Counting BPS states with Exponential Networks

Pietro Longhi ETH Zürich

SUSY 2021 – Session on Formal SUSY Theories Institute of Theoretical Physics, Chinese Academy of Sciences, August 23-38, 2021

The main subject of this talk is the problem of counting BPS states in M-theory compactifications on local Calabi-Yau threefolds. Joint work with **S. Banerjee** and **M. Romo**. [Banerjee L Romo - 1811.02875, 1910.05296, 2012.09769] also see [L - 2101.01681] [Del Monte L - 2107.14255]

The main subject of this talk is the problem of counting BPS states in M-theory compactifications on local Calabi-Yau threefolds. Joint work with **S. Banerjee** and **M. Romo**. [Banerjee L Romo - 1811.02875, 1910.05296, 2012.09769] also see [L - 2101.01681] [Del Monte L - 2107.14255]

Goal: given a local threefold $X \times S^1 \times \mathbb{R}^4$, we wish to determine the spectrum of M2 branes on $\mathcal{C}_2 \times \mathbb{R}$, of M5 branes on $\mathcal{C}_4 \times S^1 \times \mathbb{R}$, and of their boundstates.

Math motivations: a new way to computate enumerative (category-theoretic) invariants.

Physics approach: involves supersymmetric QFTs in various dimensions, coupled to each other.

This question belongs to a class of problems with universal features:

A moduli space of **stability conditions**: $u \in \mathcal{B}$ defines the notion of stable BPS states.

For a generic choice of $u \in \mathcal{B}$ the **BPS spectrum** is characterized by

- \blacktriangleright The charge γ of a BPS state is valued in $\Gamma\simeq \mathbb{Z}^k$
- The Dirac pairing of two states is a skew-symmetric bilinear form $\langle \cdot, \cdot \rangle : \Gamma \times \Gamma \to \mathbb{Z}$
- ▶ Physical properties (mass, supercharges) of a BPS state are encoded by $Z_\gamma \in \mathbb{C}$
- ▶ BPS states are 'counted' by BPS invariants $\Omega(\gamma) \in \mathbb{Z}$.

This question belongs to a class of problems with universal features:

A moduli space of **stability conditions**: $u \in \mathcal{B}$ defines the notion of stable BPS states.

For a generic choice of $u \in \mathcal{B}$ the **BPS spectrum** is characterized by

- The charge γ of a BPS state is valued in $\Gamma\simeq \mathbb{Z}^k$
- The Dirac pairing of two states is a skew-symmetric bilinear form $\langle \cdot, \cdot \rangle : \Gamma \times \Gamma \to \mathbb{Z}$
- ▶ Physical properties (mass, supercharges) of a BPS state are encoded by $Z_\gamma \in \mathbb{C}$
- ▶ BPS states are 'counted' by BPS invariants $\Omega(\gamma) \in \mathbb{Z}$.

Examples:

	$D^bCoh(X)$	$4d \mathcal{N} = 2 QFT$	• • •
${\mathcal B}$	Kähler moduli	Coulomb branch	
Г	$H^{\bullet}_{cpt}(X)$	$H_1(\Sigma,\mathbb{Z})$	
$\Omega(\gamma)$	DT invariants	BPS indices	

Introduction – enumerative invariants and spectral networks

Two problems in this class are closely related to ours:

- computation of DT invariants of certain Fukaya categories
- \blacktriangleright the study of BPS states in class ${\cal S}$ theories

Introduction – enumerative invariants and spectral networks

Two problems in this class are closely related to ours:

- computation of DT invariants of certain Fukaya categories
- the study of BPS states in class $\mathcal S$ theories

Indeed, M-theory on local CY3 provides a natural home for both

$$\begin{array}{cccc} & \text{M theory} & S^{1} & \text{II A D4-D2-D0} & & D^{b}Coh(X) \\ & \text{on } X \times S^{1} \times \mathbb{R}^{4} & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Introduction – defects, mirror curves, BPS cycles

These two frameworks naturally emerge together in our approach to the main problem: computing $\Omega(\gamma, u)$ for M2 & M5 branes in of $X \times S^1 \times \mathbb{R}^4$.

These two frameworks naturally emerge together in our approach to the main problem: computing $\Omega(\gamma, u)$ for M2 & M5 branes in of $X \times S^1 \times \mathbb{R}^4$.

Approach

Choose L a noncompact Lagrangian in X (for concreteness a toric L [Aganagic Vafa]). Engineer a defect by introducing a single M5 brane on $L \times S^1 \times \mathbb{R}^2$.

The moduli space of M5 on L, after quantum corrections by holomorphic disks

 $\Sigma: \quad F(x,y) = 0 \quad \subset \quad \mathbb{C}^* \times \mathbb{C}^*$

This curve will play a central role, we'll **compute** $\Omega(\gamma, u)$ from its geometry, in the spirit of spectral networks.

Introduction – defects, mirror curves, BPS cycles

A key step in this direction is due to [Klemm Lerche Mayr Vafa Warner].

First, note that Σ is the **mirror curve** of X [Aganagic Vafa, Aganagic Klemm Vafa, Aganagic Ekholm Ng Vafa]

$$Y : uv = F(x, y) \subset \mathbb{C}^2 \times (\mathbb{C}^*)^2$$

Second, BPS states map to D3 on compact sLags $\mathcal{L}_3 \subset Y$, S^2 -fibrered over arcs in the x-plane

The central charge reduces to periods of a differential on $\boldsymbol{\Sigma}$

$$\lambda = \log y \, d \log x \quad \longrightarrow \quad Z_{\gamma} = \frac{1}{2\pi R} \oint_{\gamma} \lambda$$

The original problem is thus mapped to

 $\begin{array}{ccc} M5\text{-}M2 \text{ in } X \times S^1 \times \mathbb{R}^4 \\ \stackrel{R \to 0}{\longrightarrow} & \text{Type IIA } D4\text{-}D2\text{-}D0 \text{ in } X \times \mathbb{R}^4 \\ \stackrel{\text{mirror}}{\longrightarrow} & \text{Type IIB } D3 \text{ on calibrated } \mathcal{L}_3 \subset Y & \rightsquigarrow & \mathcal{F}uk(Y) \\ \end{array}$ $\begin{array}{c} [\texttt{KLMVW}] \\ \xrightarrow{} & \text{calibrated } \gamma \text{ on } \Sigma \end{array}$

The original problem is thus mapped to

 $\begin{array}{ccc} M5\text{-}M2 \text{ in } X \times S^1 \times \mathbb{R}^4 \\ \stackrel{R \to 0}{\longrightarrow} & \text{Type IIA } D4\text{-}D2\text{-}D0 \text{ in } X \times \mathbb{R}^4 \\ \stackrel{\text{mirror}}{\longrightarrow} & \text{Type IIB } D3 \text{ on calibrated } \mathcal{L}_3 \subset Y & \rightsquigarrow & \mathcal{F}uk(Y) \\ \end{array}$ $\begin{array}{c} [\texttt{KLMVW}] \\ \stackrel{\texttt{orbit}}{\longrightarrow} & \text{calibrated } \gamma \text{ on } \Sigma \end{array}$

Leaves out the interesting question of counting, i.e. how to compute $\Omega(\gamma)$.

The original problem is thus mapped to

 $\begin{array}{ccc} M5\text{-}M2 \text{ in } X \times S^1 \times \mathbb{R}^4 \\ \stackrel{R \to 0}{\longrightarrow} & \text{Type IIA } D4\text{-}D2\text{-}D0 \text{ in } X \times \mathbb{R}^4 \\ \stackrel{\text{mirror}}{\longrightarrow} & \text{Type IIB } D3 \text{ on calibrated } \mathcal{L}_3 \subset Y & \rightsquigarrow & \mathcal{F}uk(Y) \end{array}$ $\begin{array}{ccc} \text{[KLMVW]} \\ \stackrel{\text{(KLMVW)}}{\longrightarrow} & \text{calibrated } \gamma \text{ on } \Sigma & \rightsquigarrow & \text{networks} \end{array}$

Leaves out the interesting question of counting, i.e. how to compute $\Omega(\gamma)$.

This is where lessons from spectral networks become useful:

- ► [Gaiotto Moore Neitzke] solved a similar problem for Hitchin spectral curves
- our setup is different, but underlying physics ideas can be generalized to provide guidance

The main input from physics is a different **perspective on** Σ : F(x, y) = 0.

IR dynamics of M5 on $L \times S^1 \times \mathbb{R}^2$ is described by a QFT $T_{3d}[L]$ (3d $\mathcal{N} = 2 U(1)$ GLSM)

- $\log x \sim t_{FI}$ is a FI coupling
- ▶ $\log y \sim \sigma + \frac{i}{2\pi R} \oint A_3$ is a field (the complexified scalar in the U(1) v.m.)

The main input from physics is a different **perspective on** Σ : F(x, y) = 0.

IR dynamics of M5 on $L \times S^1 \times \mathbb{R}^2$ is described by a QFT $T_{3d}[L]$ (3d $\mathcal{N} = 2 \ U(1)$ GLSM)

- $\log x \sim t_{FI}$ is a FI coupling
- ▶ $\log y \sim \sigma + \frac{i}{2\pi R} \oint A_3$ is a field (the complexified scalar in the U(1) v.m.)
- for given coupling x, the field is in a vacuum configuration $y_i(x) \rightsquigarrow$ points on $\Sigma =$ vacua

The main input from physics is a different **perspective on** Σ : F(x, y) = 0.

IR dynamics of M5 on $L \times S^1 \times \mathbb{R}^2$ is described by a QFT $T_{3d}[L]$ (3d $\mathcal{N} = 2 U(1)$ GLSM)

- $\log x \sim t_{FI}$ is a FI coupling
- ▶ $\log y \sim \sigma + \frac{i}{2\pi R} \oint A_3$ is a field (the complexified scalar in the U(1) v.m.)
- for given coupling x, the field is in a vacuum configuration $y_i(x) \rightsquigarrow$ points on $\Sigma =$ vacua
- the theory has **BPS states** interpolating between vacua y_i and y_j

The main input from physics is a different **perspective on** Σ : F(x, y) = 0.

IR dynamics of M5 on $L \times S^1 \times \mathbb{R}^2$ is described by a QFT $T_{3d}[L]$ (3d $\mathcal{N} = 2 \ U(1)$ GLSM)

- $\log x \sim t_{FI}$ is a FI coupling
- ▶ $\log y \sim \sigma + \frac{i}{2\pi R} \oint A_3$ is a field (the complexified scalar in the U(1) v.m.)
- for given coupling x, the field is in a vacuum configuration $y_i(x) \rightsquigarrow$ points on $\Sigma =$ vacua
- the theory has **BPS states** interpolating between vacua y_i and y_j
 - ▶ topological charge is classified by **1-chains** a on Σ , with $\partial a = y_j y_i$
 - central charge $Z_a \sim \int_a \lambda$

The main input from physics is a different **perspective on** Σ : F(x, y) = 0.

IR dynamics of M5 on $L \times S^1 \times \mathbb{R}^2$ is described by a QFT $T_{3d}[L]$ (3d $\mathcal{N} = 2 U(1)$ GLSM)

- $\log x \sim t_{FI}$ is a FI coupling
- ▶ $\log y \sim \sigma + \frac{i}{2\pi R} \oint A_3$ is a field (the complexified scalar in the U(1) v.m.)
- for given coupling x, the field is in a vacuum configuration $y_i(x) \rightsquigarrow$ points on $\Sigma =$ vacua
- the theory has **BPS states** interpolating between vacua y_i and y_j
 - ▶ topological charge is classified by **1-chains** a on Σ , with $\partial a = y_j y_i$
 - central charge $Z_a \sim \int_a \lambda$

But $\lambda = \log y d \log x$ is **multi-valued** on Σ . Therefore, so is Z_a ! Physical properties of the BPS states of $T_{3d}[L]$ are really defined on a \mathbb{Z} -covering

$$\tilde{\Sigma} \xrightarrow{\mathbb{Z}} \Sigma$$

On $\tilde{\Sigma}$ vacua of $T_{3d}[L]$ are promoted to towers of points

 $y_j(x) \in \Sigma \quad \to \quad (j, M) := \log y_j(x) + 2\pi i M \in \tilde{\Sigma}$

On $\tilde{\Sigma}$ vacua of $T_{3d}[L]$ are promoted to towers of points

$$y_j(x) \in \Sigma \quad \to \quad (j,M) := \log y_j(x) + 2\pi i M \in \tilde{\Sigma}$$

A **BPS** state of charge *a* is a **calibrated** 1-chain

On $\tilde{\Sigma}$ vacua of $T_{3d}[L]$ are promoted to towers of points

$$y_j(x) \in \Sigma \quad \to \quad (j,M) := \log y_j(x) + 2\pi i M \in \tilde{\Sigma}$$

A **BPS** state of charge *a* is a **calibrated** 1-chain

The calibrating BPS equations of an $(i,N) \to (j,M)$ path are [KLMVW] [Eager Selmani Walcher]

$$\left(\log y_j - \log y_i + 2\pi i(M - N)\right) \frac{d\log x}{d\tau} = e^{i\vartheta} \qquad (\vartheta = \arg Z_a)$$

These define arcs in \mathbb{C}_x^* which lift to $a \subset \tilde{\Sigma}$.

Strikingly, the 3d BPS spectrum $\mu(a)$ encodes BPS invariants $\Omega(\gamma)$ of compact 1-cycles. This follows from lifting 2d-4d wall-crossing of [Gaiotto Moore Neitzke] to 3d-5d systems on S^1 .

Strikingly, the 3d BPS spectrum $\mu(a)$ encodes BPS invariants $\Omega(\gamma)$ of compact 1-cycles. This follows from lifting 2d-4d wall-crossing of [Gaiotto Moore Neitzke] to 3d-5d systems on S^1 .

Bringing this to fruition requires

- Some way of computing $\mu(a)$ of 3d BPS states
- Some way of extracting $\Omega(\gamma)$ from $\mu(a)$

Strikingly, the 3d BPS spectrum $\mu(a)$ encodes BPS invariants $\Omega(\gamma)$ of compact 1-cycles. This follows from lifting 2d-4d wall-crossing of [Gaiotto Moore Neitzke] to 3d-5d systems on S^1 .

Bringing this to fruition requires

- Some way of computing $\mu(a)$ of 3d BPS states
- Some way of extracting $\Omega(\gamma)$ from $\mu(a)$

I will describe a construction known as **nonabelianization** for **exponential networks**. This is \sim a topological redux of 3d tt^* geometry [Cecotti Vafa] [Dubrovin] [CV+Neitzke] [CV+Gaiotto].

Exponential Networks

Consider an algebraic curve Σ defined by F(x,y)=0 in $\mathbb{C}^*\times\mathbb{C}^*$

We'll view Σ as a ramified covering of the \mathbb{C}^* *x*-plane with sheets sheets $y_j(x)$, $j = 1, \ldots, d$ Branch points of this ramification structure will be marked by \times , branch cuts by \mathcal{W} on \mathbb{C}^* . We'll view Σ as a ramified covering of the \mathbb{C}^* *x*-plane with sheets sheets $y_j(x)$, $j = 1, \ldots, d$ Branch points of this ramification structure will be marked by \times , branch cuts by \mathcal{W} on \mathbb{C}^* .

We also consider the differential

$$\lambda = \log y \ d \log x$$

It is multi-valued on Σ , but single-valued on $\tilde{\Sigma} \longrightarrow \Sigma$ with sheets $(j, N) \equiv \log y_j + 2\pi i N$. There will be logarithmic branch cuts on Σ , denoted by $-\frac{\mathbf{i}}{2}$. We'll view Σ as a ramified covering of the \mathbb{C}^* *x*-plane with sheets sheets $y_j(x)$, $j = 1, \ldots, d$ Branch points of this ramification structure will be marked by \times , branch cuts by \mathcal{W} on \mathbb{C}^* .

We also consider the differential

$$\lambda = \log y \ d \log x$$

It is multi-valued on Σ , but single-valued on $\tilde{\Sigma} \longrightarrow \Sigma$ with sheets $(j, N) \equiv \log y_j + 2\pi i N$. There will be logarithmic branch cuts on Σ , denoted by $-\frac{\mathbf{i}}{2}$ --.

Overall

 $\mathcal{W}(\vartheta)$ is a network of trajectories on \mathbb{C}^* defined by solutions of

$$(\log y_j(x) - \log y_i(x) + 2\pi i n) \frac{d \log x}{d\tau} = e^{i\vartheta}$$

parameterized by $\tau \in \mathbb{R}$, and labeled by (ij, n) for some $n \in \mathbb{Z}$ [Eager Selmani Walcher].

 $\mathcal{W}(\vartheta)$ is a network of trajectories on \mathbb{C}^* defined by solutions of

$$(\log y_j(x) - \log y_i(x) + 2\pi i n) \frac{d\log x}{d\tau} = e^{i\vartheta}$$

parameterized by $\tau \in \mathbb{R}$, and labeled by (ij, n) for some $n \in \mathbb{Z}$ [Eager Selmani Walcher].

Boundary conditions: trajectories start from branch points \times with $y_i = y_j$, and n = 0:

As a trajectory evolves in au, it may cross branch cuts. This may change labeling

Trajectories may also intersect transversely. New ones may be generated by these rules

Globally, a network $\mathcal{W}(\vartheta)$ is a collection of trajectories and their interactions. As $\tau \to +\infty$ all trajectories end up into punctures, for generic ϑ .

Each trajectory is endowed with soliton data: an assignment of soliton degeneracies $\mu(a) \in \mathbb{Q}$ to (relative homology classes of) open paths on $\tilde{\Sigma}$ that start/end above the trajectory.

Each trajectory is endowed with soliton data: an assignment of soliton degeneracies $\mu(a) \in \mathbb{Q}$ to (relative homology classes of) open paths on $\tilde{\Sigma}$ that start/end above the trajectory.

1. For trajectories sourced by branch points, $\mu(a) = 1$ for the class of "simplest lifts" to $\tilde{\Sigma}$

Exponential Networks – nonabelianization

2. For trajectories sourced at intersections, $\mu(a)$ on the newborn trajectories is fixed by combinatorics of concatenations of incoming ones.

Example: (ij, n)-(jk, m) intersections.

- ▶ Incoming data: $\mu(a)$ for $a \in \Gamma_{(ij,n)}$ and $\mu(b)$ for $b \in \Gamma_{(jk,m)}$.
- Outgoing data: $\mu(c) = \sum_{ab\simeq c} \pm \mu(a)\mu(b)$ for all concatenating a, b in class $c \in \Gamma_{(ik,m+n)}$

Exponential Networks – nonabelianization

(ij, n)-(ji, m) intersections are more involved, but soliton data on all descendant trajectories is again fixed.

Exponential Networks – nonabelianization

(ij, n)-(ji, m) intersections are more involved, but soliton data on all descendant trajectories is again fixed.

The definition of exponential networks $\mathcal{W}(\vartheta)$ with soliton data $\mu(a)$ on trajectories is complete. [Eager Selmani Walcher] [Banerjee L Romo]

Exponential Networks – dependence on ϑ

• For a given $\mathcal{W}(\vartheta)$, soliton data $\mu(a)$ is determined by the global topology of $\mathcal{W}(\vartheta)$

Exponential Networks – dependence on ϑ

For a given $\mathcal{W}(\vartheta)$, soliton data $\mu(a)$ is determined by the global topology of $\mathcal{W}(\vartheta)$

For special values of ϑ the topology of ${\mathcal W}$ jumps, because of saddle connections

Exponential Networks – dependence on ϑ

For a given $\mathcal{W}(\vartheta)$, soliton data $\mu(a)$ is determined by the global topology of $\mathcal{W}(\vartheta)$

For special values of ϑ the topology of $\mathcal W$ jumps, because of saddle connections

Saddles on \mathbb{C}^* lift to closed cycles on $\tilde{\Sigma}$.

Claim: combinatorics of $\mu(a)$ counting **open paths** encode $\Omega(\gamma)$ of **closed** BPS cycles. Invariance of certain generating series $F = \sum_a \mu(a) X_a$, where $\mu(a)$ jump in a computable way, implies that X_a must jump by Kontsevich-Soibelman morphisms encoding $\Omega(\gamma)$

$$X_a \to \mathcal{K}_{\gamma}^{\Omega(\gamma)}(X_a) = X_a (1 \pm X_{\gamma})^{\langle a, \gamma \rangle \Omega(\gamma)}$$

The full BPS spectrum can be obtained this way

- Given Σ fixes $u \in \mathcal{B}$ via BPS central charges via $Z_{\gamma} \sim \oint_{\gamma} \lambda$.
- All BPS states appear as saddles of $W(\vartheta)$, precisely when $\vartheta = \arg Z_{\gamma}$.
- Analyzing $\mu(a)$ for trajectories of each saddle yields the spectrum $\Omega(\gamma)$.

Claim: combinatorics of $\mu(a)$ counting **open paths** encode $\Omega(\gamma)$ of **closed** BPS cycles. Invariance of certain generating series $F = \sum_a \mu(a) X_a$, where $\mu(a)$ jump in a computable way, implies that X_a must jump by Kontsevich-Soibelman morphisms encoding $\Omega(\gamma)$

$$X_a \to \mathcal{K}_{\gamma}^{\Omega(\gamma)}(X_a) = X_a (1 \pm X_{\gamma})^{\langle a, \gamma \rangle \Omega(\gamma)}$$

The full BPS spectrum can be obtained this way

- Given Σ fixes $u \in \mathcal{B}$ via BPS central charges via $Z_{\gamma} \sim \oint_{\gamma} \lambda$.
- All BPS states appear as saddles of $W(\vartheta)$, precisely when $\vartheta = \arg Z_{\gamma}$.
- Analyzing $\mu(a)$ for trajectories of each saddle yields the spectrum $\Omega(\gamma)$.

Results

For \mathbb{C}^3 with $F = 1 + y + xy^2$ we find BPS saddles

with $Z_{\gamma} = k \frac{2\pi}{R}$ and $\Omega(\gamma) = -1$, corresponding to k D0 branes with $k \in \mathbb{Z}$. [Banerjee L Romo - 1811.02875] For $\mathcal{O}(-1)^2 \to \mathbb{P}^1$ with $F = 1 + y + xy + Qxy^2$ we find BPS saddles

BPS states with

• $Z_{\gamma} = k \frac{2\pi}{R}$ and $\Omega(\gamma) = -2$, corresponding to k D0 branes with $k \in \mathbb{Z}$

• $Z_{\gamma} = k \frac{2\pi}{R} - \frac{i}{R} \log Q$ and $\Omega(\gamma) = 1$, corresponding to D2 bound to k D0's, for $k \in \mathbb{Z}$

[Banerjee L Romo - 1910.05296]

▶ Further results for $\mathcal{O}(0) \oplus \mathcal{O}(-2) \to \mathbb{P}^1$ and $K_{\mathbb{F}_0}$ match, and extend, known results for (rank-0) DT invariants of $D^bCoh(X) \simeq \mathcal{F}uk(Y)$. [Banerjee L Romo – 1910.05296, 2012.09769]

- Further results for $\mathcal{O}(0) \oplus \mathcal{O}(-2) \to \mathbb{P}^1$ and $K_{\mathbb{F}_0}$ match, and extend, known results for (rank-0) DT invariants of $D^bCoh(X) \simeq \mathcal{F}uk(Y)$. [Banerjee L Romo 1910.05296, 2012.09769]
- Nonabelianization for $\mathcal{W}(\vartheta)$ computes BPS states of M-theory on $X \times S^1 \times \mathbb{R}^4$.
 - Define a count of sLags in the mirror Y, motivated by physics
 - ▶ In all examples these coincide with DT invariants of $\mathcal{F}uk(Y) \simeq D^bCoh(X)$

- Further results for $\mathcal{O}(0) \oplus \mathcal{O}(-2) \to \mathbb{P}^1$ and $K_{\mathbb{F}_0}$ match, and extend, known results for (rank-0) DT invariants of $D^bCoh(X) \simeq \mathcal{F}uk(Y)$. [Banerjee L Romo 1910.05296, 2012.09769]
- Nonabelianization for $\mathcal{W}(\vartheta)$ computes BPS states of M-theory on $X \times S^1 \times \mathbb{R}^4$.
 - Define a count of sLags in the mirror Y, motivated by physics
 - ▶ In all examples these coincide with DT invariants of $\mathcal{F}uk(Y) \simeq D^bCoh(X)$

- The framework is especially powerful for the stability condition $Z_{\gamma} \in \mathbb{R}$ for all γ
 - ▶ It computes the Kontsevich-Soibelman invariant of wall-crossing [L 1611.00150]
 - ▶ Led to computation of the full spectrum of 5d N = 1 SU(2) Yang-Mills [L 2101.01681]
 - For the Emergence of quiver descriptions of $\mathcal{F}uk(Y)$ [Eager Selmani Walcher] [Gabella L Park Yamazaki]

- Further results for $\mathcal{O}(0) \oplus \mathcal{O}(-2) \to \mathbb{P}^1$ and $K_{\mathbb{F}_0}$ match, and extend, known results for (rank-0) DT invariants of $D^bCoh(X) \simeq \mathcal{F}uk(Y)$. [Banerjee L Romo 1910.05296, 2012.09769]
- Nonabelianization for $\mathcal{W}(\vartheta)$ computes BPS states of M-theory on $X \times S^1 \times \mathbb{R}^4$.
 - Define a count of sLags in the mirror Y, motivated by physics
 - ▶ In all examples these coincide with DT invariants of $\mathcal{F}uk(Y) \simeq D^bCoh(X)$

- The framework is especially powerful for the stability condition $Z_{\gamma} \in \mathbb{R}$ for all γ
 - ▶ It computes the Kontsevich-Soibelman invariant of wall-crossing [L 1611.00150]
 - ▶ Led to computation of the full spectrum of 5d N = 1 SU(2) Yang-Mills [L 2101.01681]
 - For the Emergence of quiver descriptions of $\mathcal{F}uk(Y)$ [Eager Selmani Walcher] [Gabella L Park Yamazaki]