW}^{(1)} + V_T + V_{CT}$$

- tree-level potential of the 2HDM
- one-loop effective potential V⁽¹⁾_{CW} including effects of V_{inos}
- temperature corrections V_T (incl. V_{inos})
- Counterterm potential V_{CT}
- extended BSMPT [Basler et. al] to include the EW-ino contributions

Motivation 0000 The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

Can split-SUSY fermions relax tensions in the 2HDM?

Motivation 0000 The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

◆ロ → ◆屈 → ◆ 三 → ◆ 三 = ◆ ○ へ ○ →

Example Point: 2HDM

Idea: start with 2HDM (without EWinos) and then turn-on fermion contributions.

$$\begin{split} m_h &= 125.09 \, {\rm GeV}, & m_H &= 637.37 \, {\rm GeV}, \\ m_A &= 811.35 \, {\rm GeV}, & m_{H^\pm} &= 839.90 \, {\rm GeV}, \\ {\rm an} \, \beta &= 6.15 \; , & \alpha &= -0.1605 \; , \end{split}$$

leads to

t

$$\xi_c^{2\text{HDM}} = 0.82 < 1$$
 \ddagger

when considering the pure 2HDM type II.

Motivation

The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

Example Point: 2HDM+EWinos

Example Point: 2HDM+EWinos

Can it emerge from non-minimal split-SUSY?

Motivation 0000 The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

26. August 2021 14/16

◆ロ → ◆屈 → ◆ 三 → ◆ 三 = ◆ ○ へ ○ →

alternatives:

- add light singlet (split-NMSSM) [Demidov et. al] [Athron et. al]
 - \rightarrow singlet couplings enable SFOEWPT
- integrate out heavy singlet NMSSM → MSSM → 2HDM+EWinos

 $\sum_{i}^{i} \sum_{j=1}^{i} \propto \frac{1}{(4\pi)^2} \frac{A_i^4}{m_i^4}$

 Motivation
 The 2HDM + Electroweakinos

 0000
 000

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

$$\lambda_{1,2,3,4} = \mathcal{O}(g_1^2, g_2^2) + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_t})$$

•
$$\lambda_{5,6,7} = 0 + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_t})$$

- A_t is a low-scale parameter
- our scan requires:

$$\lambda_5 > 0.1$$
 to reach $\xi_c > 1$ $~~$ ${}^{\ell}_{z}$

alternatives:

- add light singlet (split-NMSSM) [Demidov et. al] [Athron et. al]
 - ightarrow singlet couplings enable SFOEWPT
- integrate out heavy singlet NMSSM → MSSM → 2HDM+EWinos

The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

$$\lambda_{1,2,3,4} = \mathcal{O}(g_1^2, g_2^2) + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_t})$$

•
$$\lambda_{5,6,7} = 0 + \frac{1}{(4\pi)^2} \mathcal{O}(\frac{A_t}{m_t})$$

- A_t is a low-scale parameter
- our scan requires:

$$\lambda_5 > 0.1$$
 to reach $\xi_c > 1$ 4

alternatives:

- add light singlet (split-NMSSM) [Demidov et. al] [Athron et. al]
 - \rightarrow singlet couplings enable SFOEWPT

■ integrate out heavy singlet NMSSM → MSSM → 2HDM+EWinos

Motivation

The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

Motivation The 2HDM + Electroweakinos

Strength of the Electroweak Phase Transition in the 2HDM+EWinos

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

Conclusion

Summary:

- studied impact on EWPT of additional fermions in a 2HDM
- SU(2) doublets/triplets beneficial *i.e.* strengthen the EWPT
- re-opens parameter space which is forbidden in the default 2HDM
- not possible to be embedded in minimal split-MSSM → requires at least an NMSSM with heavy singlet

Outlook:

Motivation

- study impact in non-minimal SUSY
- impact on collider/flavour phenomenology

 The 2HDM + Electroweakinos
 Strength of the Electroweak Phase Transition in the 2HDM+EWinos

 000
 00000000

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller - EWPTs with BSM Fermions

Backup

◆□ > ◆母 > ◆臣 > ◆臣 > 王目 のへで

•0000

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller – EWPTs with BSM Fermions 26. August 2021 17/16

Global View: reopen parameter space with large masses

- random parameter scan using ScannerS [Coimbra et al.]
- scan with default 2HDM allowing for all ξ_c
- re-evaluate using 2HDM+EWinos:• $g_{1u} = g_{1d} = g_{1}^{SM}$
 - $g_{2u} = g_{2d} = g_2^{SN}$
 - $M_{\tilde{B}} = M_{\tilde{W}} = \mu = 200 \text{ GeV}$
- compare ξ_c with ξ_c^{2HDM}

 large-mass points which were forbidden in the 2HDM are now allowed!

00000

18/16

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller – EWPTs with BSM Fermions 26. August 2021

Global View: reopen parameter space with large masses

- random parameter scan using ScannerS [Coimbra et al.]
- scan with default 2HDM allowing for all ξ_c
- re-evaluate using 2HDM+EWinos:

•
$$g_{1u} = g_{1d} = g_1^{SM}$$

- $g_{2u} = g_{2d} = g_2^{SM}$
- $M_{\tilde{B}} = M_{\tilde{W}} = \mu = 200 \text{ GeV}$
- compare ξ_c with ξ_c^{2HDM}

 large-mass points which were forbidden in the 2HDM are now allowed!

・ロ・・団・・川・・田・ 山・ シック

00000

18/16

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller – EWPTs with BSM Fermions 26. August 2021

Global View: reopen parameter space with large masses

- random parameter scan using ScannerS [Coimbra et al.]
- scan with default 2HDM allowing for all ξ_c
- re-evaluate using 2HDM+EWinos:
 - $g_{1u} = g_{1d} = g_1^{SM}$ • $g_{2u} = g_{2d} = g_2^{SM}$
 - $M_{\tilde{B}} = M_{\tilde{W}} = \mu = 200 \text{ GeV}$
- compare ξ_c with ξ_c^{2HDM}

 large-mass points which were forbidden in the 2HDM are now allowed!

0000

18/16

Global Mass Scan

Martin Gabelmann, M. Margarete Mühlleitner, Jonas Müller – EWPTs with BSM Fermions

26. August 2021 19/16

Global Yukawa Scan

00000

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

extended to incorporate corrections from fermions in arbitrary model

$$V_{CW}|_{inos}$$
 $V_T|_{inos} = -\frac{T^4}{\pi^2} \text{Tr} \left[J_+ \left(\mathbf{m}_{\tilde{\chi}_1^0}^2 / T^2 \right) + 2J_+ \left(\mathbf{m}_{\tilde{\chi}_1^-}^2 / T^2 \right) \right] + V_{\text{Debye}}|_{inos}$
 $J_+(x) = \int_0^\infty dk \, k^2 \log \left[1 + \exp \left(-\sqrt{k^2 + x} \right) \right]$
 $V_{\text{Debye}}|_{inos} \propto T^2 f(g_{1u}^2, g_{1d}^2, g_1^2, \ldots)$

• calculates all ingredients for V(T)

V_{CT}: achieves equal scalar tree-level and one-loop masses/mixings

• minimizes V(T)

ightarrow perturbative determination of $\xi_c = v_c/T_c$

Open Source [phbasler.github.io/BSMPT]

21/16

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

extended to incorporate corrections from fermions in arbitrary model
 V⁽¹⁾

•
$$V_T|_{inos} = -\frac{T^4}{\pi^2} \text{Tr} \left[J_+ \left(\mathbf{m}_{\tilde{\chi}_i^0}^2 / T^2 \right) + 2J_+ \left(\mathbf{m}_{\tilde{\chi}_i^-}^2 / T^2 \right) \right] + V_{\text{Debye}}|_{inos}$$

• $J_+(x) = \int_0^\infty dk \ k^2 \log \left[1 + \exp \left(-\sqrt{k^2 + x} \right) \right]$
• $V_{\text{Debye}}|_{inos} \propto T^2 f(g_{1u}^2, g_{1d}^2, g_1^2, \dots)$

• calculates all ingredients for V(T)

V_{CT}: achieves equal scalar tree-level and one-loop masses/mixings
 minimizes V(T)

ightarrow perturbative determination of $\xi_{c} = v_{c}/T_{c}$

Open Source [phbasler.github.io/BSMPT]

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

21/16

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

extended to incorporate corrections from fermions in arbitrary model
 V⁽¹⁾

•
$$V_T|_{inos} = -\frac{T^4}{\pi^2} \text{Tr} \left[J_+ \left(\mathbf{m}_{\tilde{\chi}_i^0}^2 / T^2 \right) + 2J_+ \left(\mathbf{m}_{\tilde{\chi}_i^-}^2 / T^2 \right) \right] + V_{\text{Debye}}|_{inos}$$

• $J_+(x) = \int_0^\infty dk \ k^2 \log \left[1 + \exp \left(-\sqrt{k^2 + x} \right) \right]$
• $V_{\text{Debye}}|_{inos} \propto T^2 f(g_{1u}^2, g_{1d}^2, g_1^2, \dots)$

• calculates all ingredients for V(T)

V_{CT}: achieves equal scalar tree-level and one-loop masses/mixings

ightarrow perturbative determination of $\xi_c = v_c/T_c$

Open Source [phbasler.github.io/BSMPT]

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

extended to incorporate corrections from fermions in arbitrary model
 V⁽¹⁾

•
$$V_T|_{inos} = -\frac{T^4}{\pi^2} \text{Tr} \left[J_+ \left(\mathbf{m}_{\tilde{\chi}_i^0}^2 / T^2 \right) + 2J_+ \left(\mathbf{m}_{\tilde{\chi}_i^-}^2 / T^2 \right) \right] + V_{\text{Debye}}|_{inos}$$

• $J_+(x) = \int_0^\infty dk \ k^2 \log \left[1 + \exp \left(-\sqrt{k^2 + x} \right) \right]$
• $V_{\text{Debye}}|_{inos} \propto T^2 f(g_{1u}^2, g_{1d}^2, g_1^2, \dots)$

• calculates all ingredients for V(T)

V_{CT}: achieves equal scalar tree-level and one-loop masses/mixings

• minimizes V(T)

ightarrow perturbative determination of $\xi_{c} = v_{c}/T_{c}$

Open Source [phbasler.github.io/BSMPT]

21/16

$$V(T) = V_{2\text{HDM}}^{(\text{tree})} + V_{CW}^{(1)} + V_T + V_{CT}$$

extended to incorporate corrections from fermions in arbitrary model
 V⁽¹⁾

•
$$V_T|_{inos} = -\frac{T^4}{\pi^2} \text{Tr} \left[J_+ \left(\mathbf{m}_{\tilde{\chi}_i^0}^2 / T^2 \right) + 2J_+ \left(\mathbf{m}_{\tilde{\chi}_i^-}^2 / T^2 \right) \right] + V_{\text{Debye}}|_{inos}$$

• $J_+(x) = \int_0^\infty dk \ k^2 \log \left[1 + \exp \left(-\sqrt{k^2 + x} \right) \right]$
• $V_{\text{Debye}}|_{inos} \propto T^2 f(g_{1u}^2, g_{1d}^2, g_1^2, \dots)$

• calculates all ingredients for V(T)

V_{CT}: achieves equal scalar tree-level and one-loop masses/mixings

• minimizes V(T)

ightarrow perturbative determination of $\xi_c = v_c/T_c$

Open source [phbasler.github.io/BSMPT]

21/16