Counting BPS states with Exponential Networks

Pietro Longhi
ETH Zürich

SUSY 2021 - Session on Formal SUSY Theories
Institute of Theoretical Physics, Chinese Academy of Sciences, August 23-38, 2021

Introduction

The main subject of this talk is the problem of counting BPS states in M-theory compactifications on local Calabi-Yau threefolds. Joint work with S. Banerjee and M. Romo.
[Banerjee L Romo - 1811.02875, 1910.05296, 2012.09769] also see [L - 2101.01681] [Del Monte L-2107.14255]

Introduction

The main subject of this talk is the problem of counting BPS states in M-theory compactifications on local Calabi-Yau threefolds. Joint work with S. Banerjee and M. Romo. [Banerjee L Romo - 1811.02875, 1910.05296, 2012.09769] also see [L - 2101.01681] [Del Monte L - 2107.14255]

Goal: given a local threefold $X \times S^{1} \times \mathbb{R}^{4}$, we wish to determine the spectrum of M2 branes on $\mathcal{C}_{2} \times \mathbb{R}$, of M5 branes on $\mathcal{C}_{4} \times S^{1} \times \mathbb{R}$, and of their boundstates.

Math motivations: a new way to computate enumerative (category-theoretic) invariants.
Physics approach: involves supersymmetric QFTs in various dimensions, coupled to each other.

Introduction

This question belongs to a class of problems with universal features:
A moduli space of stability conditions: $u \in \mathcal{B}$ defines the notion of stable BPS states.
For a generic choice of $u \in \mathcal{B}$ the BPS spectrum is characterized by

- The charge γ of a BPS state is valued in $\Gamma \simeq \mathbb{Z}^{k}$
- The Dirac pairing of two states is a skew-symmetric bilinear form $\langle\cdot, \cdot\rangle: \Gamma \times \Gamma \rightarrow \mathbb{Z}$
- Physical properties (mass, supercharges) of a BPS state are encoded by $Z_{\gamma} \in \mathbb{C}$
- BPS states are 'counted' by BPS invariants $\Omega(\gamma) \in \mathbb{Z}$.

Introduction

This question belongs to a class of problems with universal features:
A moduli space of stability conditions: $u \in \mathcal{B}$ defines the notion of stable BPS states.
For a generic choice of $u \in \mathcal{B}$ the BPS spectrum is characterized by

- The charge γ of a BPS state is valued in $\Gamma \simeq \mathbb{Z}^{k}$
- The Dirac pairing of two states is a skew-symmetric bilinear form $\langle\cdot, \cdot\rangle: \Gamma \times \Gamma \rightarrow \mathbb{Z}$
- Physical properties (mass, supercharges) of a BPS state are encoded by $Z_{\gamma} \in \mathbb{C}$
- BPS states are 'counted' by BPS invariants $\Omega(\gamma) \in \mathbb{Z}$.

Examples:

	$D^{b} \operatorname{Coh}(X)$	$4 d \mathcal{N}=2$ QFT	\cdots
\mathcal{B}	Kähler moduli	Coulomb branch	
Γ	$H_{c p t}^{\bullet}(X)$	$H_{1}(\Sigma, \mathbb{Z})$	\cdots
$\Omega(\gamma)$	DT invariants	BPS indices	

Introduction - enumerative invariants and spectral networks

Two problems in this class are closely related to ours:

- computation of DT invariants of certain Fukaya categories
- the study of BPS states in class \mathcal{S} theories

Introduction - enumerative invariants and spectral networks

Two problems in this class are closely related to ours:

- computation of DT invariants of certain Fukaya categories
- the study of BPS states in class \mathcal{S} theories

Indeed, M-theory on local CY3 provides a natural home for both

$$
\begin{array}{cc}
\text { M theory } \\
\text { on } X \times S^{1} \times \mathbb{R}^{4}
\end{array} \xrightarrow{S^{1}} \begin{gathered}
\text { II A D4-D2-D0 } \\
\text { on } X \times \mathbb{R}^{4}
\end{gathered} \leadsto D^{b} \operatorname{Coh}(X)
$$

Introduction - defects, mirror curves, BPS cycles

These two frameworks naturally emerge together in our approach to the main problem: computing $\Omega(\gamma, u)$ for M2 \& M5 branes in of $X \times S^{1} \times \mathbb{R}^{4}$.

Introduction - defects, mirror curves, BPS cycles

These two frameworks naturally emerge together in our approach to the main problem: computing $\Omega(\gamma, u)$ for M2 \& M5 branes in of $X \times S^{1} \times \mathbb{R}^{4}$.

Approach

Choose L a noncompact Lagrangian in X (for concreteness a toric L [Aganagic Vafa]). Engineer a defect by introducing a single M5 brane on $L \times S^{1} \times \mathbb{R}^{2}$.

The moduli space of M5 on L, after quantum corrections by holomorphic disks

$$
\Sigma: \quad F(x, y)=0 \quad \subset \quad \mathbb{C}^{*} \times \mathbb{C}^{*}
$$

This curve will play a central role, we'll compute $\Omega(\gamma, u)$ from its geometry, in the spirit of spectral networks.

Introduction - defects, mirror curves, BPS cycles

A key step in this direction is due to [Klemm Lerche Mayr Vafa Warner].
First, note that Σ is the mirror curve of X [Aganagic Vafa, Aganagic Klemm Vafa, Aganagic Ekholm Ng Vafa]

$$
Y: \quad u v=F(x, y) \quad \subset \quad \mathbb{C}^{2} \times\left(\mathbb{C}^{*}\right)^{2}
$$

Second, BPS states map to D3 on compact sLags $\mathcal{L}_{3} \subset Y, S^{2}$-fibrered over arcs in the x-plane

The central charge reduces to periods of a differential on Σ

$$
\lambda=\log y d \log x \quad \longrightarrow \quad Z_{\gamma}=\frac{1}{2 \pi R} \oint_{\gamma} \lambda
$$

The original problem is thus mapped to

$$
\begin{array}{ll}
& M 5-M 2 \text { in } X \times S^{1} \times \mathbb{R}^{4} \\
\xrightarrow{R \rightarrow 0} & \text { Type IIA } D 4-D 2-D 0 \text { in } X \times \mathbb{R}^{4} \\
\xrightarrow{\text { mirror }} & \text { Type IIB } D 3 \text { on calibrated } \mathcal{L}_{3} \subset Y \quad \rightsquigarrow \\
\xrightarrow{[\text { KLMVW] }} & \text { calibrated } \gamma \text { on } \Sigma
\end{array}
$$

The original problem is thus mapped to

$$
\begin{array}{ll}
& M 5-M 2 \text { in } X \times S^{1} \times \mathbb{R}^{4} \\
\xrightarrow{R \rightarrow 0} & \text { Type IIA } D 4-D 2-D 0 \text { in } X \times \mathbb{R}^{4} \\
\xrightarrow{\text { mirror }} & \text { Type IIB } D 3 \text { on calibrated } \mathcal{L}_{3} \subset Y \quad \rightsquigarrow \\
\xrightarrow{\text { KLMVW] }} & \text { calibrated } \gamma \text { on } \Sigma
\end{array}
$$

Leaves out the interesting question of counting, i.e. how to compute $\Omega(\gamma)$.

Introduction - the counting problem

The original problem is thus mapped to

$$
\begin{array}{lllll}
& M 5-M 2 \text { in } X \times S^{1} \times \mathbb{R}^{4} & & \\
\xrightarrow{R \rightarrow 0} & \text { Type IIA D4-D2-D0 in } X \times \mathbb{R}^{4} & & \\
\xrightarrow{\text { mirror }} & \text { Type IIB } D 3 \text { on calibrated } \mathcal{L}_{3} \subset Y & \rightsquigarrow & \mathcal{F} u k(Y) \\
{[\mathrm{KLMVW]}} & \text { calibrated } \gamma \text { on } \Sigma & \rightsquigarrow & \text { networks } &
\end{array}
$$

Leaves out the interesting question of counting, i.e. how to compute $\Omega(\gamma)$.
This is where lessons from spectral networks become useful:

- [Gaiotto Moore Neitzke] solved a similar problem for Hitchin spectral curves
- our setup is different, but underlying physics ideas can be generalized to provide guidance

Introduction - 3d vacua and 3d BPS states

The main input from physics is a different perspective on $\Sigma: F(x, y)=0$.
IR dynamics of M5 on $L \times S^{1} \times \mathbb{R}^{2}$ is described by a QFT $T_{3 d}[L]$ (3d $\mathcal{N}=2 U(1)$ GLSM)

- $\log x \sim t_{F I}$ is a FI coupling
- $\log y \sim \sigma+\frac{i}{2 \pi R} \oint A_{3}$ is a field (the complexified scalar in the $U(1)$ v.m.)

Introduction - 3d vacua and 3d BPS states

The main input from physics is a different perspective on $\Sigma: F(x, y)=0$.
IR dynamics of M5 on $L \times S^{1} \times \mathbb{R}^{2}$ is described by a QFT $T_{3 d}[L]$ (3d $\mathcal{N}=2 U(1)$ GLSM)

- $\log x \sim t_{F I}$ is a FI coupling
- $\log y \sim \sigma+\frac{i}{2 \pi R} \oint A_{3}$ is a field (the complexified scalar in the $U(1)$ v.m.)
- for given coupling x, the field is in a vacuum configuration $y_{i}(x) \rightsquigarrow$ points on $\Sigma=$ vacua

Introduction - 3d vacua and 3d BPS states

The main input from physics is a different perspective on $\Sigma: F(x, y)=0$.
IR dynamics of M5 on $L \times S^{1} \times \mathbb{R}^{2}$ is described by a QFT $T_{3 d}[L]$ (3d $\mathcal{N}=2 U(1)$ GLSM)

- $\log x \sim t_{F I}$ is a FI coupling
- $\log y \sim \sigma+\frac{i}{2 \pi R} \oint A_{3}$ is a field (the complexified scalar in the $U(1)$ v.m.)
- for given coupling x, the field is in a vacuum configuration $y_{i}(x) \rightsquigarrow$ points on $\Sigma=$ vacua
- the theory has BPS states interpolating between vacua y_{i} and y_{j}

Introduction - 3d vacua and 3d BPS states

The main input from physics is a different perspective on $\Sigma: F(x, y)=0$.
IR dynamics of M5 on $L \times S^{1} \times \mathbb{R}^{2}$ is described by a QFT $T_{3 d}[L]$ (3d $\mathcal{N}=2 U(1)$ GLSM)

- $\log x \sim t_{F I}$ is a FI coupling
- $\log y \sim \sigma+\frac{i}{2 \pi R} \oint A_{3}$ is a field (the complexified scalar in the $U(1)$ v.m.)
- for given coupling x, the field is in a vacuum configuration $y_{i}(x) \rightsquigarrow$ points on $\Sigma=$ vacua
- the theory has BPS states interpolating between vacua y_{i} and y_{j}
- topological charge is classified by $\mathbf{1}$-chains a on Σ, with $\partial a=y_{j}-y_{i}$
- central charge $Z_{a} \sim \int_{a} \lambda$

Introduction - 3d vacua and 3d BPS states

The main input from physics is a different perspective on $\Sigma: F(x, y)=0$.
IR dynamics of M5 on $L \times S^{1} \times \mathbb{R}^{2}$ is described by a QFT $T_{3 d}[L]$ (3d $\mathcal{N}=2 U(1)$ GLSM)

- $\log x \sim t_{F I}$ is a FI coupling
- $\log y \sim \sigma+\frac{i}{2 \pi R} \oint A_{3}$ is a field (the complexified scalar in the $U(1)$ v.m.)
- for given coupling x, the field is in a vacuum configuration $y_{i}(x) \rightsquigarrow$ points on $\Sigma=$ vacua
- the theory has BPS states interpolating between vacua y_{i} and y_{j}
- topological charge is classified by $\mathbf{1}$-chains a on Σ, with $\partial a=y_{j}-y_{i}$
- central charge $Z_{a} \sim \int_{a} \lambda$

But $\lambda=\log y d \log x$ is multi-valued on Σ. Therefore, so is Z_{a} !
Physical properties of the BPS states of $T_{3 d}[L]$ are really defined on a \mathbb{Z}-covering

$$
\tilde{\Sigma} \xrightarrow{\mathbb{Z}} \Sigma
$$

Introduction - 3d vacua and 3d BPS states

On $\tilde{\Sigma}$ vacua of $T_{3 d}[L]$ are promoted to towers of points

$$
y_{j}(x) \in \Sigma \quad \rightarrow \quad(j, M):=\log y_{j}(x)+2 \pi i M \in \tilde{\Sigma}
$$

Introduction - 3d vacua and 3d BPS states

On $\tilde{\Sigma}$ vacua of $T_{3 d}[L]$ are promoted to towers of points

$$
y_{j}(x) \in \Sigma \quad \rightarrow \quad(j, M):=\log y_{j}(x)+2 \pi i M \in \tilde{\Sigma}
$$

A BPS state of charge a is a calibrated 1-chain

Introduction - 3d vacua and 3d BPS states

On $\tilde{\Sigma}$ vacua of $T_{3 d}[L]$ are promoted to towers of points

$$
y_{j}(x) \in \Sigma \quad \rightarrow \quad(j, M):=\log y_{j}(x)+2 \pi i M \in \tilde{\Sigma}
$$

A BPS state of charge a is a calibrated 1-chain

The calibrating BPS equations of an $(i, N) \rightarrow(j, M)$ path are [KLMVW] [Eager Selmani Walcher]

$$
\left(\log y_{j}-\log y_{i}+2 \pi i(M-N)\right) \frac{d \log x}{d \tau}=e^{i \vartheta} \quad\left(\vartheta=\arg Z_{a}\right)
$$

These define arcs in \mathbb{C}_{x}^{*} which lift to $a \subset \tilde{\Sigma}$.

Physics defines counts of these BPS states $\mu(a) \in \mathbb{Q}($ a 3d lift of [Cecotti Fendley Intriligator Vafa])

Physics defines counts of these BPS states $\mu(a) \in \mathbb{Q}$ (a 3d lift of [Cecotti Fendley Intriligator Vafa]) Strikingly, the 3d BPS spectrum $\mu(a)$ encodes BPS invariants $\Omega(\gamma)$ of compact 1-cycles. This follows from lifting 2d-4d wall-crossing of [Gaiotto Moore Neitzke] to 3d-5d systems on S^{1}.

Physics defines counts of these BPS states $\mu(a) \in \mathbb{Q}$ (a 3d lift of [Cecotti Fendley Intriligator Vafa]) Strikingly, the 3d BPS spectrum $\mu(a)$ encodes BPS invariants $\Omega(\gamma)$ of compact 1-cycles. This follows from lifting 2d-4d wall-crossing of [Gaiotto Moore Neitzke] to 3d-5d systems on S^{1}.

Bringing this to fruition requires

- Some way of computing $\mu(a)$ of 3d BPS states
- Some way of extracting $\Omega(\gamma)$ from $\mu(a)$

Physics defines counts of these BPS states $\mu(a) \in \mathbb{Q}$ (a 3d lift of [Cecotti Fendley Intriligator Vafa])
Strikingly, the 3d BPS spectrum $\mu(a)$ encodes BPS invariants $\Omega(\gamma)$ of compact 1 -cycles.
This follows from lifting 2d-4d wall-crossing of [Gaiotto Moore Neitzke] to 3d-5d systems on S^{1}.

Bringing this to fruition requires

- Some way of computing $\mu(a)$ of 3d BPS states
- Some way of extracting $\Omega(\gamma)$ from $\mu(a)$

I will describe a construction known as nonabelianization for exponential networks.
This is \sim a topological redux of $3 \mathrm{~d} t t^{*}$ geometry [Cecotti Vafa] [Dubrovin] [CV+Neitzke] [CV + Gaiotto].

Consider an algebraic curve Σ defined by $F(x, y)=0$ in $\mathbb{C}^{*} \times \mathbb{C}^{*}$

We'll view Σ as a ramified covering of the $\mathbb{C}^{*} x$-plane with sheets sheets $y_{j}(x), j=1, \ldots, d$ Branch points of this ramification structure will be marked by X, branch cuts by $\sim \sim$ on \mathbb{C}^{*}.

We'll view Σ as a ramified covering of the $\mathbb{C}^{*} x$-plane with sheets sheets $y_{j}(x), j=1, \ldots, d$ Branch points of this ramification structure will be marked by X, branch cuts by $\sim \sim$ on \mathbb{C}^{*}.

We also consider the differential

$$
\lambda=\log y d \log x
$$

It is multi-valued on Σ, but single-valued on $\tilde{\Sigma} \longrightarrow \Sigma$ with sheets $(j, N) \equiv \log y_{j}+2 \pi i N$. There will be logarithmic branch cuts on Σ, denoted by -- - -

We'll view Σ as a ramified covering of the $\mathbb{C}^{*} x$-plane with sheets sheets $y_{j}(x), j=1, \ldots, d$ Branch points of this ramification structure will be marked by X, branch cuts by $\leadsto \sim$ on \mathbb{C}^{*}.

We also consider the differential

$$
\lambda=\log y d \log x
$$

It is multi-valued on Σ, but single-valued on $\tilde{\Sigma} \longrightarrow \Sigma$ with sheets $(j, N) \equiv \log y_{j}+2 \pi i N$. There will be logarithmic branch cuts on Σ, denoted by -- - -

Overall

$$
\begin{array}{rlll}
\tilde{\Sigma} & \longrightarrow \Sigma & \longrightarrow \mathbb{C}_{x}^{*} \\
(j, N) & \mapsto y_{j}(x) & \mapsto x
\end{array}
$$

Exponential Networks - definitions

$\mathcal{W}(\vartheta)$ is a network of trajectories on \mathbb{C}^{*} defined by solutions of

$$
\left(\log y_{j}(x)-\log y_{i}(x)+2 \pi i n\right) \frac{d \log x}{d \tau}=e^{i \vartheta}
$$

parameterized by $\tau \in \mathbb{R}$, and labeled by $(i j, n)$ for some $n \in \mathbb{Z}$ [Eager Selmani Walcher].

Exponential Networks - definitions

$\mathcal{W}(\vartheta)$ is a network of trajectories on \mathbb{C}^{*} defined by solutions of

$$
\left(\log y_{j}(x)-\log y_{i}(x)+2 \pi i n\right) \frac{d \log x}{d \tau}=e^{i \vartheta}
$$

parameterized by $\tau \in \mathbb{R}$, and labeled by $(i j, n)$ for some $n \in \mathbb{Z}$ [Eager Selmani Walcher].
Boundary conditions: trajectories start from branch points \times with $y_{i}=y_{j}$, and $n=0$:

Exponential Networks - definitions

As a trajectory evolves in τ, it may cross branch cuts. This may change labeling

Exponential Networks - definitions

Trajectories may also intersect transversely. New ones may be generated by these rules

Exponential Networks - definitions

Globally, a network $\mathcal{W}(\vartheta)$ is a collection of trajectories and their interactions. As $\tau \rightarrow+\infty$ all trajectories end up into punctures, for generic ϑ.

Exponential Networks - definitions

Each trajectory is endowed with soliton data: an assignment of soliton degeneracies $\mu(a) \in \mathbb{Q}$ to (relative homology classes of) open paths on $\tilde{\Sigma}$ that start/end above the trajectory.

Exponential Networks - definitions

Each trajectory is endowed with soliton data: an assignment of soliton degeneracies $\mu(a) \in \mathbb{Q}$ to (relative homology classes of) open paths on $\tilde{\Sigma}$ that start/end above the trajectory.

1. For trajectories sourced by branch points, $\mu(a)=1$ for the class of "simplest lifts" to $\tilde{\Sigma}$

Exponential Networks - nonabelianization

2. For trajectories sourced at intersections, $\mu(a)$ on the newborn trajectories is fixed by combinatorics of concatenations of incoming ones.

Example: $(i j, n)-(j k, m)$ intersections.

- Incoming data: $\mu(a)$ for $a \in \Gamma_{(i j, n)}$ and $\mu(b)$ for $b \in \Gamma_{(j k, m)}$.
- Outgoing data: $\mu(c)=\sum_{a b \simeq c} \pm \mu(a) \mu(b)$ for all concatenating a, b in class $c \in \Gamma_{(i k, m+n)}$

Exponential Networks - nonabelianization

$(i j, n)-(j i, m)$ intersections are more involved, but soliton data on all descendant trajectories is again fixed.

$$
\begin{aligned}
& \Theta:=\sum_{N} \sum_{\substack{a:|i, N\rangle \rightarrow|j, N+n\rangle \\
b:|i, N+n\rangle \rightarrow|j, N+n+m\rangle}} \mu(a) \mu(b) X_{a \circ b}, \quad \bar{\Theta}:=\sum_{N} \sum_{\substack{a:|i, N+m\rangle \rightarrow|j, N+n+m\rangle \\
b:|i, N\rangle \rightarrow|j, N+m\rangle}} \mu(a) \mu(b) X_{b \circ a} \\
& \mathcal{E}_{i i}^{\prime}=e^{\sum_{k \geq 1} \frac{(-1)^{1+k}}{k} \Theta^{k}} \mathcal{E}_{i j, n+k(n+m)}^{\prime}=\exp \left(\sum_{N} \sum_{a:|i, N\rangle \rightarrow|i, N+n\rangle} \mu(a) X_{a} \cdot(-\bar{\Theta})^{k}\right) \\
& \mathcal{E}_{j j}^{\prime}=e^{\sum_{k \geq 1} \frac{(-1)^{k}}{k} \bar{\Theta}^{k}} \quad \mathcal{E}_{j i, n+k(n+m)}^{\prime}=\exp \left(\sum_{N} \sum_{l:|j, N\rangle \rightarrow|i, N+m\rangle} \mu(b) X_{b} \cdot(-\Theta)^{k}\right)
\end{aligned}
$$

Exponential Networks - nonabelianization

$(i j, n)-(j i, m)$ intersections are more involved, but soliton data on all descendant trajectories is again fixed.

$$
\begin{aligned}
& \Theta:=\sum_{N} \sum_{\substack{a:|i, N\rangle \rightarrow|j, N+n\rangle \\
b:|i, N+n\rangle \rightarrow|j, N+n+m\rangle}} \mu(a) \mu(b) X_{a \circ b}, \quad \sum_{\substack{ }} \mu(a) \mu(b) X_{b \circ a} \\
& \mathcal{E}_{i i}^{\prime}=e^{\sum_{k \geq 1} \frac{(-1)^{1+k}}{k} \Theta^{k}} \quad \mathcal{E}_{i j, n+k(n+m)}^{\prime}=\exp \left(\sum_{N} \sum_{a:|i, N\rangle \rightarrow|i, N+n\rangle} \mu(a) X_{a} \cdot(-\bar{\Theta})^{k}\right) \\
& \mathcal{E}_{j j}^{\prime}=e^{\sum_{k \geq 1} \frac{(-1)^{k}}{k} \bar{\Theta}^{k}} \quad \mathcal{E}_{j i, n+k(n+m)}^{\prime}=\exp \left(\sum_{N} \sum_{b:|j, N\rangle \rightarrow|i, N+m\rangle} \mu(b) X_{b} \cdot(-\Theta)^{k}\right)
\end{aligned}
$$

The definition of exponential networks $\mathcal{W}(\vartheta)$ with soliton data $\mu(a)$ on trajectories is complete. [Eager Selmani Walcher] [Banerjee L Romo]

- For a given $\mathcal{W}(\vartheta)$, soliton data $\mu(a)$ is determined by the global topology of $\mathcal{W}(\vartheta)$
- For a given $\mathcal{W}(\vartheta)$, soliton data $\mu(a)$ is determined by the global topology of $\mathcal{W}(\vartheta)$

For special values of ϑ the topology of \mathcal{W} jumps, because of saddle connections

- For a given $\mathcal{W}(\vartheta)$, soliton data $\mu(a)$ is determined by the global topology of $\mathcal{W}(\vartheta)$

For special values of ϑ the topology of \mathcal{W} jumps, because of saddle connections

Saddles on \mathbb{C}^{*} lift to closed cycles on $\tilde{\Sigma}$.

Claim: combinatorics of $\mu(a)$ counting open paths encode $\Omega(\gamma)$ of closed BPS cycles. Invariance of certain generating series $F=\sum_{a} \mu(a) X_{a}$, where $\mu(a)$ jump in a computable way, implies that X_{a} must jump by Kontsevich-Soibelman morphisms encoding $\Omega(\gamma)$

$$
X_{a} \rightarrow \mathcal{K}_{\gamma}^{\Omega(\gamma)}\left(X_{a}\right)=X_{a}\left(1 \pm X_{\gamma}\right)^{\langle a, \gamma\rangle \Omega(\gamma)}
$$

The full BPS spectrum can be obtained this way

- Given Σ fixes $u \in \mathcal{B}$ via BPS central charges via $Z_{\gamma} \sim \oint_{\gamma} \lambda$.
- All BPS states appear as saddles of $\mathcal{W}(\vartheta)$, precisely when $\vartheta=\arg Z_{\gamma}$.
- Analyzing $\mu(a)$ for trajectories of each saddle yields the spectrum $\Omega(\gamma)$.

Claim: combinatorics of $\mu(a)$ counting open paths encode $\Omega(\gamma)$ of closed BPS cycles. Invariance of certain generating series $F=\sum_{a} \mu(a) X_{a}$, where $\mu(a)$ jump in a computable way, implies that X_{a} must jump by Kontsevich-Soibelman morphisms encoding $\Omega(\gamma)$

$$
X_{a} \rightarrow \mathcal{K}_{\gamma}^{\Omega(\gamma)}\left(X_{a}\right)=X_{a}\left(1 \pm X_{\gamma}\right)^{\langle a, \gamma\rangle \Omega(\gamma)}
$$

The full BPS spectrum can be obtained this way

- Given Σ fixes $u \in \mathcal{B}$ via BPS central charges via $Z_{\gamma} \sim \oint_{\gamma} \lambda$.
- All BPS states appear as saddles of $\mathcal{W}(\vartheta)$, precisely when $\vartheta=\arg Z_{\gamma}$.
- Analyzing $\mu(a)$ for trajectories of each saddle yields the spectrum $\Omega(\gamma)$.

Results

For \mathbb{C}^{3} with $F=1+y+x y^{2}$ we find BPS saddles

with $Z_{\gamma}=k \frac{2 \pi}{R}$ and $\Omega(\gamma)=-1$, corresponding to k D0 branes with $k \in \mathbb{Z}$.
[Banerjee L Romo - 1811.02875]

Results

For $\mathcal{O}(-1)^{2} \rightarrow \mathbb{P}^{1}$ with $F=1+y+x y+Q x y^{2}$ we find BPS saddles

BPS states with

- $Z_{\gamma}=k \frac{2 \pi}{R}$ and $\Omega(\gamma)=-2$, corresponding to k D0 branes with $k \in \mathbb{Z}$
- $Z_{\gamma}=k \frac{2 \pi}{R}-\frac{i}{R} \log Q$ and $\Omega(\gamma)=1$, corresponding to D2 bound to k D0's, for $k \in \mathbb{Z}$
[Banerjee L Romo - 1910.05296]

Conclusions

- Further results for $\mathcal{O}(0) \oplus \mathcal{O}(-2) \rightarrow \mathbb{P}^{1}$ and $K_{\mathbb{F}_{0}}$ match, and extend, known results for (rank-0) DT invariants of $D^{b} \operatorname{Coh}(X) \simeq \mathcal{F} u k(Y)$. [Banerjee L Romo-1910.05296, 2012.09769]

Conclusions

- Further results for $\mathcal{O}(0) \oplus \mathcal{O}(-2) \rightarrow \mathbb{P}^{1}$ and $K_{\mathbb{F}_{0}}$ match, and extend, known results for (rank-0) DT invariants of $D^{b} \operatorname{Coh}(X) \simeq \mathcal{F} u k(Y)$. [Banerjee L Romo-1910.05296, 2012.09769]
- Nonabelianization for $\mathcal{W}(\vartheta)$ computes BPS states of M-theory on $X \times S^{1} \times \mathbb{R}^{4}$.
- Define a count of sLags in the mirror Y, motivated by physics
- In all examples these coincide with DT invariants of $\mathcal{F} u k(Y) \simeq D^{b} \operatorname{Coh}(X)$

Conclusions

- Further results for $\mathcal{O}(0) \oplus \mathcal{O}(-2) \rightarrow \mathbb{P}^{1}$ and $K_{\mathbb{F}_{0}}$ match, and extend, known results for (rank-0) DT invariants of $D^{b} \operatorname{Coh}(X) \simeq \mathcal{F} u k(Y)$. [Banerjee L Romo-1910.05296, 2012.09769]
- Nonabelianization for $\mathcal{W}(\vartheta)$ computes BPS states of M-theory on $X \times S^{1} \times \mathbb{R}^{4}$.
- Define a count of sLags in the mirror Y, motivated by physics
- In all examples these coincide with DT invariants of $\mathcal{F} u k(Y) \simeq D^{b} \operatorname{Coh}(X)$
- The framework is especially powerful for the stability condition $Z_{\gamma} \in \mathbb{R}$ for all γ
- It computes the Kontsevich-Soibelman invariant of wall-crossing [L- 1611.00150]
- Led to computation of the full spectrum of $5 d \mathcal{N}=1 S U(2)$ Yang-Mills [L- 2101.01681]
- Emergence of quiver descriptions of $\mathcal{F} u k(Y)$ [Eager Selmani Walcher] [Gabella L Park Yamazaki]
- Further results for $\mathcal{O}(0) \oplus \mathcal{O}(-2) \rightarrow \mathbb{P}^{1}$ and $K_{\mathbb{F}_{0}}$ match, and extend, known results for (rank-0) DT invariants of $D^{b} \operatorname{Coh}(X) \simeq \mathcal{F} u k(Y)$. [Banerjee L Romo - 1910.05296, 2012.09769]
- Nonabelianization for $\mathcal{W}(\vartheta)$ computes BPS states of M-theory on $X \times S^{1} \times \mathbb{R}^{4}$.
- Define a count of sLags in the mirror Y, motivated by physics
- In all examples these coincide with DT invariants of $\mathcal{F} u k(Y) \simeq D^{b} \operatorname{Coh}(X)$
- The framework is especially powerful for the stability condition $Z_{\gamma} \in \mathbb{R}$ for all γ
- It computes the Kontsevich-Soibelman invariant of wall-crossing [L-1611.00150]
- Led to computation of the full spectrum of $5 d \mathcal{N}=1 S U(2)$ Yang-Mills [L - 2101.01681]
- Emergence of quiver descriptions of $\mathcal{F} u k(Y)$ [Eager Selmani Walcher] [Gabella L Park Yamazaki]

