The Standard Model Quiver in de Sitter String Compactifications

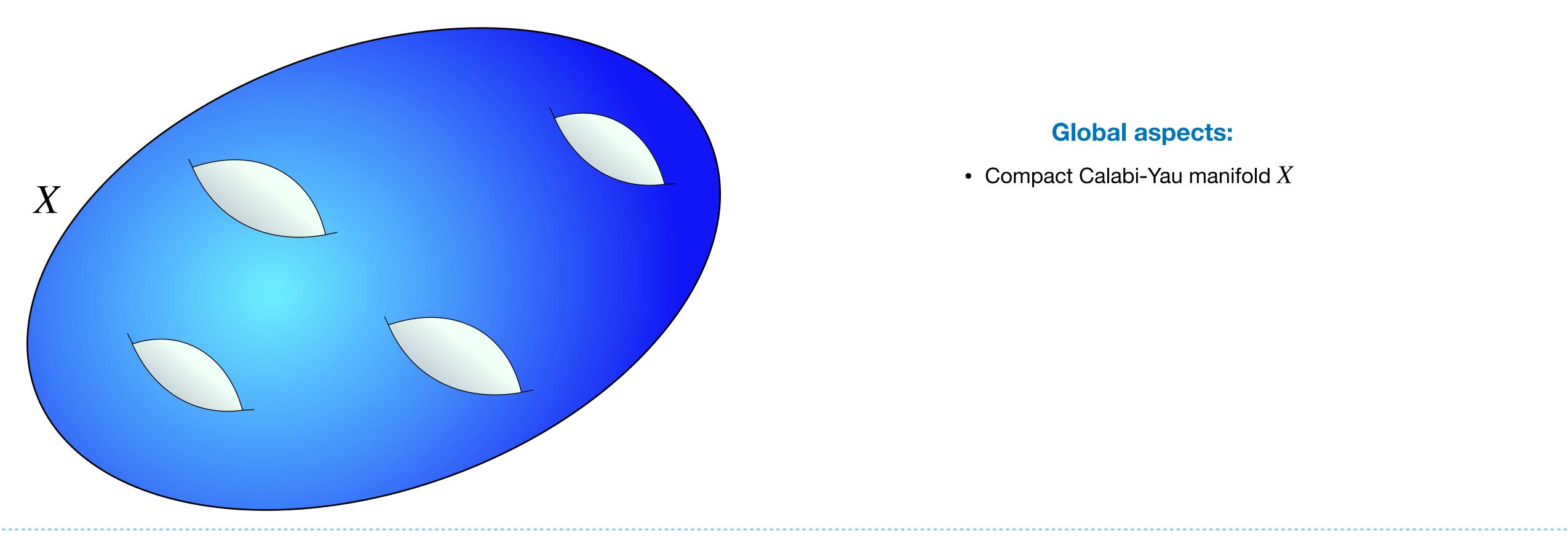
Figure credits: Getty Images

Department of Applied Mathematics and Theoretical Physics

University of Cambridge

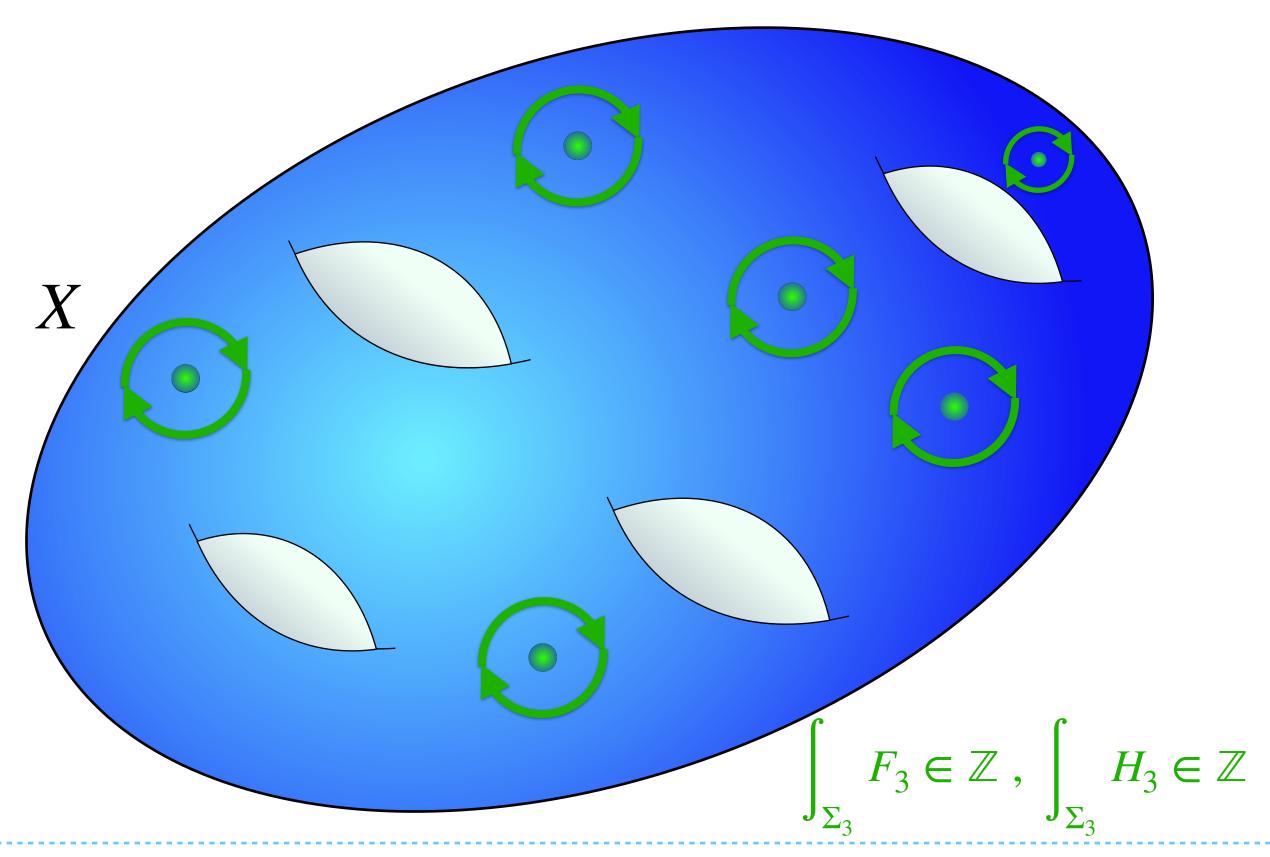
in collaboration with M. Cicoli, I. García Etxebarria, F. Quevedo, P. Shukla and R. Valandro JHEP 08(2021)109 ArXiv: 2106.11964

Andreas Schachner



Global aspects:

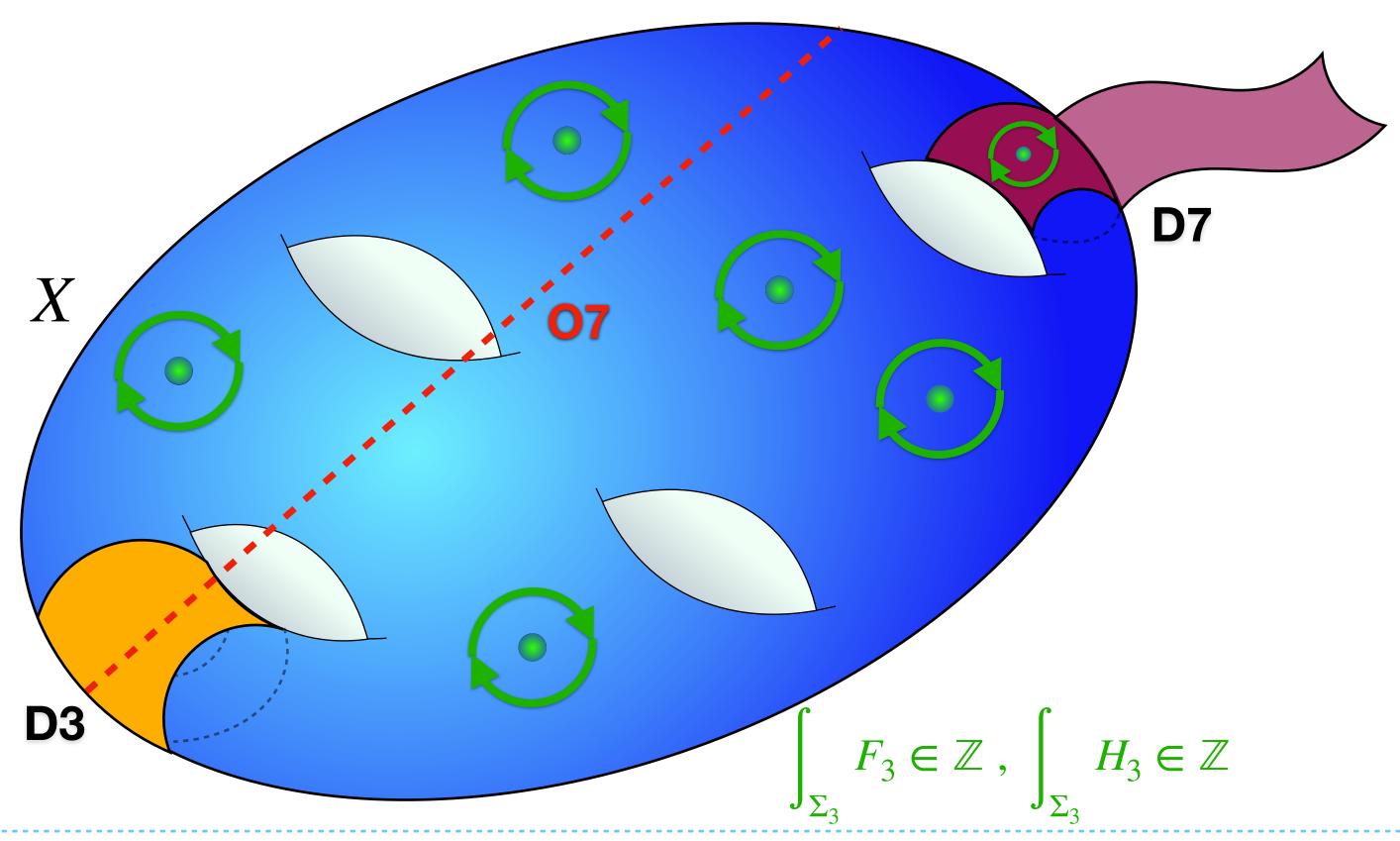
• Compact Calabi-Yau manifold X



Andreas Schachner

Global aspects:

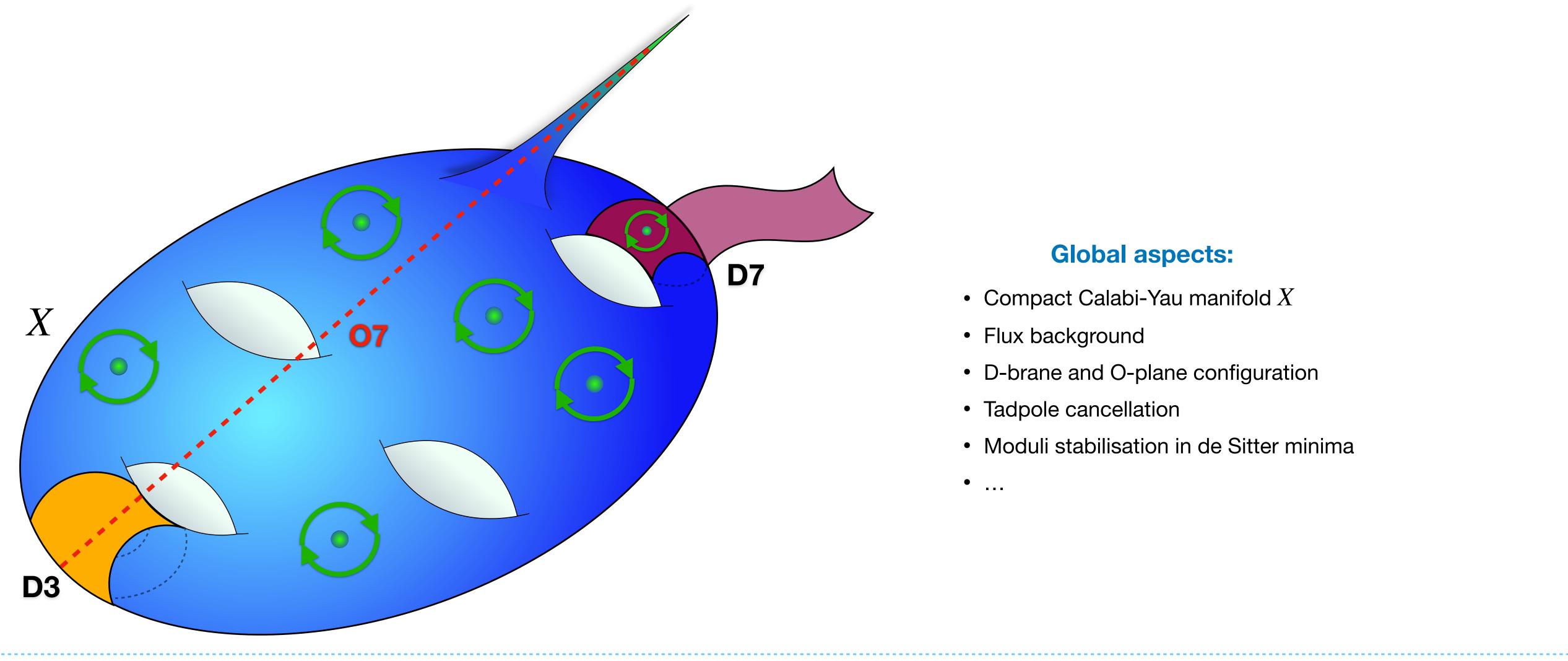
- Compact Calabi-Yau manifold X
- Flux background



Andreas Schachner

Global aspects:

- Compact Calabi-Yau manifold X
- Flux background
- D-brane and O-plane configuration
- Tadpole cancellation
- Moduli stabilisation in de Sitter minima
- ...



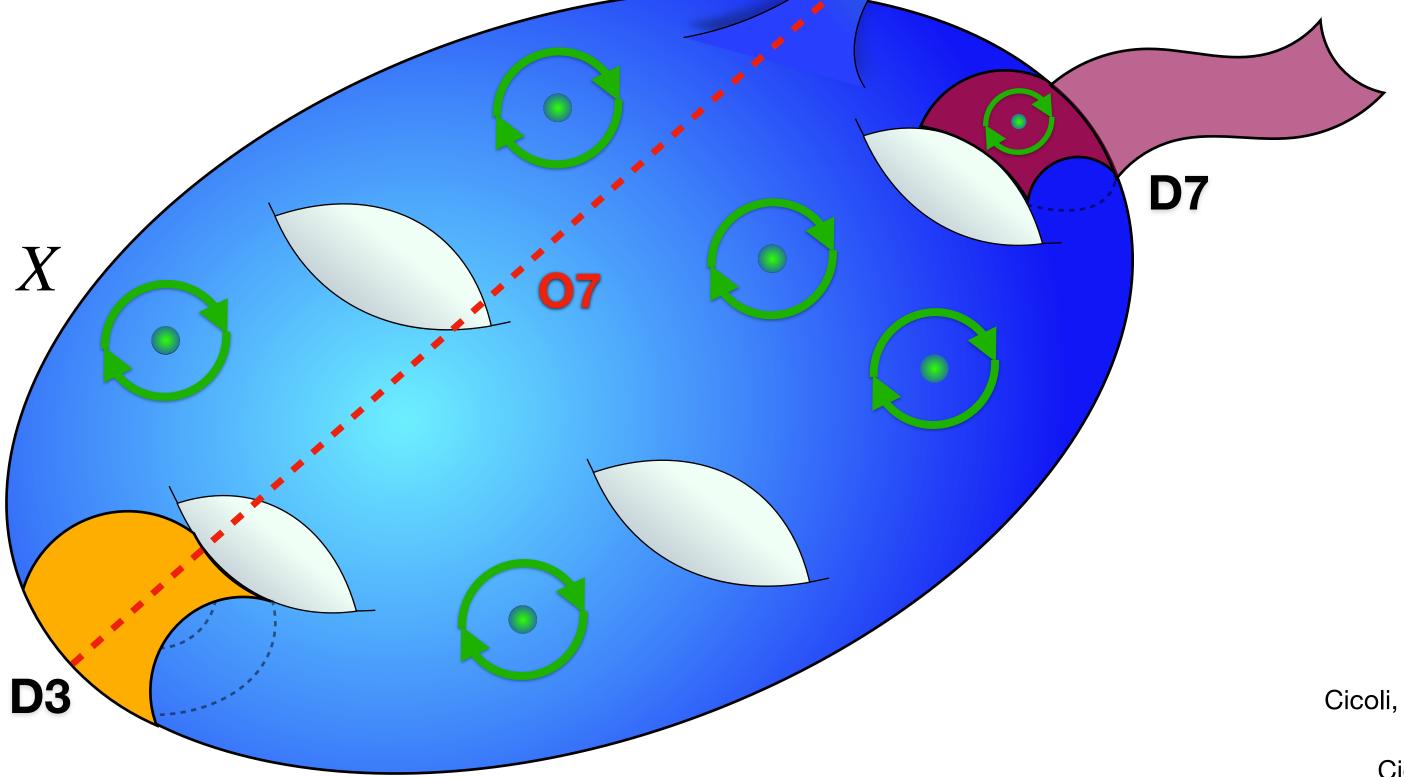
Global aspects:

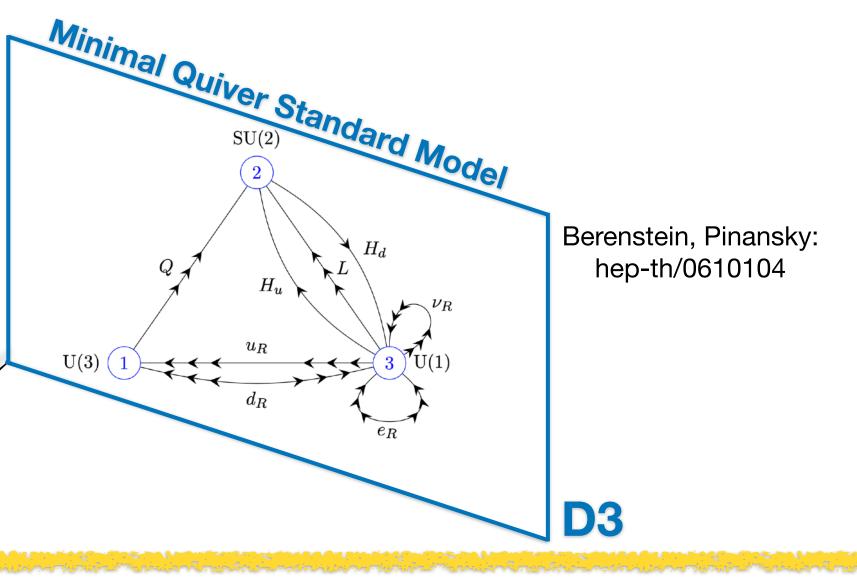
- Compact Calabi-Yau manifold X
- Flux background
- D-brane and O-plane configuration
- Tadpole cancellation
- Moduli stabilisation in de Sitter minima
- ...

- Choice of singularity
- Standard Model gauge group
- Spectrum of 3 chiral families
- Non-chiral matter

•

- Global anomalous U(1)'s
- Hierarchies in Yukawas





Global aspects:

- Compact Calabi-Yau manifold X
- Flux background
- D-brane and O-plane configuration
- Tadpole cancellation
- Moduli stabilisation in de Sitter minima
- ...

Previous global constructions:

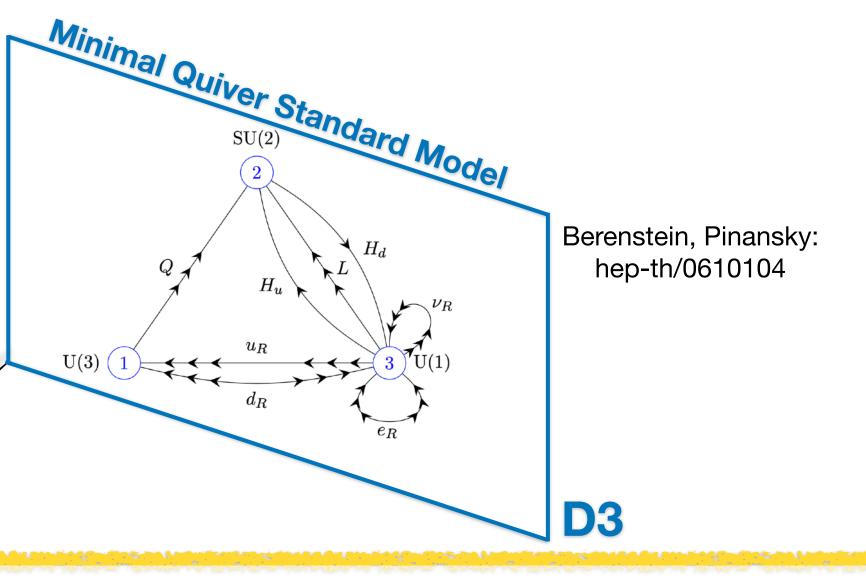
Dolan, Krippendorf, Maharana, Quevedo: 1002.1790 Dolan, Krippendorf, Quevedo: 1106.6039 Cicoli, Krippendorf, Mayrhofer, Quevedo, Valandro: 1206.5237, 1304.0022, 1304.2771 Cicoli, Klevers, Krippendorf, Mayrhofer, Quevedo, Valandro: 1312.0014 Cicoli, García Etxebarria, Mayrhofer, Quevedo, Shukla, Valandro: 1706.06128

- Choice of singularity
- Standard Model gauge group
- Spectrum of 3 chiral families
- Non-chiral matter

• ...

- Global anomalous U(1)'s
- Hierarchies in Yukawas

X



Global aspects:

- Compact Calabi-Yau manifold X
- Flux background
- D-brane and O-plane configuration
- Tadpole cancellation
- Moduli stabilisation in de Sitter minima
- ...

Previous global constructions:

Dolan, Krippendorf, Maharana, Quevedo: 1002.1790 Dolan, Krippendorf, Quevedo: 1106.6039 Cicoli, Krippendorf, Mayrhofer, Quevedo, Valandro: 1206.5237, 1304.0022, 1304.2771 Cicoli, Klevers, Krippendorf, Mayrhofer, Quevedo, Valandro: 1312.0014 Cicoli, García Etxebarria, Mayrhofer, Quevedo, Shukla, Valandro: 1706.06128

D7

- Choice of singularity
- Standard Model gauge group
- Spectrum of 3 chiral families
- Non-chiral matter
- Global anomalous U(1)'s
- Hierarchies in Yukawas
- •

What type of singularity?

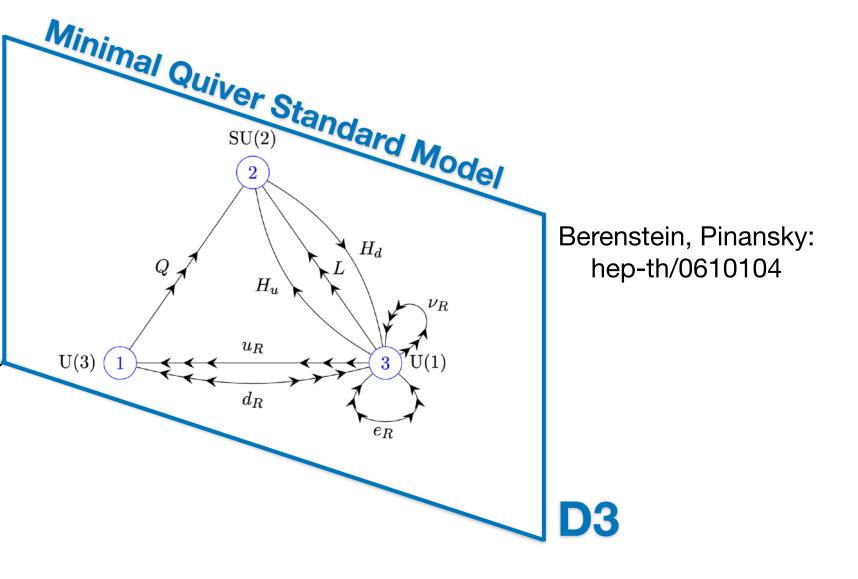
del Pezzo surfaces:

Complex 2-dimensional Fano surfaces, i.e., projective algebraic surfaces with ample anti-canonical divisor class $-K \cdot C > 0$ for every curve C. We distinguish $\mathbb{P}^1 \times \mathbb{P}^1$ or dP_n corresponding to \mathbb{P}^2 blown up at *n* points.

Today:

 dP_5 singularity as simplest setup to give rise to exact MSSM locally!

Wijnholt: hep-th/0703047



Attractive features of D-branes at dP_n singularities:

- A. Huge variety of gauge theories from a single D3 brane
- B. Oriented quiver always comes with 2 anomalous U(1)'s
- C. Chiral spectrum from intersections of 2- and 4-cycles

To a point shrinkable 4-cycle must be of del Pezzo type by Grauter's criterion

> See e.g. Cordova: 0910.2955 Malyshev, Verlinde:0711.2451

Unoriented quivers from D3-branes at dP_5 **singularities**

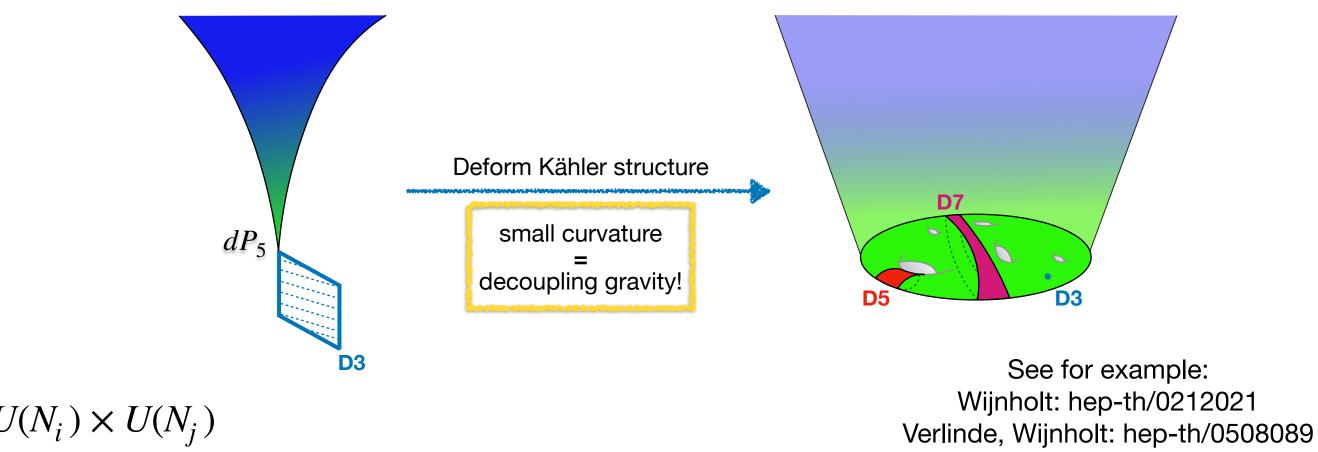
Fractional branes F_i : Bound states of several D-branes supported on cycles

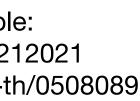
Spectrum of open strings from **quiver diagrams**:

N_i copies of a fractional brane F_i $\mathrm{U}(N_i)$

Chiral multiplet in bi-fundamental of $U(N_i) \times U(N_i)$ $\mathrm{U}(N_i)$

Geometric description of local model in the large volume limit:





Unoriented quivers from D3-branes at dP_5 singularities

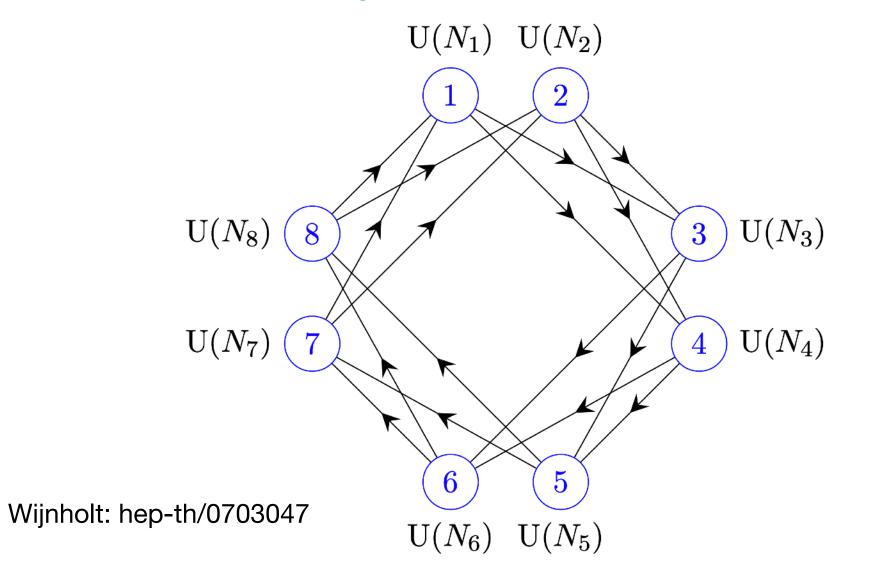
Fractional branes F_i : Bound states of several D-branes supported on cycles

Spectrum of open strings from **quiver diagrams**:

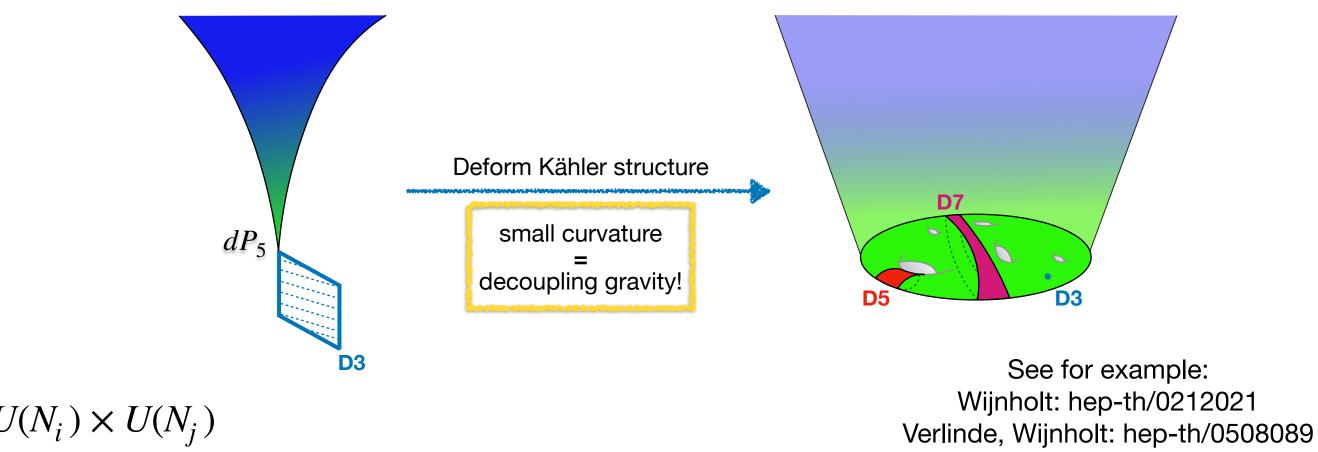
 $\triangleright N_i$ copies of a fractional brane F_i $\mathrm{U}(N_i)$

Chiral multiplet in bi-fundamental of $U(N_i) \times U(N_i)$ $\mathrm{U}(N_i)$

 dP_5 quiver diagram:



Geometric description of local model in the large volume limit:



Unoriented quivers from D3-branes at dP_5 singularities

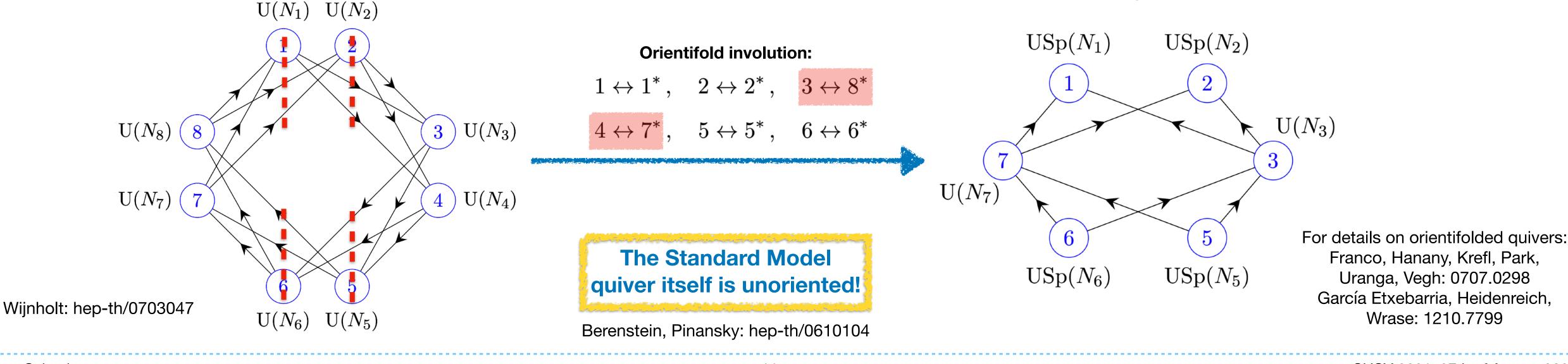
Fractional branes F_i : Bound states of several D-branes supported on cycles

Spectrum of open strings from **quiver diagrams**:

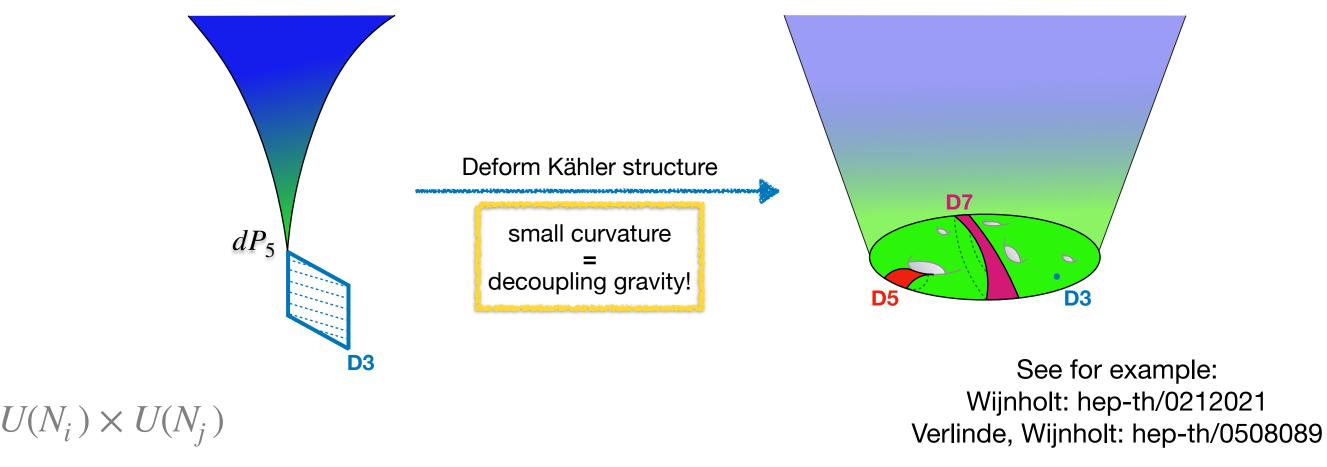
 $\rightarrow N_i$ copies of a fractional brane F_i $\mathrm{U}(N_i)$

 \rightarrow Chiral multiplet in bi-fundamental of $U(N_i) \times U(N_i)$ $U(N_i)$ (

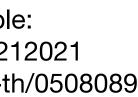
 dP_5 quiver diagram:



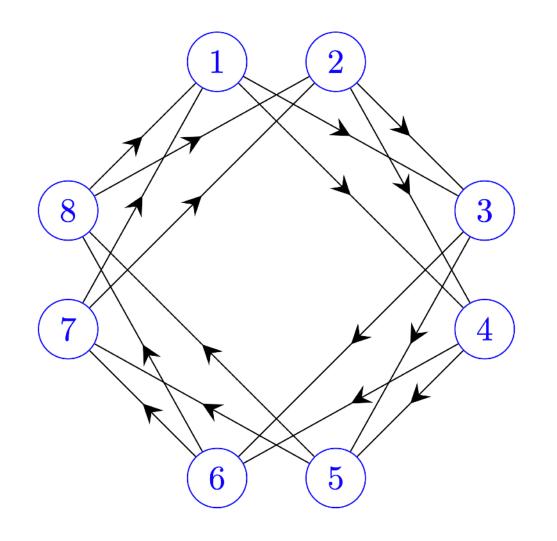
Geometric description of local model in the large volume limit:



Orientifolded dP_5 **quiver diagram:**

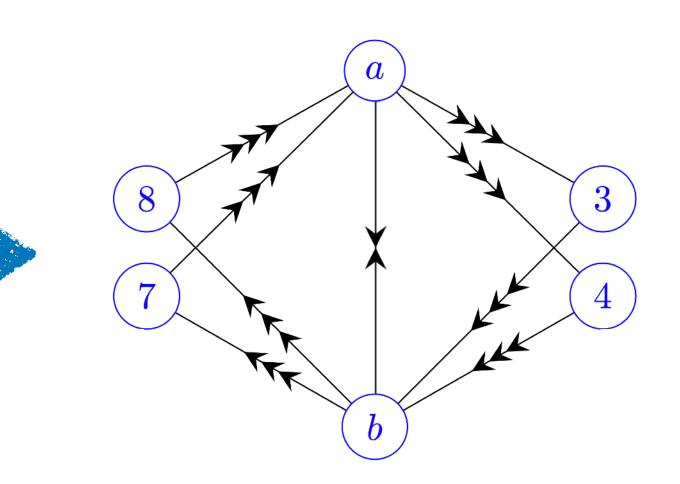


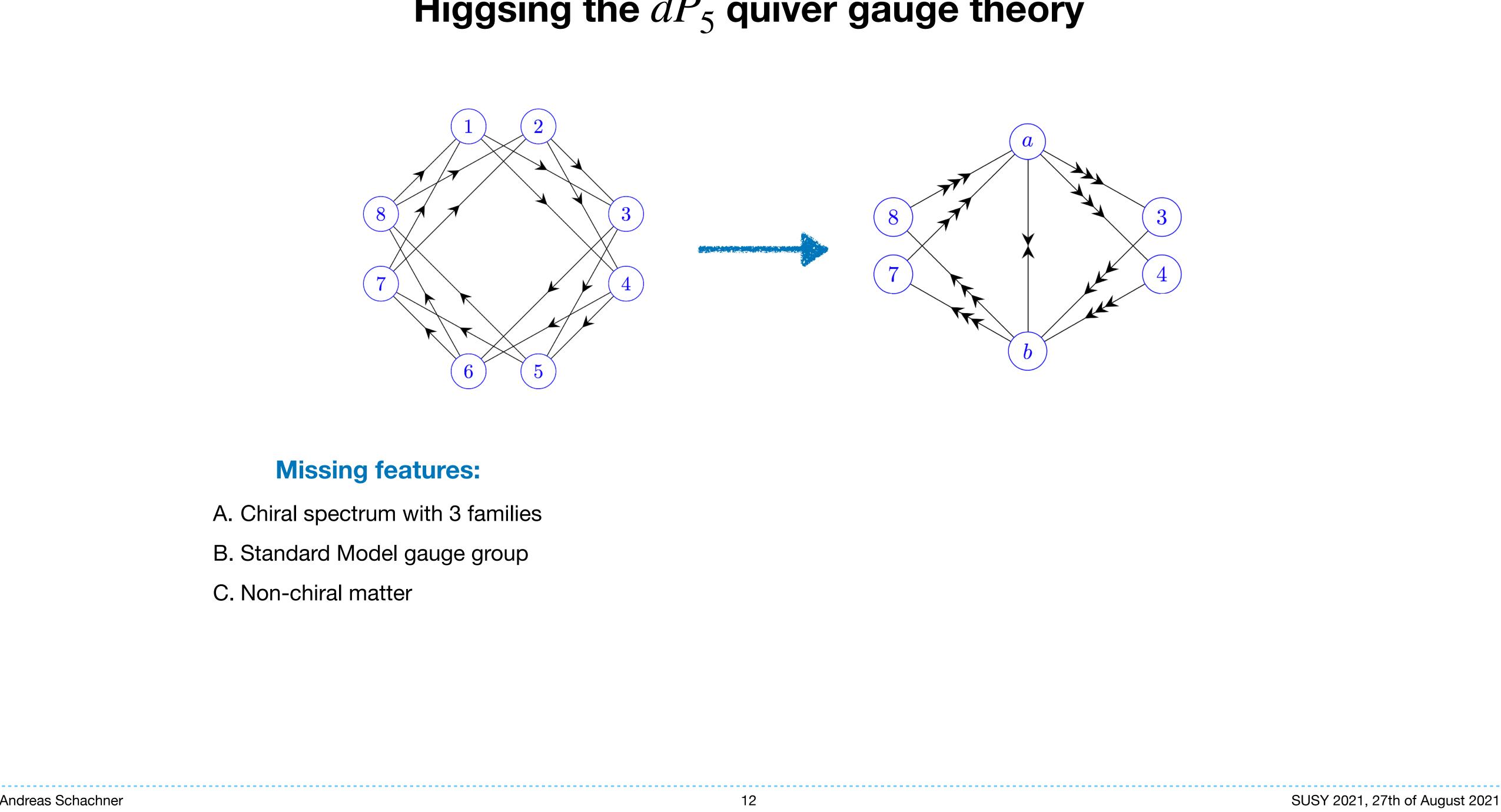
Higgsing the dP_5 quiver gauge theory



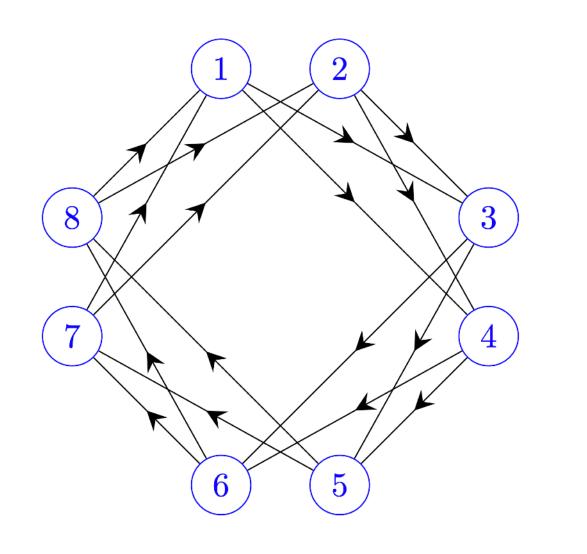
Missing features:

- A. Chiral spectrum with 3 families
- B. Standard Model gauge group
- C. Non-chiral matter





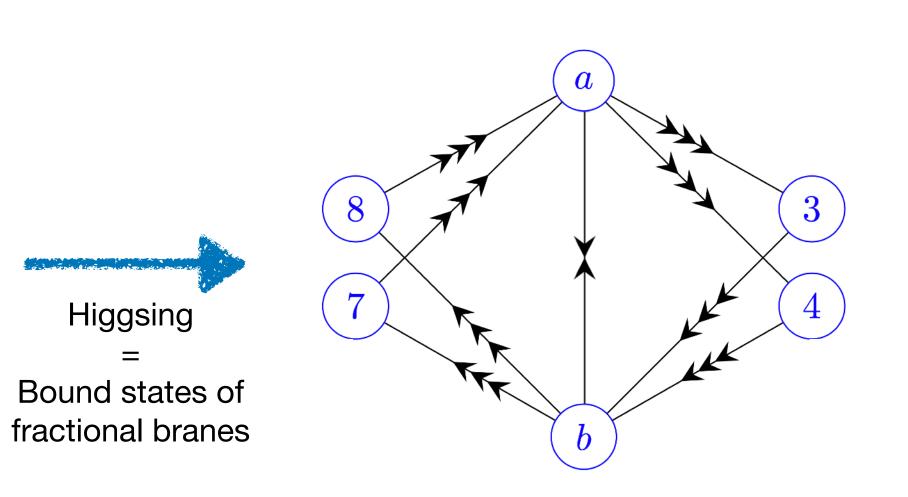
Higgsing the dP_5 quiver gauge theory



Missing features:

- A. Chiral spectrum with 3 families
- B. Standard Model gauge group
- C. Non-chiral matter

All of the above is achieved by turning on VEVs for bi-fundamental fields!

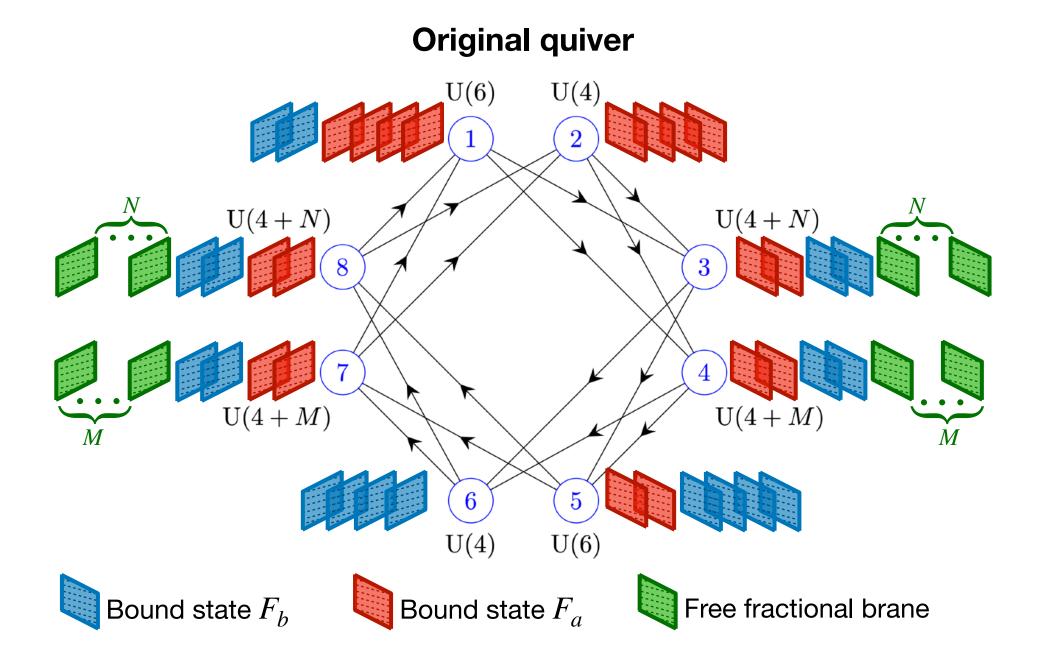


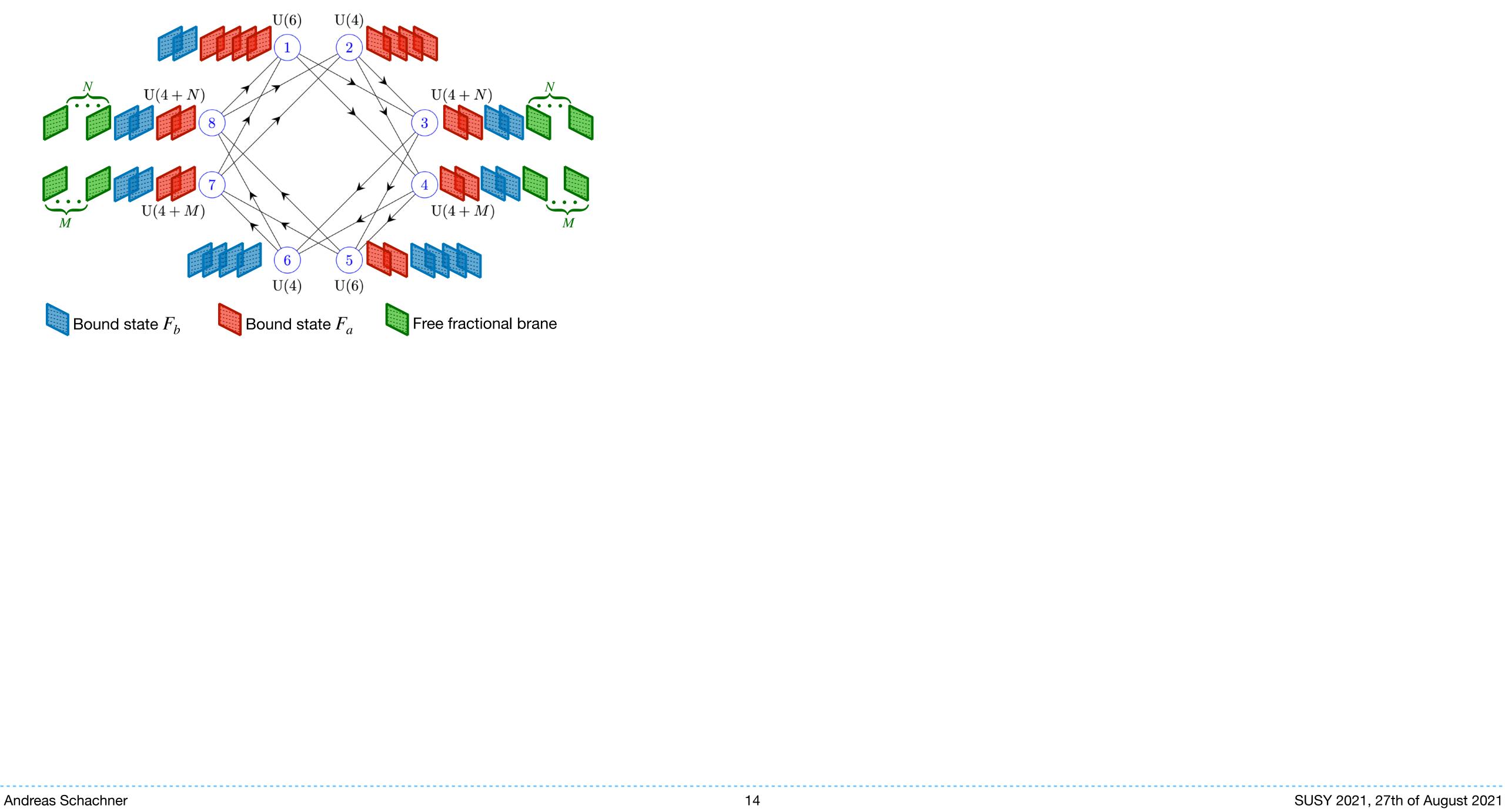
Interpretation:

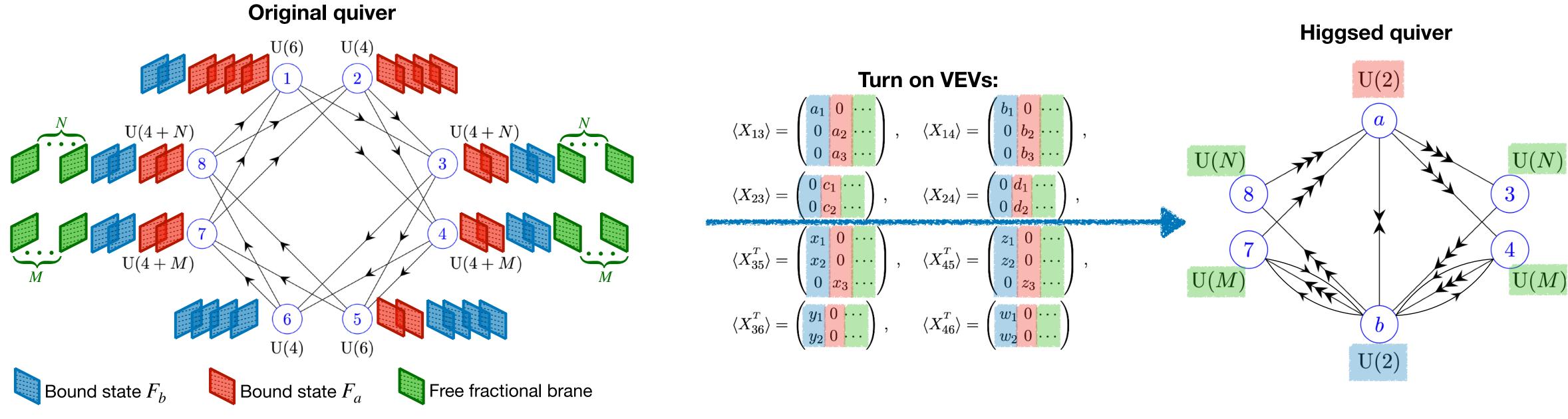
• Fractional brane perspective: bound states of fractional branes

$$\{F_1, \dots, F_8\} \rightarrow \{F_a, F_3, F_4, F_b, F_7, F_8\}$$

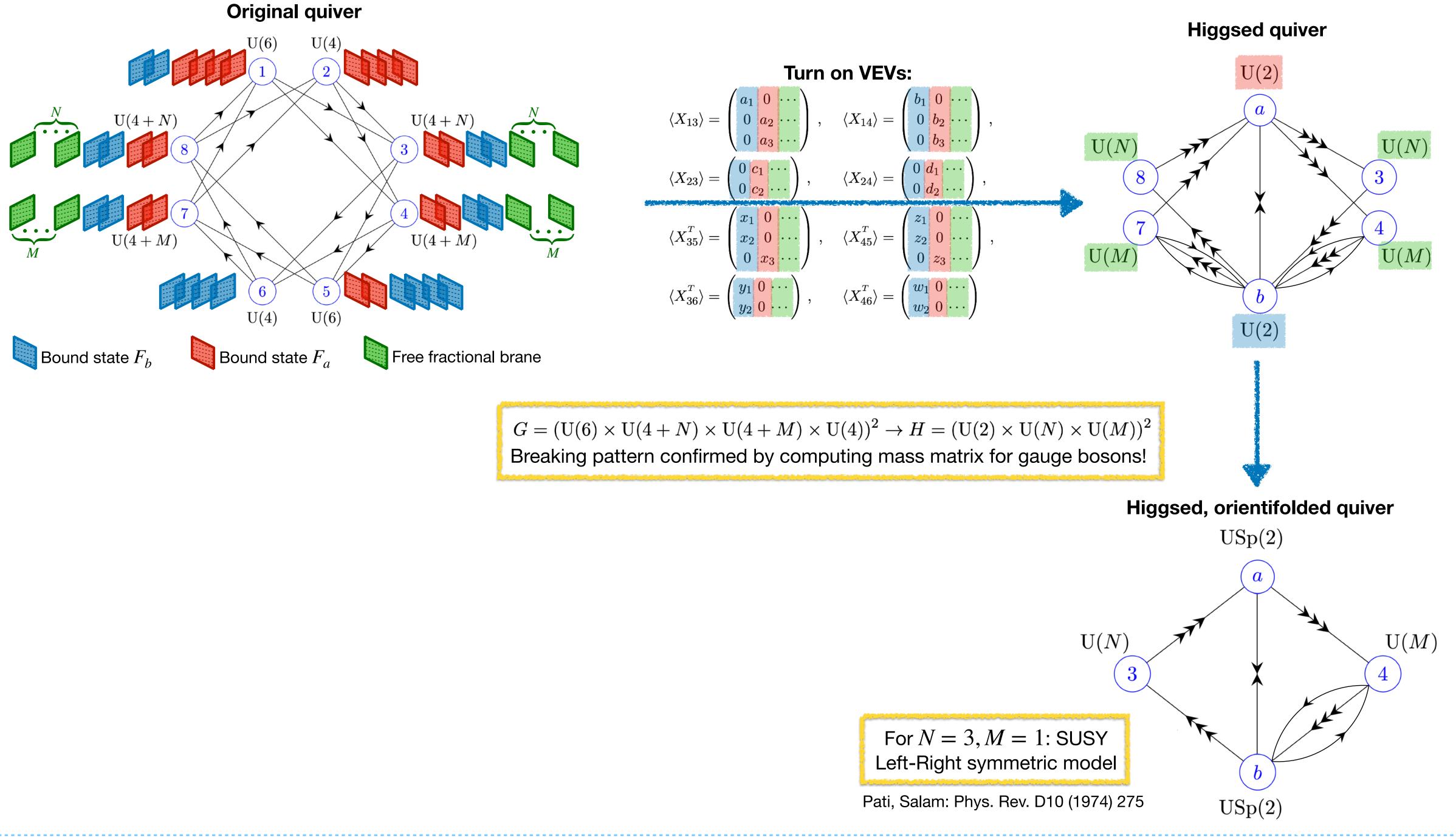
• Geometrically: partial resolution of singularity

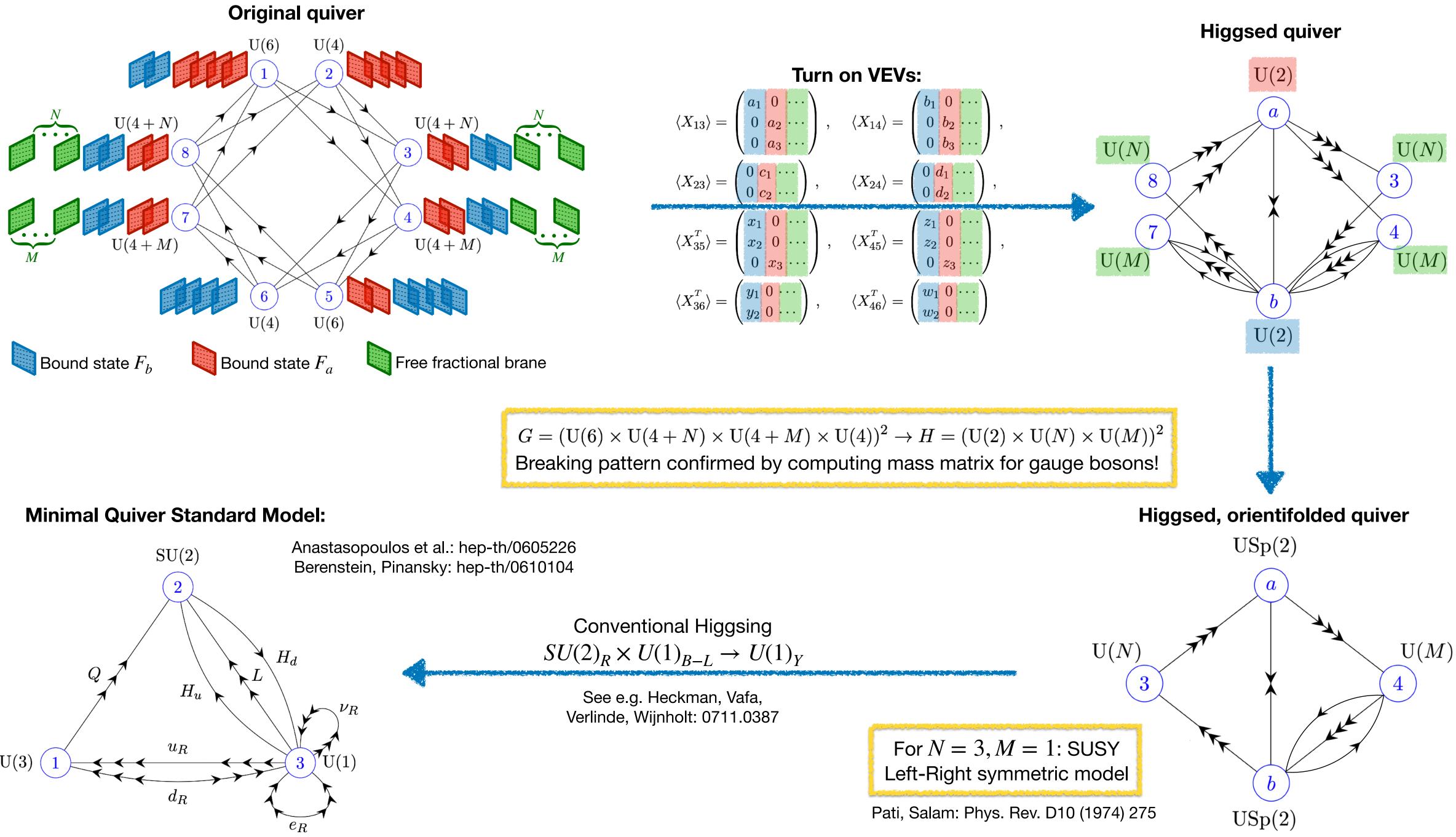


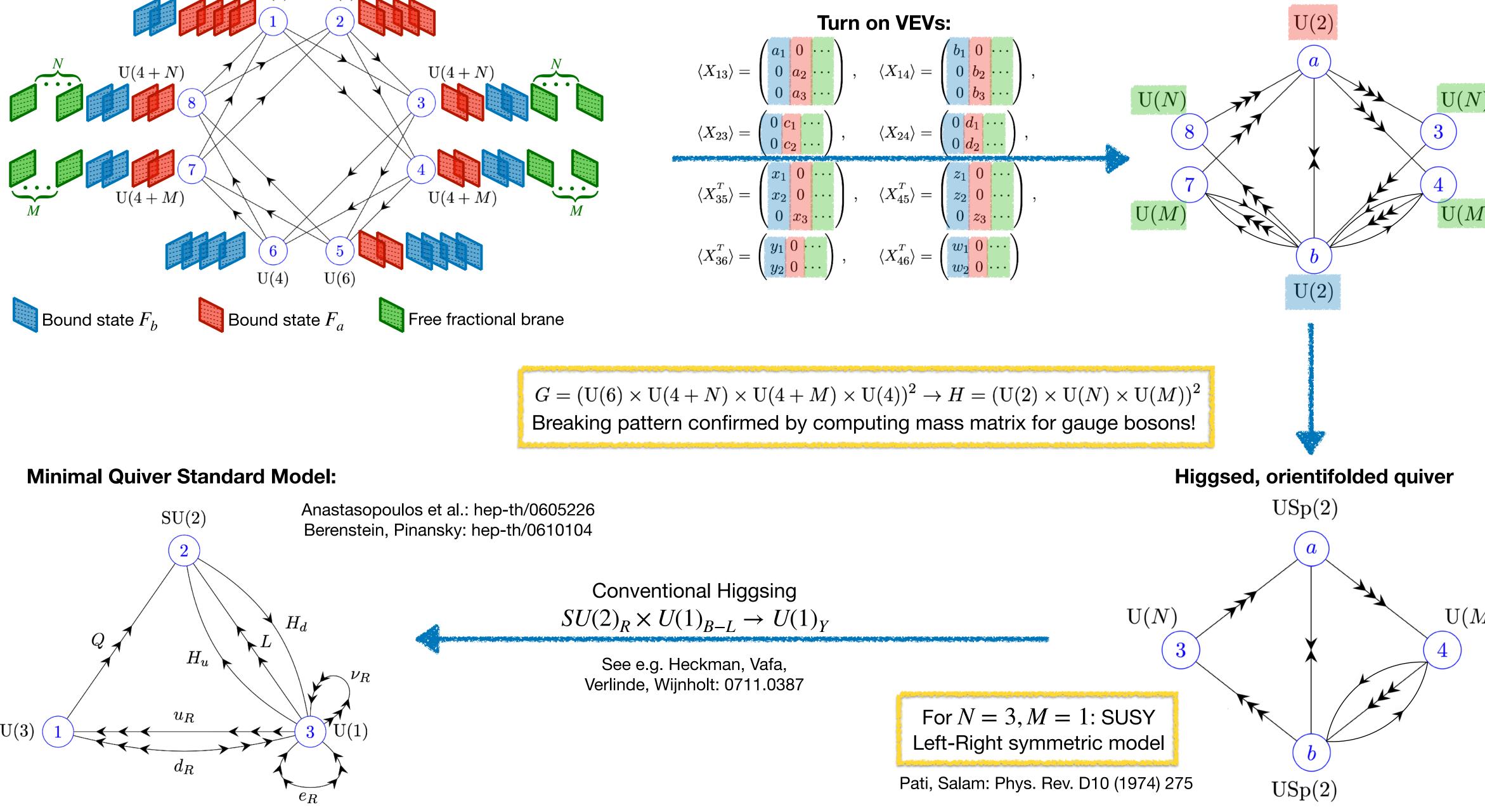




 $G = (\mathrm{U}(6) \times \mathrm{U}(4+N) \times \mathrm{U}(4+M) \times \mathrm{U}(4))^2 \to H = (\mathrm{U}(2) \times \mathrm{U}(N) \times \mathrm{U}(M))^2$ Breaking pattern confirmed by computing mass matrix for gauge bosons!



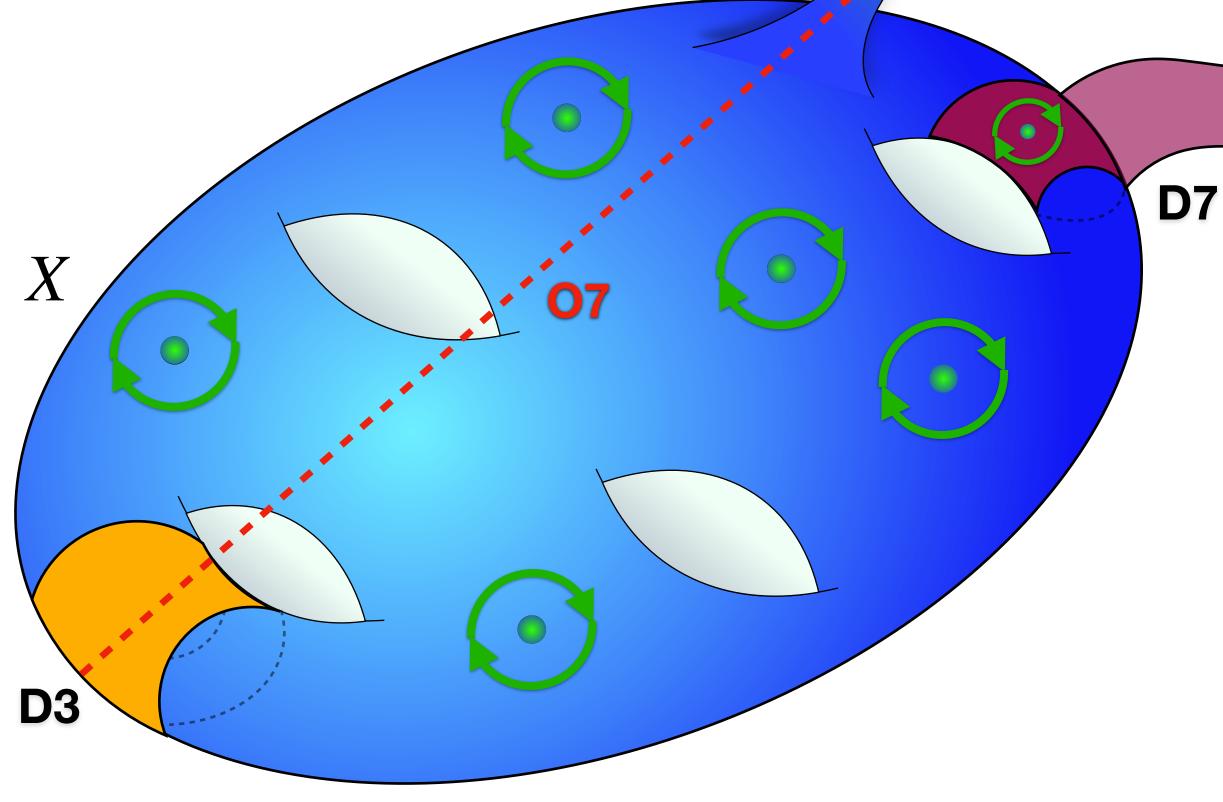


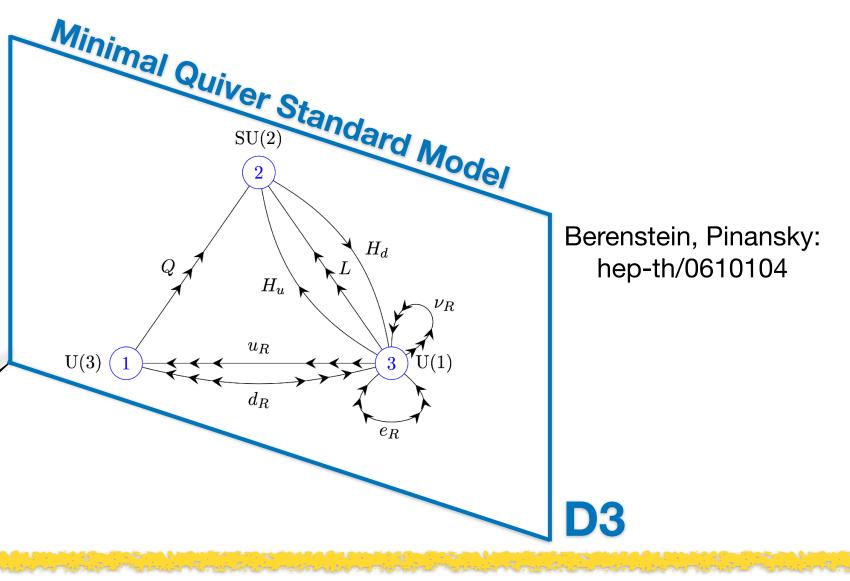


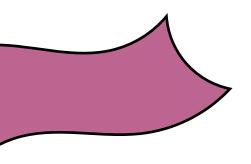
- Choice of singularity
- Standard Model gauge group
- Spectrum of 3 chiral families
- Non-chiral matter

• ...

- Global anomalous U(1)'s
- Hierarchies in Yukawas



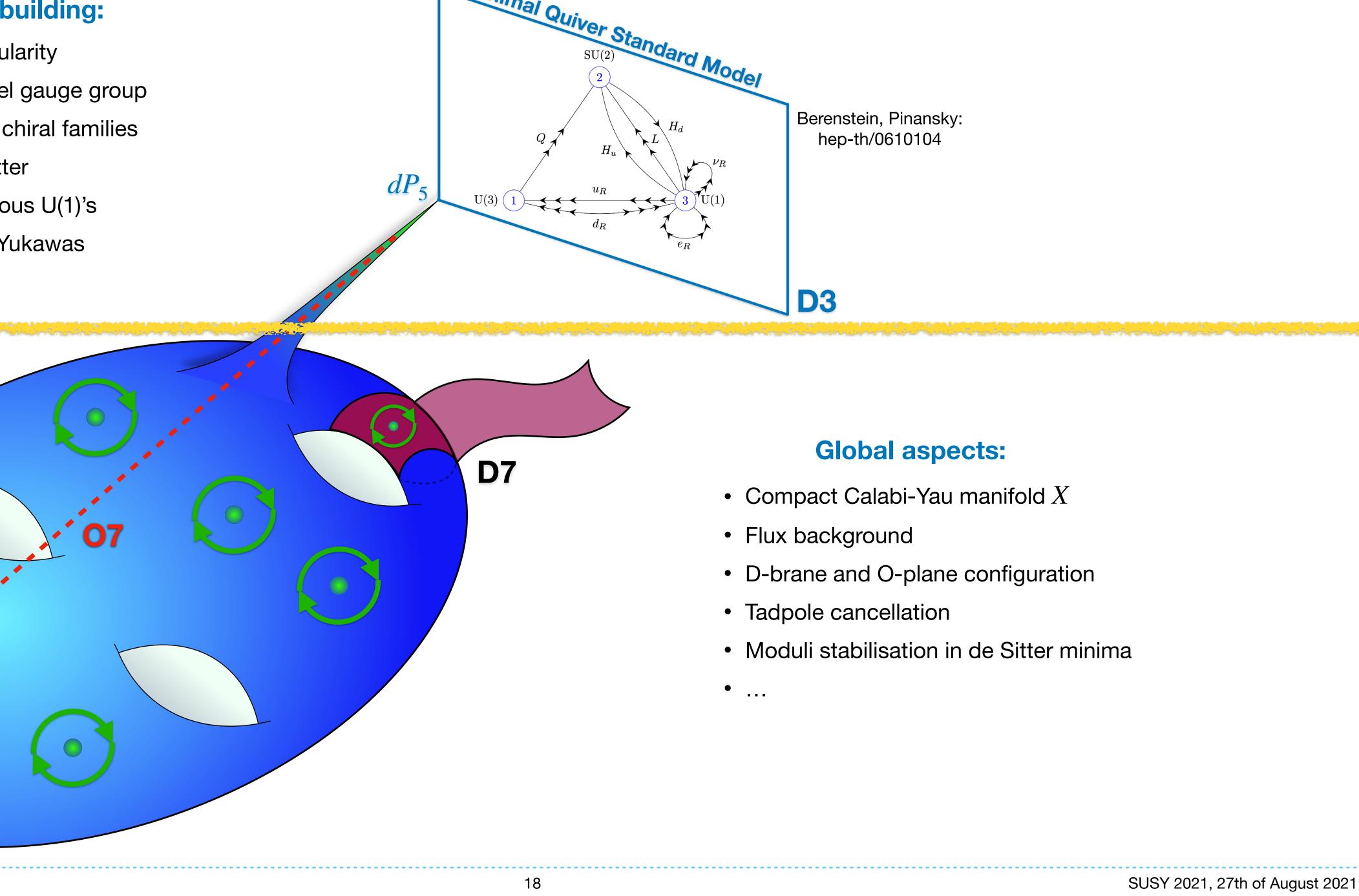




 dP_5

Global aspects:

- Compact Calabi-Yau manifold X
- Flux background
- D-brane and O-plane configuration
- Tadpole cancellation
- Moduli stabilisation in de Sitter minima
- ...



The search for a global model in the KS database

For a del Pezzo divisor D_s of type dP_n

$$\int_{X_3} D_s^3 = k_{sss} = 9 - n , \qquad \int_{X_3} D_s^2 D_i \le 0 \qquad \forall i \neq s$$

N

We looked at the divisor structure of CY geometries in the Kreuzer-Skarke (KS) database with $h^{1,1} \leq 5$

$h^{1,1}$	Poly*	Geom*	dP ₀	dP_1 or	dP_2	dP ₃	dP ₄	dP_5	dP ₆	dP ₇	dP ₈	$h^{1,1}$	Poly*	Geom*	ddP_0	$d\mathbb{F}_0$	ddP_n	ddP_6	ddP ₇	ddP ₈	7
				\mathbb{F}_0										$(n_{\rm CY})$			$1 \le n \le 5$				(dd)
1	5	5	0	0	0	0	0	0	0	0	0	1	5	5	0	0	0	0	0	0	
2	36	39	9	4	0	0	0	0	2	4	5	2	36	39	9	2	0	2	4	5	
3	243	305	55	88	4	4	2	9	20	62	64	3	243	305	55	16	0	16	37	34	
4	1185	2000	304	767	146	135	52	175	213	566	506	4	1185	2000	304	140	0	97	210	126	
5	4897	13494	2107	6518	1960	2094	880	2005	2011	4358	3837	5	4897	13494	2107	901	0	486	731	374	

Distinct favourable polytopes and geometries

Kreuzer-Skarke ddP_n conjecture:

Calabi-Yau threefolds arising from fine, regular, star triangulations of 4d reflexive polytopes in the Kreuzer-Skarke database do not exhibit diagonal dP_n divisors with $1 \le n \le 5$

Diagonality condition for
$$dP_5$$

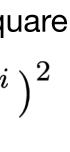
 $k_{sss} k_{sij} = k_{ssi} k_{ssj} \quad \forall i, j$
Necessary condition to ensure
correct singularity structure!
4-cycle volume becomes complete sq
 $\tau_s = \frac{1}{2} k_{sij} t^i t^j = \frac{1}{2 k_{sss}} (k_{ssi} t^i t^j + k_{ssi} t^i t^j t^j + k_{ssi} t^i t^j + k_{ssi} t^i$

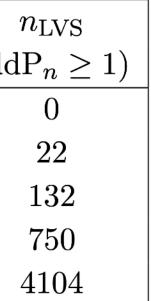
Kreuzer, Skarke: hep-th/0002240



Further checks of ~300.000 distinct geometries at $6 \le h^{1,1} \le 40$ with **CYTools** confirm this trend!

Demirtas, McAllister, Rios-Tascon: 2008.01730





Let us focus on specific model with $(h^{2,1}, h^{1,1}) = (52,4)$

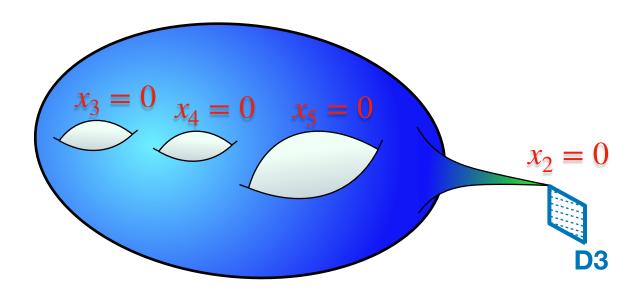
HY_1	HY_2	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
4	4	1	0	0	0	2	2	1	1	1
2	2	0	1	0	0	1	1	0	0	1
2	2	0	0	1	0	1	1	0	1	0
2	2	0	0	0	1	1	1	1	0	0
		NdP ₁₇	dP_5	dP_5	dP_5	SD1	SD1	SD2	SD2	SD2

Euler characteristic

 $\chi = -96$

Stanley-Reisner ideal

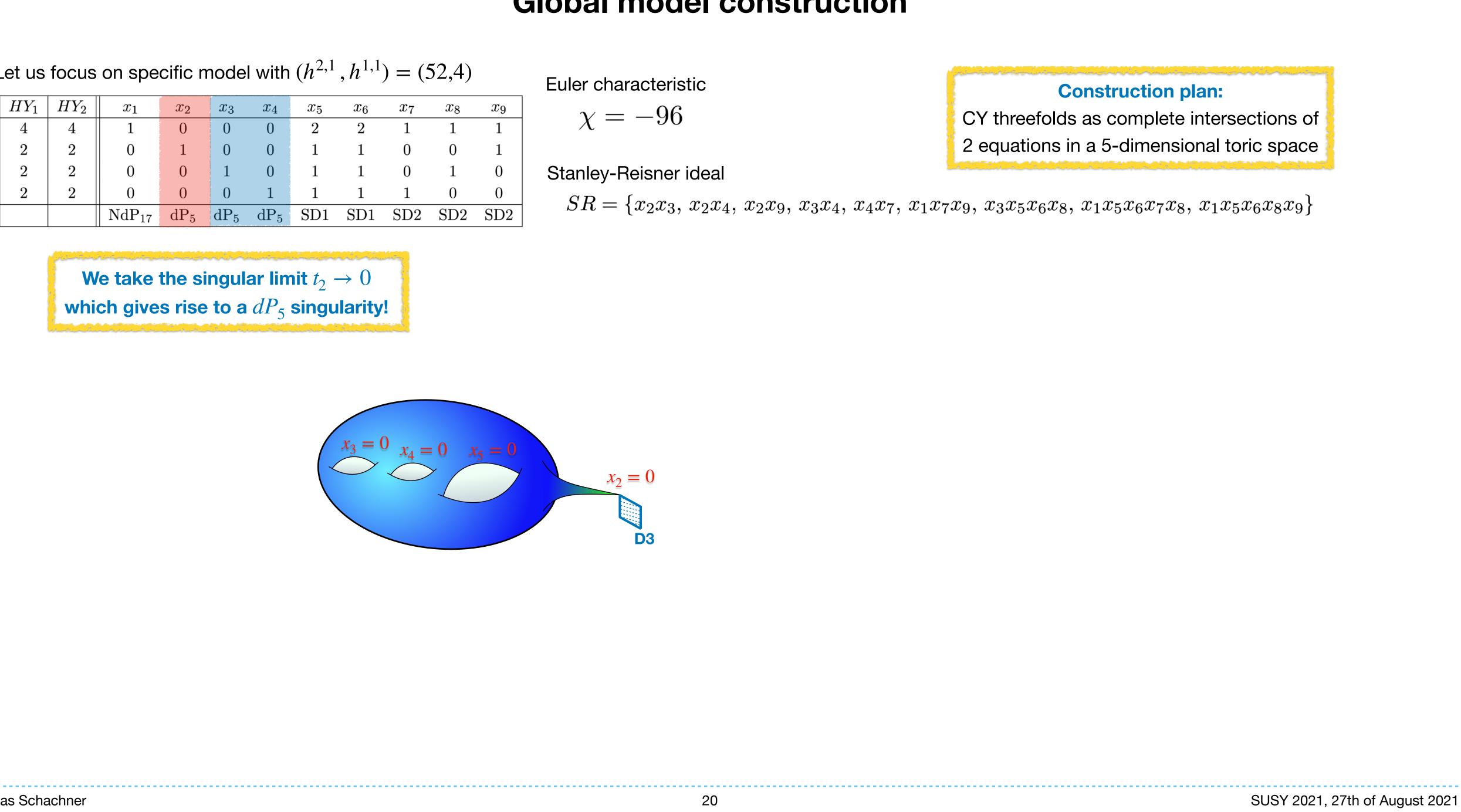
We take the singular limit $t_2 \rightarrow 0$ which gives rise to a dP_5 singularity!



Construction plan:

CY threefolds as complete intersections of 2 equations in a 5-dimensional toric space

 $SR = \{x_2x_3, x_2x_4, x_2x_9, x_3x_4, x_4x_7, x_1x_7x_9, x_3x_5x_6x_8, x_1x_5x_6x_7x_8, x_1x_5x_6x_8x_9\}$



Let us focus on specific model with $(h^{2,1}, h^{1,1}) = (52,4)$

HY_1	HY_2	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
4	4	1	0	0	0	2	2	1	1	1
2	2	0	1	0	0	1	1	0	0	1
2	2	0	0	1	0	1	1	0	1	0
2	2	0	0	0	1	1	1	1	0	0
		NdP ₁₇	dP_5	dP_5	dP_5	SD1	SD1	SD2	SD2	SD2

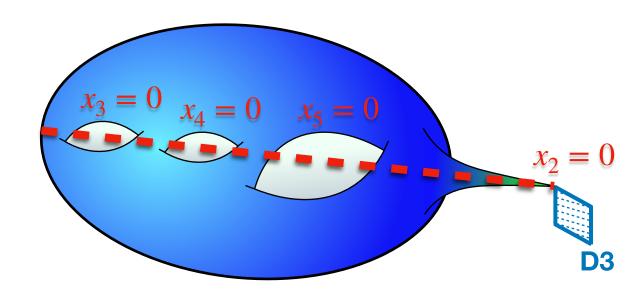
Euler characteristic

 $\chi = -96$

Stanley-Reisner ideal $SR = \{x_2x_3, x_2x_4, x_2x_9, x_3x_4, x_4x_7, x_1x_7x_9, x_3x_5x_6x_8, x_1x_5x_6x_7x_8, x_1x_5x_6x_8x_9\}$

We take the singular limit $t_2 \rightarrow 0$ which gives rise to a dP_5 singularity!

Orientifold involution



Construction plan:

CY threefolds as complete intersections of 2 equations in a 5-dimensional toric space

Single O7-plane on

 $\sigma : x_5 \mapsto -x_5 \qquad D_5 = 2D_b - D_2 - D_3 - D_4$

We checked that the local model can indeed be embedded as well as that the global and **local involutions are consistent!**

Let us focus on specific model with $(h^{2,1}, h^{1,1}) = (52,4)$

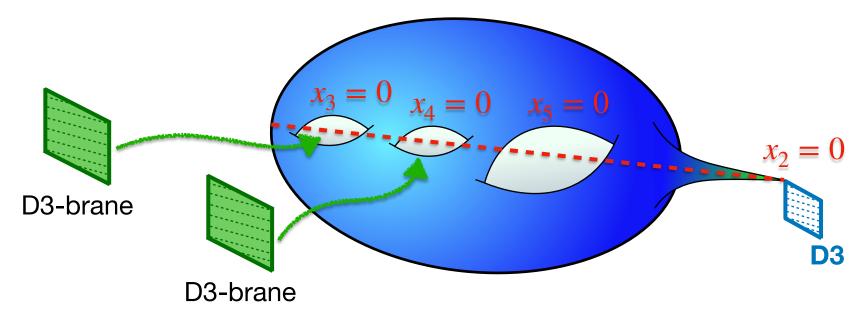
HY_1	HY_2	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
4	4	1	0	0	0	2	2	1	1	1
2	2	0	1	0	0	1	1	0	0	1
2	2	0	0	1	0	1	1	0	1	0
2	2	0	0	0	1	1	1	1	0	0
		NdP ₁₇	dP_5	dP_5	dP_5	SD1	SD1	SD2	SD2	SD2

Euler characteristic

 $\chi = -96$

Stanley-Reisner ideal

We take the singular limit $t_2 \rightarrow 0$ which gives rise to a dP_5 singularity! Orientifold involution



D3-branes on dP_5 divisors at $x_3 = 0$ and $x_4 = 0$ for **non-perturbative effects**

Construction plan:

CY threefolds as complete intersections of 2 equations in a 5-dimensional toric space

 $SR = \{x_2x_3, x_2x_4, x_2x_9, x_3x_4, x_4x_7, x_1x_7x_9, x_3x_5x_6x_8, x_1x_5x_6x_7x_8, x_1x_5x_6x_8x_9\}$

Single O7-plane on

 $\sigma : x_5 \mapsto -x_5 \qquad D_5 = 2D_b - D_2 - D_3 - D_4$

We checked that the local model can indeed be embedded as well as that the global and **local involutions are consistent!**

D-brane and T-brane setup:

- A. D3-branes on additional dP_5 divisors for **non-perturbative effects**
- B. D7-branes to cancel D7-tadpole induced by O7-plane

Let us focus on specific model with $(h^{2,1}, h^{1,1}) = (52,4)$

HY_1	HY_2	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
4	4	1	0	0	0	2	2	1	1	1
2	2	0	1	0	0	1	1	0	0	1
2	2	0	0	1	0	1	1	0	1	0
2	2	0	0	0	1	1	1	1	0	0
		NdP ₁₇	dP_5	dP_5	dP_5	SD1	SD1	SD2	SD2	SD2

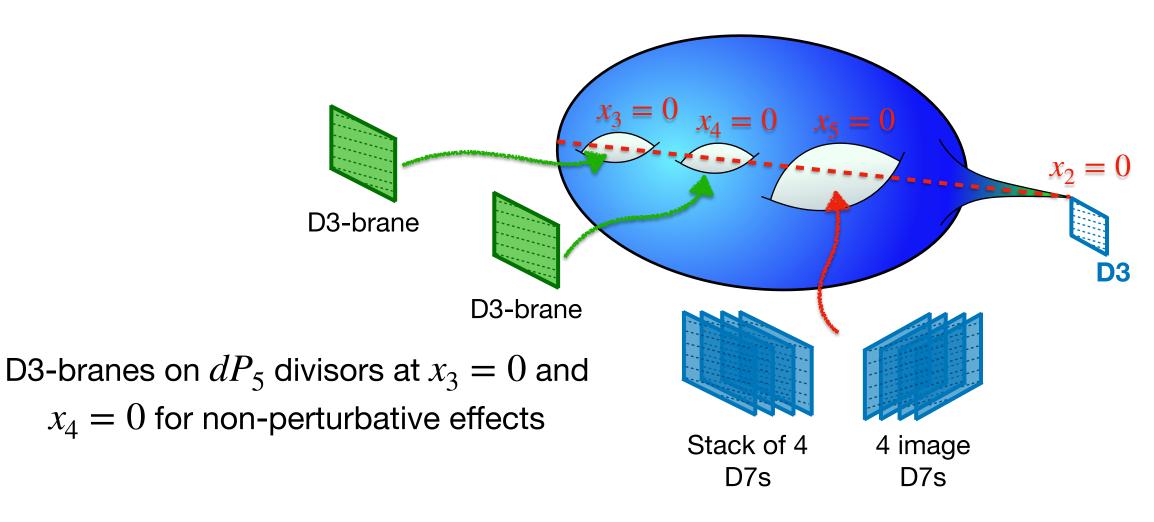
Euler characteristic

 $\chi = -96$

Stanley-Reisner ideal

We take the singular limit $t_2 \rightarrow 0$ which gives rise to a dP_5 singularity!

Orientifold involution



Stack of 4 D7-branes (plus their 4 images) wrapping $x_5 = 0$ with **SO(8)** gauge group and flux

$$\mathcal{F} = F - B = \left(n_b - \frac{1}{2}\right) D_b + \left(n_2 - \frac{1}{2}\right) D_2 \qquad n_b, n_2 \in \mathbb{Z}$$

Construction plan:

CY threefolds as complete intersections of 2 equations in a 5-dimensional toric space

 $SR = \{x_2x_3, x_2x_4, x_2x_9, x_3x_4, x_4x_7, x_1x_7x_9, x_3x_5x_6x_8, x_1x_5x_6x_7x_8, x_1x_5x_6x_8x_9\}$

Single O7-plane on

 $\sigma : x_5 \mapsto -x_5 \qquad D_5 = 2D_b - D_2 - D_3 - D_4$

We checked that the local model can indeed be embedded as well as that the global and **local involutions are consistent!**

D-brane and T-brane setup:

A. D3-branes on additional dP_5 divisors for non-perturbative effects

B. D7-branes to **cancel D7-tadpole** induced by O7-plane

77 \square

Let us focus on specific model with $(h^{2,1}, h^{1,1}) = (52,4)$

HY_1	HY_2	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
4	4	1	0	0	0	2	2	1	1	1
2	2	0	1	0	0	1	1	0	0	1
2	2	0	0	1	0	1	1	0	1	0
2	2	0	0	0	1	1	1	1	0	0
		NdP ₁₇	dP_5	dP_5	dP_5	SD1	SD1	SD2	SD2	SD2
2	2	$\begin{array}{c} 0 \\ NdP_{17} \end{array}$	0 dP ₅	<u> </u>			_			0 SD:

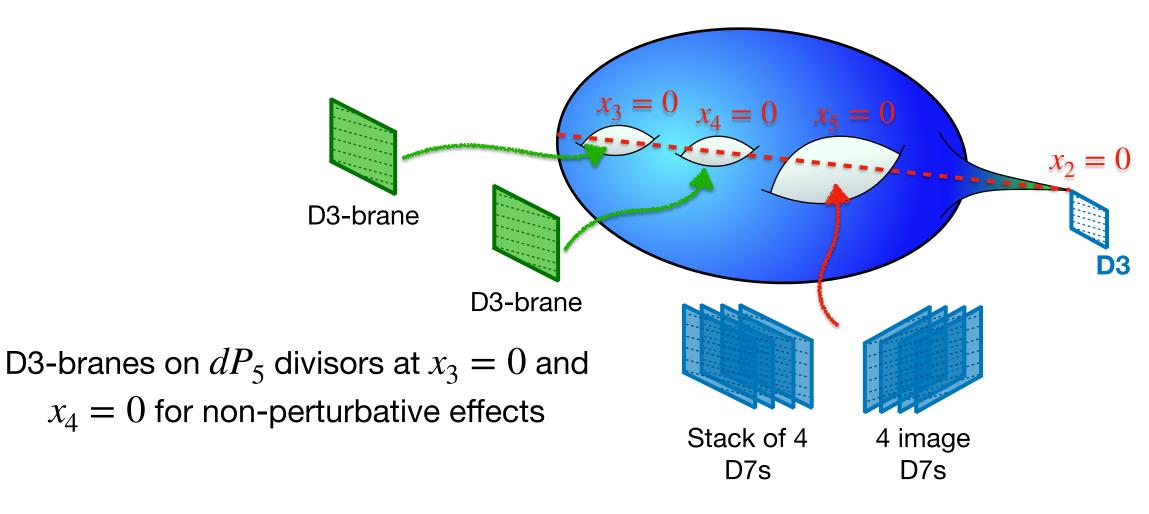
Euler characteristic

 $\chi = -96$

Stanley-Reisner ideal

We take the singular limit $t_2 \rightarrow 0$ which gives rise to a dP_5 singularity!

Orientifold involution



Stack of 4 D7-branes (plus their 4 images) wrapping $x_5 = 0$ with SO(8) gauge group and flux

$$\mathcal{F} = F - B = \left(n_b - \frac{1}{2}\right)D_b + \left(n_2 - \frac{1}{2}\right)D_2 \qquad n_b, n_2 \in \mathbb{Z}$$

Construction plan:

CY threefolds as complete intersections of 2 equations in a 5-dimensional toric space

 $SR = \{x_2x_3, x_2x_4, x_2x_9, x_3x_4, x_4x_7, x_1x_7x_9, x_3x_5x_6x_8, x_1x_5x_6x_7x_8, x_1x_5x_6x_8x_9\}$

Single O7-plane on

 $\sigma : x_5 \mapsto -x_5 \qquad D_5 = 2D_b - D_2 - D_3 - D_4$

We checked that the local model can indeed be embedded as well as that the global and **local involutions are consistent!**

D-brane and T-brane setup:

- A. D3-branes on additional dP_5 divisors for non-perturbative effects
- B. D7-branes to cancel D7-tadpole induced by O7-plane

Flux breaks SO(8) to U(4) with Fayet-Iliopoulos (FI) terms

$$\xi_{D7} = \frac{1}{4\pi\mathcal{V}} \int_{D7} \mathcal{F} \wedge J \xrightarrow{t_2 \to 0} \frac{1}{\pi\mathcal{V}} (2n_b - 1) t_b$$

Non-vanishing FI-term implies we have to switch on VEV for adjoint complex scalar Φ living on D7 stack \rightarrow T-brane background

Cicoli, Quevedo, Valandro: 1512.04558

SUSY 2021, 27th of August 2021

$(\alpha')^3$ -corrected Kähler potential

$$K = -\ln\left(S + \bar{S}\right) - \ln\left(-i\int_{X}\Omega \wedge \bar{\Omega}\right) - 2\ln\left(\mathcal{V} + \frac{\zeta}{2}\right) + K_Q$$

Complex structure moduli
$$\mathcal{V} = d_1\tau_b^{3/2} - d_3\tau_3^{3/2} - d_4\tau_4^{3/2}, \quad d_1 = d_3 = d_4 = \frac{1}{3\sqrt{2}}$$

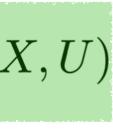
Full **D/F-term scalar potential** for bulk and quiver:

$$V = V_F^{\text{Flux}} + V_F^{\text{quiver}} + V_D^{\text{quiver}} + V_D^{\text{bulk}} + V_F^{\text{LVS}} + V_{\text{soft}}$$

Moduli stabilisation

$$\zeta = -\frac{\chi(X) \zeta(3)}{2(2\pi)^3 g_s^{3/2}} \qquad W = \int_X G_3 \wedge \Omega + A_3 e^{-a_3 T_3} + W_Q(X, N_0) + V_F^{-1} = V_F^{-1} = V_D^{-1} = V_D^{-1} = V_D^{-1} = 0$$

Stabilises complex structure and open string moduli



 $(\alpha')^3$ -corrected Kähler potential

$$K = -\ln\left(S + \bar{S}\right) - \ln\left(-i\int_{X}\Omega \wedge \bar{\Omega}\right) - 2\ln\left(\mathcal{V} + \frac{\zeta}{2}\right) + K_Q$$

Complex structure moduli
$$\mathcal{V} = d_1\tau_b^{3/2} - d_3\tau_3^{3/2} - d_4\tau_4^{3/2}, \quad d_1 = d_3 = d_4 = \frac{1}{3\sqrt{2}}$$

Full D/F-term scalar potential for bulk and quiver:

 $V = V_F^{\text{Flux}} + V_F^{\text{quiver}} + V_D^{\text{quiver}} + V_D^{\text{bulk}} + V_F^{\text{LVS}} + V_{\text{soft}}$

Total scalar potential for Kähler moduli

$$V_{\text{tot}} = \frac{e^{K_{\text{cs}}}}{2 \operatorname{Re}(S)} \left(V_{\text{LVS}} + \frac{\mathcal{F}_{\text{up}} |W_0|^2}{\mathcal{V}^{8/3}} \right), \quad \mathcal{F}_{\text{up}} = \frac{1}{4\pi} \left(\frac{1}{d_1} \right)^{1/3} \approx 0.1822$$
From T-brane
background!
Balasubramanian, Berglund,
Conditions for LVS minima
Balasubramanian, Berglund,
Conlon, Quevedo: hep-th/0502058
$$\mathcal{V} = \frac{3d_i \sqrt{\tau_i} (1 - 4\epsilon_i)}{4a_i(1 - \epsilon_i)} \frac{|W_0|}{|A_i|} e^{a_i \tau_i} \quad \epsilon_i = \frac{1}{4a_i \tau_i}$$

$$e^{a_3 \tau_3 - a_4 \tau_4} = \frac{a_3 |A_3| d_4}{a_4 |A_4| d_3} \frac{1 - \epsilon_3}{1 - 4\epsilon_3} \frac{1 - 4\epsilon_4}{1 - \epsilon_4} \frac{\sqrt{\tau_4}}{\sqrt{\tau_3}}$$

$$\frac{\zeta}{2} = \sum_{i=3}^{4} \frac{d_i(1 - 4\epsilon_i)}{(1 - \epsilon_i)^2} \tau_i^{3/2} - \frac{16 \mathcal{F}_{\text{up}}}{27} \mathcal{V}^{1/3}$$

Andreas Schachner

Moduli stabilisation

Superpotential with
$$a_3 = 2\pi$$

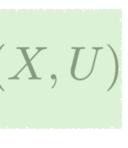
$$\zeta = -\frac{\chi(X) \zeta(3)}{2(2\pi)^3 g_s^{3/2}} \qquad W = \int_X G_3 \wedge \Omega + A_3 e^{-a_3 T_3} + W_Q(X, Y_{\rm Flux}) = \int_X G_3 \wedge \Omega + A_3 e^{-a_3 T_3} + W_Q(X, Y_{\rm Flux}) = \int_X G_3 \wedge \Omega + A_3 e^{-a_3 T_3} + W_Q(X, Y_{\rm Flux}) = \int_X G_3 \wedge \Omega + A_3 e^{-a_3 T_3} + W_Q(X, Y_{\rm Flux}) = G_{\rm Flux}$$
Supersymmetric minima at leading order in the volume $\mathcal{O}(\mathcal{V}^{-2})$
 $V_F^{\rm Flux} = V_F^{\rm quiver} = V_D^{\rm quiver} = V_D^{\rm bulk} = 0$
Stabilises complex structure and open string moduli
Vacuum energy at non-SUSY LVS minima
 $\langle V_{\rm tot} \rangle \simeq \frac{e^{K_{\rm cs}} |W_0|^2}{18 \operatorname{Re}(S) \mathcal{V}^3} \left[\mathcal{F}_{\rm up} \mathcal{V}^{1/3} - \sum_{i=3}^4 \frac{27d_i}{4a_i} \frac{(1-4\epsilon_i)}{(1-\epsilon_i)^2} \sqrt{\tau_i} \right]$

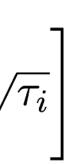
3

Minkowski minima

$$\frac{\zeta}{2} = \sum_{i=3}^{4} \frac{d_i (1 - 4\epsilon_i)(1 - 16\epsilon_i)}{(1 - \epsilon_i)^2} \tau_i^{3/2}$$
$$\langle \mathcal{V} \rangle_{\text{Mink.}} = \frac{1}{\mathcal{F}_{\text{up}}^3} \left(\sum_{i=3}^{4} \frac{27d_i}{4a_i} \frac{(1 - 4\epsilon_i)}{(1 - \epsilon_i)^2} \sqrt{\tau_i} \right)$$

At the Minkowski minimum, the volume is **not** exponentially large, but grows like $(h^{1,1} - 2)^2$





Minkowski minima, mass spectrum and SUSY breaking

Numerical analysis for $ A_s - A_3 - A_4 $ $r_s - r_3 - r_4$										
g_s	$ W_0 / A_s $	$\langle au_s angle$	$\langle \mathcal{V} angle$	$ W_0 / A_s $	$\langle \tau_s \rangle$	$\langle \mathcal{V} angle$				
0.10	$3.57 \cdot 10^{-6}$	3.23	115.6	$2.88\cdot 10^{-9}$	4.42	188.6				
0.05	$2.22 \cdot 10^{-13}$	5.98	301.1	$1.05 \cdot 10^{-19}$	8.35	503.2				
0.03	$3.72 \cdot 10^{-23}$	9.63	626.4	$8.38 \cdot 10^{-34}$	13.59	1057.4				
0.02	$1.79 \cdot 10^{-35}$	14.21	1131.3	$1.61 \cdot 10^{-51}$	20.15	1919.3				
0.01	$1.21 \cdot 10^{-72}$	27.94	3145.2	$6.85 \cdot 10^{-105}$	39.82	5363.7				

Numerical analysis for $|A_s| = |A_3| = |A_4|$ $\tau_s = \tau_3 = \tau_4$

$$\chi_{eff} = -5$$

$$\chi = -96$$

 $\chi_{eff} = -56 \qquad \qquad \chi = -96$ Minasian, Pugh, $\chi_{\rm eff} = \chi(X) + 2 \int_X D_{O7}^3$ Savelli: 1506.06756

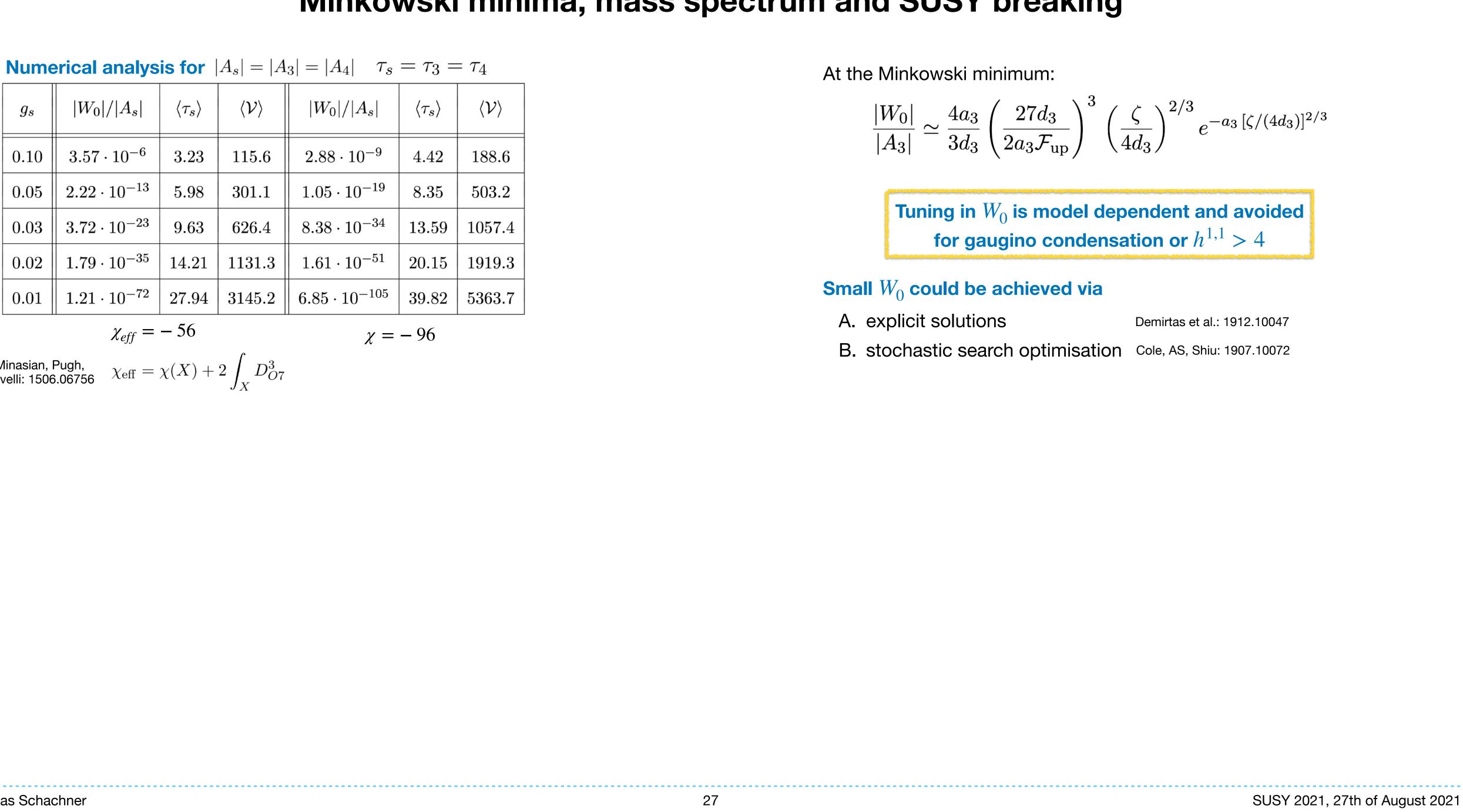
At the Minkowski minimum:

$$\frac{|W_0|}{|A_3|} \simeq \frac{4a_3}{3d_3} \left(\frac{27d_3}{2a_3\mathcal{F}_{up}}\right)^3 \left(\frac{\zeta}{4d_3}\right)^{2/3} e^{-a_3 \left[\zeta/(4d_3)\right]^{2/3}}$$

Tuning in W_0 is model dependent and avoided for gaugino condensation or $h^{1,1} > 4$

Small W_0 could be achieved via

- A. explicit solutions Demirtas et al.: 1912.10047
- B. stochastic search optimisation Cole, AS, Shiu: 1907.10072



Minkowski minima, mass spectrum and SUSY breaking

	= $ au_4$	$= \tau_3 =$	$ A_3 = A_4 \tau_s$	$ A_s = A $	is for	erical analys	Nume
$M_{\rm soft} \sim m_{3/2} \sim $	$\langle \mathcal{V} angle$	$\langle \tau_s \rangle$	$ W_0 / A_s $	$\langle \mathcal{V} angle$	$\langle au_s angle$	$ W_0 / A_s $	g_s
$m_{3/2} \sim 10^{10} { m Ge}$	188.6	4.42	$2.88 \cdot 10^{-9}$	115.6	3.23	$3.57\cdot 10^{-6}$	0.10
$m_{3/2} \sim 1 { m TeV}$	503.2	8.35	$1.05 \cdot 10^{-19}$	301.1	5.98	$2.22 \cdot 10^{-13}$	0.05
	1057.4	13.59	$8.38 \cdot 10^{-34}$	626.4	9.63	$3.72 \cdot 10^{-23}$	0.03
Soft mas below LHC	1919.3	20.15	$1.61 \cdot 10^{-51}$	1131.3	14.21	$1.79 \cdot 10^{-35}$	0.02
*	5363.7	39.82	$6.85 \cdot 10^{-105}$	3145.2	27.94	$1.21 \cdot 10^{-72}$	0.01

 $\mathbf{L}_{\mathbf{r}} = \mathbf{f}_{\mathbf{r}} \mathbf{r} + \mathbf{A} + \mathbf{A} + \mathbf{A} + \mathbf{A} + \mathbf{a} \mathbf{r} - \mathbf{a} \mathbf{r}_{\mathbf{r}} - \mathbf{a}$

 $\chi_{eff} = -56$

 $\chi = -96$

Field	Name	Mass
$dP_5 modulus$	$ au_2, ho_2$	$\sim M_s$
cx str moduli	U_{lpha}	$\sim m_{3/2}$
dilaton	S	$\sim m_{3/2}$
blow-up cycles	$ au_3, au_4$	$\sim m_{3/2}$
blow-up axions	$ ho_3, ho_4$	$\sim m_{3/2}$
volume modulus	$ au_b$	$\sim m_{3/2}/\sqrt{\mathcal{V}}$
volume axion	$ ho_b$	$\sim M_p e^{-\mathcal{V}^{2/3}}$

$$\frac{F^{T_b}}{\tau_b} \sim \frac{F^{T_3}}{\tau_3} \sim \frac{F^{T_4}}{\tau_4} \sim m_{3/2} \quad , \quad F^{T_4}$$

Threshold corrections to the gauge kinetic function for orientifolded singularities amount to

$$\tau_2 \quad \rightarrow \quad \tau_2^{\text{new}} = \tau_2 - \alpha \ln \mathcal{V}$$

At the Minkowski minimum:

 $|W_0|M_p/\mathcal{V}|$

leV

$$\frac{W_0|}{A_3|} \simeq \frac{4a_3}{3d_3} \left(\frac{27d_3}{2a_3\mathcal{F}_{up}}\right)^3 \left(\frac{\zeta}{4d_3}\right)^{2/3} e^{-a_3 \left[\zeta/(4d_3)\right]^{2/3}}$$

Tuning in W_0 is model dependent and avoided for gaugino condensation or $h^{1,1} > 4$

asses C scales

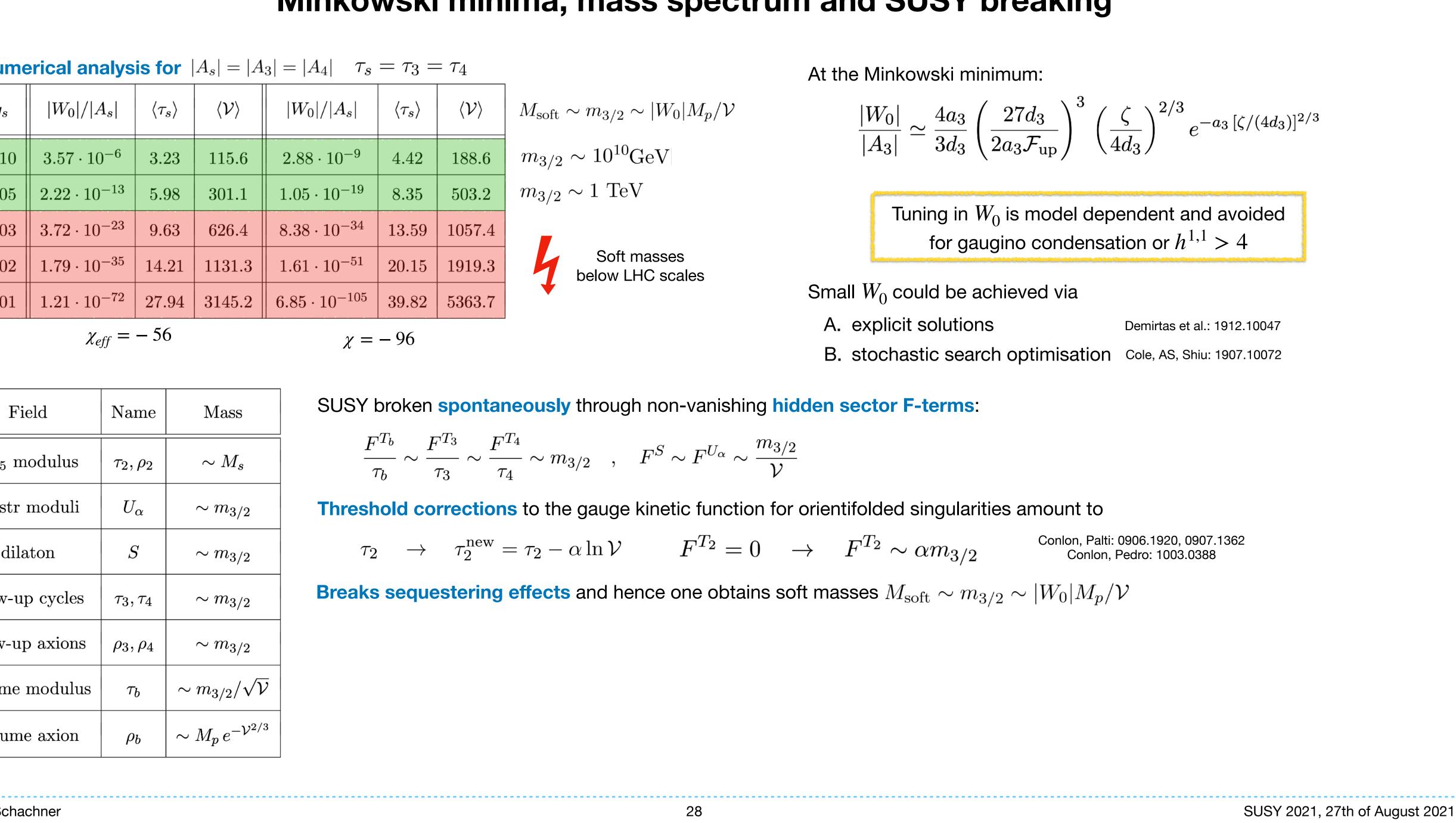
- Small W_0 could be achieved via
 - A. explicit solutions Demirtas et al.: 1912.10047
 - B. stochastic search optimisation Cole, AS, Shiu: 1907.10072

SUSY broken **spontaneously** through non-vanishing **hidden sector F-terms**:

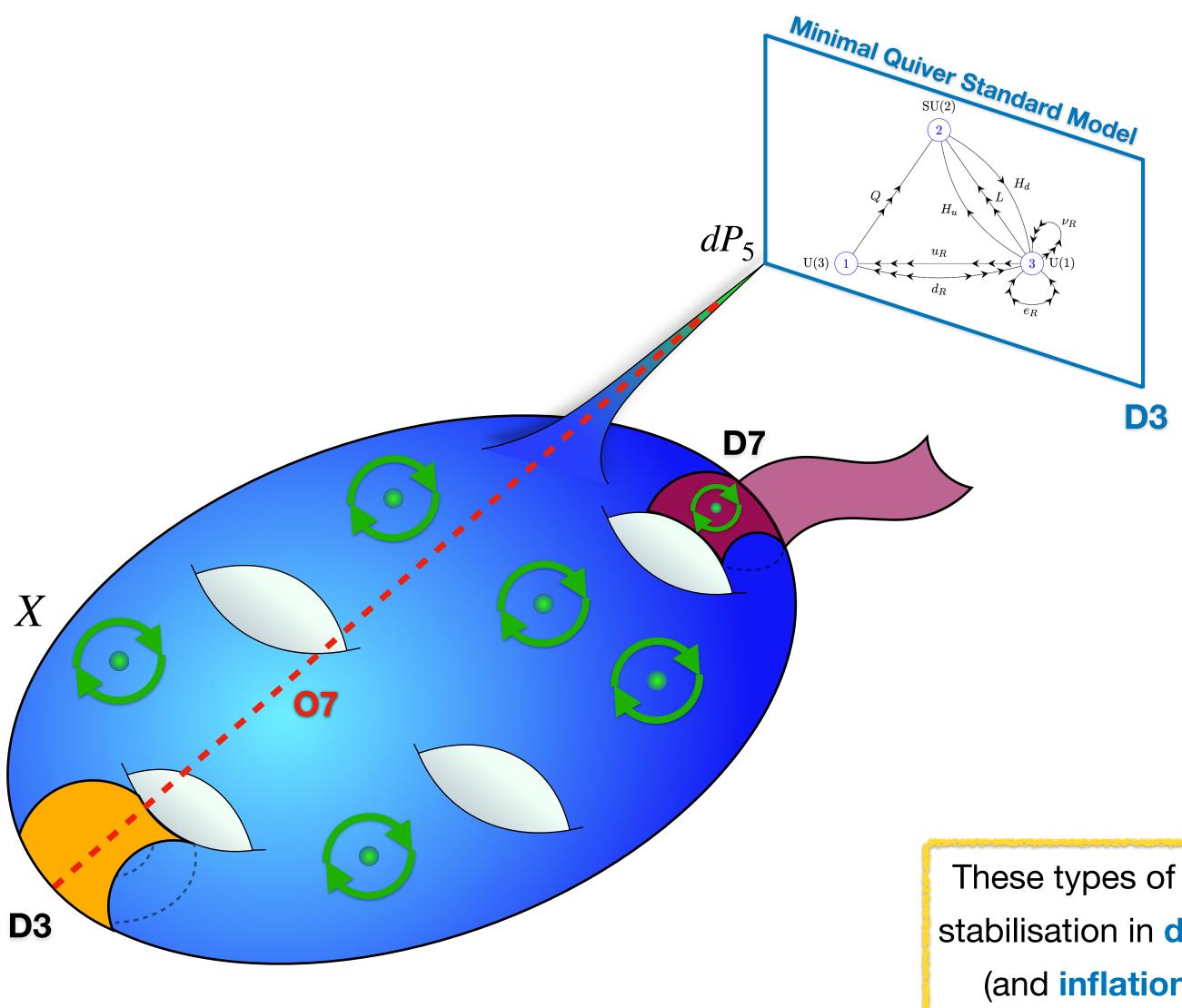
 $F^S \sim F^{U_\alpha} \sim \frac{m_{3/2}}{\mathcal{V}}$

 $F^{T_2} = 0 \quad
ightarrow \quad F^{T_2} \sim lpha m_{3/2}$

Breaks sequestering effects and hence one obtains soft masses $M_{\rm soft} \sim m_{3/2} \sim |W_0| M_p / \mathcal{V}$



Conclusions



- Standard Model quiver from a single D3-brane at dP_5 singularity
- Explicit construction of compact CY threefolds
- Consistent global embedding with tadpole cancellation etc.
- Moduli stabilisation in de Sitter minimum from T-brane uplift

Future directions:

- Systematic study of models with $dP_{n>5}$
- Local orientifold action on exceptional collections
- Models with many Kähler moduli $h^{1,1} > 4$
- Combine with model for inflation
- Gaugino condensation and additional uplifting sources

Concluding remark

These types of constructions are the **most explicit** models with moduli stabilisation in de Sitter minima and a realisation of the Standard Model (and inflationary cosmology) in string theory compactifications!

Thank you!

