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Calabi-Yau Manifolds - Compactification

Why Calabi-Yau manifolds?
(Compact, complex space with ¢;(X) = 0 <+ Ricci-flat K&hler metric)

e String theory vacuum configuration Mg = M3,1 X Xp
e Compactification with CY manifold gives 4D A/ = 1 SUSY, hope to
reproduce low energy physics (Candelas, Horowitz, Strominger, Witten 1985)

~>
. QY.

Why do we want the metric?

e Know CY metric exists but no analytic expression (Yau 1978)
e Many quantities without explicit metric using algebraic geometry
e E.g. massive spectrum, D3-brane inflation do need metric

— existing numerical & new ML approaches
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Calabi-Yau Metric



Quintic Example

We consider a one-parameter family of hypersurfaces in P*: P4

SCEEE B @

Know CY metric exists, now seek numerical approximations.

e Kihler: Kahler form J =i gj;dz' A dZ7 is closed:
dJ = 0 <> locally have Kahler function K s.t. gi; = 9;0;K

e Overlaps: If defined on patches, must match on overlaps

e Ricci-flat: The Ricci curvature vanishes,
_ I
Riz; = —0;05logdetg =0

Fourth order PDE in terms of the Kahler potential!
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Accuracy Measure

Two constructions for top (volume) form:

e Holomorphic (3,0) form Q: volg = QA Q
o Kahler form J for metric g: volg = JAJA Jox detg
e For Ricci-flat CY metric, must be proportional: JAJAJ =k QAQ

1 ) volg oy
Accuracy measure 0 = ——~ ‘1 — ﬁ‘ with n= —£ = k = const
vol(X) Jx K volg
Integral is convex in J! (Headrick, Nassar [0908.26351)
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Numerical Approaches




Local vs Spectral Methods

Finite Differences on K3 twofold (Headrick, Wiseman [hep-th/0506129])

e Using J = 00K in J? = kQ A Q gives a Monge-Ampere equation
(PDE linear in determinant of Hessian of K)
e Applying relaxation method to grid approximation of K

e Curse of dimensionality for higher dimensions & need explicit patches!
Spectral method based on Donaldson’s work [math/0512625]

e Algebraic expression for K parametrized by a Hermitian matrix Hy

Parameter k is the cut-off of a spectral expansion

Donaldson’s algorithm obtains the balanced metric which satisfies

Hy = T(He)™*

Obtain balanced metrics through iteration of T for fixed degree k

.k .
Balanced metrics ——> CY metric
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Algebraic Kahler Potential

e Have Fubini-Study metric from P*: Krs = log ), |z"’2
e Generalize by replacing z' with basis of homogeneous P4
polynomials s*(z) of degree k and inserting a Hermitian &

matrix H: w

Kn=log s%(z) H,55(2)
af

e Geometric interpretation: H parametrizes embedding of
X into PNe—1

e Ansatz is the pullback of the FS metric from PN«—1

e The s must form basis of sections of Ox(k); reduction
from polynomial basis on P* given p,(z) = 0 not unique

e Algebraic construction always satisfies overlap and
Kahlerity constraints!
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Donaldson’s Algorithm

e Donaldson’s algorithm iteratively applies T-operator

_ N a B
Hyg +— T(H)*? = — /X *° _ dvol

vol(X) Jx s7 H 55
e Balanced metrics converge to CY metric like O(k~2)
e If we optimize o accuracy, expect in general exponential convergence
(Headrick, Nassar [0908.2635])
e Computational cost of algorithm grows like O(k'®)
e Must evaluate for each new set of moduli
Average time per iteration of T-operator
10° 4
10 4
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Machine Learning




Deep Learning

e Parametrized network: (6,x) — y

e Often deep chain of linear combinations and (hidden) dense layers

non-linear activation functions

e [earn parameters 6 by following gradient of

some loss (energy) function, e.g.
L(0,x) =1y (x) — (0, x)|?

e Automatic differentiation: For any f(a, ),
can programatically get 0, f

loss

e We need to work with complex variables, i
’ oy

AR

L W
T QK&L”V/

holomorphic derivatives

e Qur loss contains 7 o< det dOK 6
e We used PyTorch, Tensorflow and JAX
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Machine Learning of the Metric




Existing ML Approaches

e Balanced metrics converge slowly: minimize o for algebraic ansatz
(H) at fixed moduli (Headrick, Nassar [0908.2635])

o-loss Ricci-loss

—— Donaldson, ¢ =0 —— Donaldson, y=0 || |Gradient descent
optimization for

ce y=0

y=5

oy y=-5

A y=-15

e Donaldson's algorithm is expensive: Extrapolate results to larger k
(Ashmore, He, Ovrut [1910.08605])

e Reduce # parameters & faster numerics: Replace polynomial in
algebraic ansatz Kj, = log Zaﬁ s*H,3 58 with a network (Douglas,
Lakshminarasimhan, Qi [2012.04797])

(2.2) ™5 s%(2) H,557(2)

[e3%
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New Approaches

Moduli-dependent approximation of algebraic metrics

e Interpolate parameters H from Donaldson’s algorithm between values
of ¢ (at a fixed degree k)

e Optimize networks 1) — H without training data from Donaldson’s
algorithm

Networks to predict the metric directly

e Optimize networks for CY metric: (¢, z) — gy(2)
e No longer automatically Kahler & satisfy overlap condition
e Advantage: also works for metrics with SU(3)-structure (dJ # 0)

learnable parameters
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Moduli Dependent Algebraic Metric

e |n all approaches used the Monge Ampére loss which is the Monte
Carlo approximation of the o accuracy:

1N
Lya = NZ
n=1

e Weights w(z,) known if we sample points z as intersections of X

@ - 1‘2 w(z,)

with a random line in P* [hep-th/0612075]

e Instead of |...|? could use any convex function
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Network for Metric Directly

Sigma-Accuracy

R =g A — Metric Network
ll/ Model 3% 10-! ~ —#— Induced FS
Ed = Q
Z learnable parameters 6 2x107! Ne
e Similar accuracy as Donaldson's -
balanced metric at same degree but
6x 1072

lower numerical cost

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0
e Need to include all losses: Il

L= Lma+ XLas+ A3Loverlap

Average Loss per Epoch

e Use perturbation around FS metric v \\___
as ansatz: g = grs (1 + gun) .:.»» W
e Weighing of different losses not v ,_/'—/-.—_

obvious, application dependent ’

Loss

1008 / Losses |
—— Monge-Ampére
10°¢ Kiihler

—— Overlap

e Very general approach: non-Kahler,

1077

—— Total

better parametrizations possible
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Summary and Future Work

e Moduli-dependent networks which approximate the metric
simultaneously for a range of values
e Order of minutes where Donaldson’s algorithm would take tens of
hours (for same o accuracy)
e Standalone, does not need existing results for training

e Networks which predict the metric directly
e General approach, can apply to SU(3)-structure

e NN and ML frameworks well suited for problem

e Never explicitly exploited symmetry, but application to more moduli
work for the future

e Find better basis of sections (basis for Hy), or replace with networks
for polynomial

e Apply to physics questions
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