Counting BPS states with Exponential Networks

Pietro Longhi
ETH Zirich

SUSY 2021 - Session on Formal SUSY Theories
Institute of Theoretical Physics, Chinese Academy of Sciences, August 23-38, 2021



Introduction

The main subject of this talk is the problem of counting BPS states in M-theory
compactifications on local Calabi-Yau threefolds. Joint work with S. Banerjee and M. Romo.
[Banerjee L Romo - 1811.02875, 1910.05296, 2012.09769] also see [L - 2101.01681] [Del Monte L - 2107.14255]
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Goal: given a local threefold X x S' x R*, we wish to determine the spectrum of M2 branes
on Cy x R, of M5 branes on C4 x S' x R, and of their boundstates.

Math motivations: a new way to computate enumerative (category-theoretic) invariants.

Physics approach: involves supersymmetric QFTs in various dimensions, coupled to each other.



Introduction

This question belongs to a class of problems with universal features:

A moduli space of stability conditions: u € 5 defines the notion of stable BPS states.

For a generic choice of u € B the BPS spectrum is characterized by
> The charge v of a BPS state is valued in I' ~ ZF
> The Dirac pairing of two states is a skew-symmetric bilinear form (-, -} : T xT' = Z
> Physical properties (mass, supercharges) of a BPS state are encoded by Z, € C
BPS states are ‘counted’ by BPS invariants Q(v) € Z.
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Two problems in this class are closely related to ours:
» computation of DT invariants of certain Fukaya categories
> the study of BPS states in class S theories

Indeed, M-theory on local CY3 provides a natural home for both
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/ S M. DT invs
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These two frameworks naturally emerge together in our approach to the main problem:
computing Q(, u) for M2 & M5 branes in of X x S x R%.

Approach

Choose L a noncompact Lagrangian in X (for concreteness a toric L [Aganagic Vafa]).
Engineer a defect by introducing a single M5 brane on L x S x R2.

The moduli space of M5 on L, after quantum corrections by holomorphic disks
Y: Flz,y)=0 C C"xC*

This curve will play a central role, we'll compute Q(v,u) from its geometry, in the spirit of
spectral networks.



Introduction — defects, mirror curves, BPS cycles

A key step in this direction is due to [Klemm Lerche Mayr Vafa Warner].

First, note that X is the mirror curve of X [Aganagic Vafa, Aganagic Klemm Vafa, Aganagic Ekholm Ng Vafa]

Y : ww=F(z,y) < C*x(C*)?

Second, BPS states map to D3 on compact sLags £3 C Y, S2-fibrered over arcs in the z-plane

c/ =

The central charge reduces to periods of a differential on X
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Introduction — the counting problem

The original problem is thus mapped to

M5-M2in X x 8! x R*
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Leaves out the interesting question of counting, i.e. how to compute Q(7).
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Introduction — the counting problem

The original problem is thus mapped to

M5-M2in X x St x R*
20 Type A D4-D2-D0 in X x R*

M Type IIB D3 on calibrated L5 C Y~ Fuk(Y)
[KIﬂ/}W] calibrated ~ on ) IONS networks

Leaves out the interesting question of counting, i.e. how to compute Q(7).

This is where lessons from spectral networks become useful:
> [Gaiotto Moore Neitzke] solved a similar problem for Hitchin spectral curves

> our setup is different, but underlying physics ideas can be generalized to provide guidance
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Introduction — 3d vacua and 3d BPS states

The main input from physics is a different perspective on X : F(z,y) = 0.

IR dynamics of M5 on L x S x R? is described by a QFT T34[L] (3d N' =2 U(1) GLSM)
> logx ~ tpyr is a Fl coupling
> logy ~ 0 + 515 § As is a field (the complexified scalar in the U(1) v.m.)
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The main input from physics is a different perspective on X : F(z,y) = 0.
IR dynamics of M5 on L x S x R? is described by a QFT T34[L] (3d N' =2 U(1) GLSM)
> logx ~ tpyr is a Fl coupling
> logy ~ 0 + 515 § As is a field (the complexified scalar in the U(1) v.m.)
> for given coupling x, the field is in a vacuum configuration y;(x) ~» points on 3 = vacua
> the theory has BPS states interpolating between vacua y; and y;
> topological charge is classified by 1-chains a on X, with 0a = y; — y;
> central charge Z, ~ [ A

But A = logy dlog x is multi-valued on 3. Therefore, so is Z,!
Physical properties of the BPS states of T34[L] are really defined on a Z-covering

DSy
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Introduction — 3d vacua and 3d BPS states

On X vacua of Ty4[L] are promoted to towers of points

yi(r) €Y —  (j,M):=logy;(x) +2miM € ¥

A BPS state of charge a is a calibrated 1-chain

(4,
M)
(C: z T

The calibrating BPS equations of an (i, N) — (j, M) path are [KLMVW] [Eager Selmani Walcher]

dl -
(logy; — logy; + 2mi(M — N)) :;g_x e (9 = arg Z,)

These define arcs in C% which lift to a C 3.
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Introduction — towards Q(~)

Physics defines counts of these BPS states 1(a) € Q (a 3d lift of [Cecotti Fendley Intriligator Vafa])

Strikingly, the 3d BPS spectrum p(a) encodes BPS invariants Q(v) of compact 1-cycles.
This follows from lifting 2d-4d wall-crossing of [Gaiotto Moore Neitzke] to 3d-5d systems on S*.

Bringing this to fruition requires
> Some way of computing u(a) of 3d BPS states
> Some way of extracting (v) from u(a)

| will describe a construction known as nonabelianization for exponential networks.
This is ~ a topological redux of 3d tt* geometry [Cecotti Vafa] [Dubrovin] [CV+Neitzke] [CV+Gaiotto].



Exponential Networks

Consider an algebraic curve ¥ defined by F(x,y) =0 in C* x C*

=

N

o5y

a&x



Exponential Networks — covering layers

We'll view ¥ as a ramified covering of the C* x-plane with sheets sheets y;(z), j =1,...,d
Branch points of this ramification structure will be marked by , branch cuts by on C*.
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We'll view ¥ as a ramified covering of the C* x-plane with sheets sheets y;(z), j =1,...,d
Branch points of this ramification structure will be marked by , branch cuts by on C*.

We also consider the differential

A=logy dlogz
It is multi-valued on X, but single-valued on ¥ — ¥ with sheets (4,N) =logy,; +2mi N.
There will be logarithmic branch cuts on ¥, denoted by O

11/23



Exponential Networks — covering layers

We'll view ¥ as a ramified covering of the C* x-plane with sheets sheets y;(z), j =1,...,d
Branch points of this ramification structure will be marked by , branch cuts by on C*.

We also consider the differential
A =logy dlogx

It is multi-valued on X, but single-valued on ¥ — ¥ with sheets (4,N) =logy,; +2mi N.

1

There will be logarithmic branch cuts on ¥, denoted by --=-- .

Overall

¥ — % — C:
(4,N) = yjlx) — =z

11/23



Exponential Networks — definitions

W(¥) is a network of trajectories on C* defined by solutions of

dlogx 0
dr ©

(log y,(x) — logyi(z) + 2min)

parameterized by 7 € R, and labeled by (ij,n) for some n € Z [Eager Selmani Walcher].



Exponential Networks — definitions

W(¥) is a network of trajectories on C* defined by solutions of

dlogx 0
dr ©

(log y,(x) — logyi(z) + 2min)
parameterized by 7 € R, and labeled by (ij,n) for some n € Z [Eager Selmani Walcher].
Boundary conditions: trajectories start from branch points with y; = y;, and n = 0:

/(4 ,0)

(4410)

IS

\| (i')‘oj



Exponential Networks — definitions

As a trajectory evolves in 7, it may cross branch cuts. This may change labeling

() (M) NS (jk,n)

b




Exponential Networks — definitions

Trajectories may also intersect transversely. New ones may be generated by these rules

Q}l wnlw))

(yh) (1) 1w 7
7 7 g
() (u,k('”‘*“))
(i)
\ 4



Exponential Networks — definitions

Globally, a network W(¥) is a collection of trajectories and their interactions. As 7 — +oc0 all
trajectories end up into punctures, for generic ¢.

k “ (.lkl°) /
|

(1k, 1)




Exponential Networks — definitions

Each trajectory is endowed with soliton data: an assignment of soliton degeneracies 1i(a) € Q
to (relative homology classes of) open paths on ¥ that start/end above the trajectory.



Exponential Networks — definitions

Each trajectory is endowed with soliton data: an assignment of soliton degeneracies 1i(a) € Q
to (relative homology classes of) open paths on ¥ that start/end above the trajectory.

1. For trajectories sourced by branch points, () = 1 for the class of “simplest lifts” to %

i oy (4,W+n)
J (i,N)

C —

Wx)

16 /23



Exponential Networks — nonabelianization

2. For trajectories sourced at intersections, p(a) on the newborn trajectories is fixed by
combinatorics of concatenations of incoming ones.
Example: (ij,n)-(jk, m) intersections.

> Incoming data: p(a) for a € T'(;;,) and p(b) for b € T'(j5 m).

> Outgoing data: p(c) = > ,,~. £u(a)u(b) for all concatenating a, b in class ¢ € T, poyn)




Exponential Networks — nonabelianization

(i4,m)-(44,m) intersections are more involved, but soliton data on all descendant trajectories is
again fixed.

N a:|i,N)—|j,N+n)

m(a)p(b) Xpoa
bili, N+n)—|4, N+n+m)

a:|i,N+m)—|j,N+n+m)
bi|i,N)—|j,N+m)

g'gj.n+k'(n+rn) = exp (Z Z :“'(a')Xa . (_®)k>

N a:|i,N)—|i,N+n)

O := Z Z n(a)w(b)Xaob » e := XN: Z

_1\1+k
gl = ¢Shz1 T oF

N b:|j,N)—|i,N+m)

(=1* gk
&= eXkz1 R O Einth(npm) = €XP (Z ST pb)Xs - (—@)k>



Exponential Networks — nonabelianization

(i4,m)-(44,m) intersections are more involved, but soliton data on all descendant trajectories is
again fixed.

a:|i,Ny—|j,N+n)
b:|i,N+n)—|j,N+n+m)

0:=> > w@)p®) Xaop ,  ©:= > w(a)pu(b) Xpoa
N N a:|i,N+m)—|j,N+n+m)
b:|i,Ny— |5, N+m)

g'gj.n+k'(n+rn) = exp (Z Z '“‘(U‘)Xa . (_®)k>

_ 1y 1+k
( IL ok

N a:|i,N)—|i,N+n)

N b:|j,N)—|i,N+m)

(=1* gk
&= eXkz1 R O Einth(npm) = €XP (Z ST pb)Xs - (—@)k>

The definition of exponential networks YW (¥}) with soliton data p(a) on trajectories is complete.
[Eager Selmani Walcher] [Banerjee L Romo]
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> For a given W(¥), soliton data p(a) is determined by the global topology of W(99)
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> For a given W(¥), soliton data p(a) is determined by the global topology of W(99)

For special values of ¥ the topology of W jumps, because of saddle connections

>&/

\ \
=<4 —~ A

N
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Exponential Networks — dependence on

> For a given W(¥), soliton data p(a) is determined by the global topology of W(99)

For special values of ¥ the topology of W jumps, because of saddle connections

K:QAE ‘
o b

W
/%< —~ ///’<

Saddles on C* lift to closed cycles on X.
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Exponential Networks — dependence on

Claim: combinatorics of p(a) counting open paths encode Q(~) of closed BPS cycles.
Invariance of certain generating series F' = )" _(a)X,, where p(a) jump in a computable way,
implies that X, must jump by Kontsevich-Soibelman morphisms encoding ()

X — ICS(W) (X,) = Xo(1 £ X))@

The full BPS spectrum can be obtained this way
> Given X fixes u € B via BPS central charges via Z, ~ ¢ A.
> All BPS states appear as saddles of W(¥}), precisely when ¥ = arg Z.,.
> Analyzing u(a) for trajectories of each saddle yields the spectrum Q(7).



Exponential Networks — dependence on

Claim: combinatorics of p(a) counting open paths encode Q(~) of closed BPS cycles.
Invariance of certain generating series F' = )" _(a)X,, where p(a) jump in a computable way,
implies that X, must jump by Kontsevich-Soibelman morphisms encoding ()

X — ICS(W) (X,) = Xo(1 £ X))@

The full BPS spectrum can be obtained this way
> Given X fixes u € B via BPS central charges via Z, ~ ¢ A.
> All BPS states appear as saddles of W(¥}), precisely when ¥ = arg Z.,.
> Analyzing u(a) for trajectories of each saddle yields the spectrum Q(7).



Results

For C? with F = 1+ y + xy? we find BPS saddles

with Z, = k%’r and () = —1, corresponding to k DO branes with k € Z.
[Banerjee L Romo — 1811.02875]



For O(—1)? — P! with F =1+ y + zy + Qzy* we find BPS saddles

BPS states with

> Z, = k2% and Q(v) = —2, corresponding to k DO branes with k € Z

> Z, =k% — £logQ and Q(y) = 1, corresponding to D2 bound to k DO’s, for k € Z
[Banerjee L Romo — 1910.05296]
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