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Calabi-Yau Manifolds - Compactification

Why Calabi-Yau manifolds?

(Compact, complex space with c1(X ) = 0↔ Ricci-flat Kähler metric)

• String theory vacuum configuration M10 = M3+1 × X6

• Compactification with CY manifold gives 4D N = 1 SUSY, hope to

reproduce low energy physics (Candelas, Horowitz, Strominger, Witten 1985)

×

Why do we want the metric?

• Know CY metric exists but no analytic expression (Yau 1978)

• Many quantities without explicit metric using algebraic geometry

• E.g. massive spectrum, D3-brane inflation do need metric

−→ existing numerical & new ML approaches
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Calabi-Yau Metric



Quintic Example

We consider a one-parameter family of hypersurfaces in P4:

pψ(z) =
4∑

i=0

(
z i
)5

+ ψ

4∏
i=0

z i = 0

Know CY metric exists, now seek numerical approximations.

• Kähler: Kähler form J = i gi ̄ dz
i ∧ dz̄ ̄ is closed:

dJ = 0 ↔ locally have Kähler function K s.t. gi ̄ = ∂i∂ ̄K

• Overlaps: If defined on patches, must match on overlaps

• Ricci-flat: The Ricci curvature vanishes,

Ri ̄ = −∂i∂ ̄ log det g
!
= 0

Fourth order PDE in terms of the Kähler potential!
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CY Accuracy Measure

Two constructions for top (volume) form:

• Holomorphic (3, 0) form Ω: volΩ = Ω ∧ Ω̄

• Kähler form J for metric g : volg = J ∧ J ∧ J ∝ det g

• For Ricci-flat CY metric, must be proportional: J ∧ J ∧ J = κ Ω ∧ Ω̄

Accuracy measure σ =
1

vol(X )

∫
X

∣∣∣1− η

κ

∣∣∣ with η =
volg
volΩ

CY
= κ = const

Integral is convex in J! (Headrick, Nassar [0908.2635])
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Numerical Approaches



Local vs Spectral Methods

Finite Differences on K3 twofold (Headrick, Wiseman [hep-th/0506129])

• Using J = ∂∂̄K in J3 = κΩ ∧ Ω̄ gives a Monge-Ampère equation

(PDE linear in determinant of Hessian of K )

• Applying relaxation method to grid approximation of K

• Curse of dimensionality for higher dimensions & need explicit patches!

Spectral method based on Donaldson’s work [math/0512625]

• Algebraic expression for K parametrized by a Hermitian matrix Hk

• Parameter k is the cut-off of a spectral expansion

• Donaldson’s algorithm obtains the balanced metric which satisfies

Hk = T (Hk)−1

• Obtain balanced metrics through iteration of T for fixed degree k

• Balanced metrics
k→∞−−−→ CY metric
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Algebraic Kähler Potential

• Have Fubini-Study metric from P4: KFS = log
∑

i

∣∣z i ∣∣2
• Generalize by replacing z i with basis of homogeneous

polynomials sα(z) of degree k and inserting a Hermitian

matrix H:

Kh = log
∑
αβ̄

sα(z)Hαβ̄ s̄
β̄(z̄)

• Geometric interpretation: H parametrizes embedding of

X into PNk−1

• Ansatz is the pullback of the FS metric from PNk−1

• The sα must form basis of sections of OX (k); reduction

from polynomial basis on P4 given pψ(z) = 0 not unique

• Algebraic construction always satisfies overlap and

Kählerity constraints!

Nk -1
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Donaldson’s Algorithm

• Donaldson’s algorithm iteratively applies T-operator

Hαβ̄ 7→ T (H)αβ̄ =
Nk

vol(X )

∫
X

sα s̄ β̄

sγ Hγδ̄ s̄
δ̄
dvol

• Balanced metrics converge to CY metric like O(k−2)

• If we optimize σ accuracy, expect in general exponential convergence

(Headrick, Nassar [0908.2635])

• Computational cost of algorithm grows like O(k16)

• Must evaluate for each new set of moduli

Metrics from Machine Learning (Anderson, Gerdes, Gray, Krippendorf, Raghuram, Ruehle [2012.04656]) SUSY 2021 8



Machine Learning



Deep Learning

• Parametrized network: (θ, x) 7→ ŷ

• Often deep chain of linear combinations and

non-linear activation functions

• Learn parameters θ by following gradient of

some loss (energy) function, e.g.

L(θ, x) = |y(x)− ŷ(θ, x)|2

• Automatic differentiation: For any f (α, β),

can programatically get ∂αf

• We need to work with complex variables,

holomorphic derivatives

• Our loss contains η ∝ det ∂∂̄K

• We used PyTorch, Tensorflow and JAX

ψ

(hidden) dense layers

... h
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Machine Learning of the Metric



Existing ML Approaches

• Balanced metrics converge slowly: minimize σ for algebraic ansatz

(H) at fixed moduli (Headrick, Nassar [0908.2635])

• Donaldson’s algorithm is expensive: Extrapolate results to larger k

(Ashmore, He, Ovrut [1910.08605])

• Reduce # parameters & faster numerics: Replace polynomial in

algebraic ansatz Kh = log
∑
αβ̄ s

α Hαβ̄ s̄
β̄ with a network (Douglas,

Lakshminarasimhan, Qi [2012.04797])

(z , z̄)
net7−−→ sα(z)Hαβ̄ s̄

β̄(z̄)
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New Approaches

Moduli-dependent approximation of algebraic metrics

• Interpolate parameters H from Donaldson’s algorithm between values

of ψ (at a fixed degree k)

• Optimize networks ψ 7→ H without training data from Donaldson’s

algorithm

Networks to predict the metric directly

• Optimize networks for CY metric: (ψ, z) 7→ gψ(z)

• No longer automatically Kähler & satisfy overlap condition

• Advantage: also works for metrics with SU(3)-structure (dJ 6= 0)

Metrics from Machine Learning (Anderson, Gerdes, Gray, Krippendorf, Raghuram, Ruehle [2012.04656]) SUSY 2021 11



Moduli Dependent Algebraic Metric

• In all approaches used the Monge Ampère loss which is the Monte

Carlo approximation of the σ accuracy:

LMA =
1

N

N∑
n=1

∣∣∣∣η(zn)

κ
− 1

∣∣∣∣2 w(zn)

• Weights w(zn) known if we sample points z as intersections of X

with a random line in P4 [hep-th/0612075]

• Instead of | . . . |2 could use any convex function
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Network for Metric Directly

• Similar accuracy as Donaldson’s

balanced metric at same degree but

lower numerical cost

• Need to include all losses:

L = λ1LMA + λ2LdJ + λ3Loverlap

• Use perturbation around FS metric

as ansatz: g = gFS (1 + gNN)

• Weighing of different losses not

obvious, application dependent

• Very general approach: non-Kähler,

better parametrizations possible

Metrics from Machine Learning (Anderson, Gerdes, Gray, Krippendorf, Raghuram, Ruehle [2012.04656]) SUSY 2021 13



Summary and Future Work

• Moduli-dependent networks which approximate the metric

simultaneously for a range of values

• Order of minutes where Donaldson’s algorithm would take tens of

hours (for same σ accuracy)

• Standalone, does not need existing results for training

• Networks which predict the metric directly

• General approach, can apply to SU(3)-structure

• NN and ML frameworks well suited for problem

• Never explicitly exploited symmetry, but application to more moduli

work for the future

• Find better basis of sections (basis for Hk), or replace with networks

for polynomial

• Apply to physics questions
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Thank You
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