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Introduction

The main subject of this talk is the problem of counting BPS states in M-theory
compactifications on local Calabi-Yau threefolds. Joint work with S. Banerjee and M. Romo.
[Banerjee L Romo - 1811.02875, 1910.05296, 2012.09769] also see [L - 2101.01681] [Del Monte L - 2107.14255]

Goal: given a local threefold X × S1 × R4, we wish to determine the spectrum of M2 branes
on C2 × R, of M5 branes on C4 × S1 × R, and of their boundstates.

Math motivations: a new way to computate enumerative (category-theoretic) invariants.

Physics approach: involves supersymmetric QFTs in various dimensions, coupled to each other.
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Introduction

This question belongs to a class of problems with universal features:

A moduli space of stability conditions: u ∈ B defines the notion of stable BPS states.

For a generic choice of u ∈ B the BPS spectrum is characterized by

I The charge γ of a BPS state is valued in Γ ' Zk
I The Dirac pairing of two states is a skew-symmetric bilinear form 〈 · , · 〉 : Γ× Γ→ Z
I Physical properties (mass, supercharges) of a BPS state are encoded by Zγ ∈ C
I BPS states are ‘counted’ by BPS invariants Ω(γ) ∈ Z.

Examples: DbCoh(X) 4d N = 2 QFT · · ·
B Kähler moduli Coulomb branch
Γ H•cpt(X) H1(Σ,Z) · · ·

Ω(γ) DT invariants BPS indices
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Introduction – enumerative invariants and spectral networks

Two problems in this class are closely related to ours:

I computation of DT invariants of certain Fukaya categories

I the study of BPS states in class S theories

Indeed, M-theory on local CY3 provides a natural home for both
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Introduction – defects, mirror curves, BPS cycles

These two frameworks naturally emerge together in our approach to the main problem:
computing Ω(γ, u) for M2 & M5 branes in of X × S1 × R4.

Approach

Choose L a noncompact Lagrangian in X (for concreteness a toric L [Aganagic Vafa]).
Engineer a defect by introducing a single M5 brane on L× S1 × R2.

The moduli space of M5 on L, after quantum corrections by holomorphic disks

Σ : F (x, y) = 0 ⊂ C∗ × C∗

This curve will play a central role, we’ll compute Ω(γ, u) from its geometry, in the spirit of
spectral networks.
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Introduction – defects, mirror curves, BPS cycles

A key step in this direction is due to [Klemm Lerche Mayr Vafa Warner].

First, note that Σ is the mirror curve of X [Aganagic Vafa, Aganagic Klemm Vafa, Aganagic Ekholm Ng Vafa]

Y : uv = F (x, y) ⊂ C2 × (C∗)2

Second, BPS states map to D3 on compact sLags L3 ⊂ Y , S2-fibrered over arcs in the x-plane

The central charge reduces to periods of a differential on Σ

λ = log y d log x −→ Zγ =
1

2πR

∮
γ

λ
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Introduction – the counting problem

The original problem is thus mapped to

M5-M2 in X × S1 × R4

R→0−→ Type IIA D4-D2-D0 in X × R4

mirror−→ Type IIB D3 on calibrated L3 ⊂ Y  Fuk(Y )

[KLMVW]−→ calibrated γ on Σ

Leaves out the interesting question of counting, i.e. how to compute Ω(γ).

This is where lessons from spectral networks become useful:

I [Gaiotto Moore Neitzke] solved a similar problem for Hitchin spectral curves

I our setup is different, but underlying physics ideas can be generalized to provide guidance

6 / 23



Introduction – the counting problem

The original problem is thus mapped to

M5-M2 in X × S1 × R4

R→0−→ Type IIA D4-D2-D0 in X × R4

mirror−→ Type IIB D3 on calibrated L3 ⊂ Y  Fuk(Y )

[KLMVW]−→ calibrated γ on Σ

Leaves out the interesting question of counting, i.e. how to compute Ω(γ).

This is where lessons from spectral networks become useful:

I [Gaiotto Moore Neitzke] solved a similar problem for Hitchin spectral curves

I our setup is different, but underlying physics ideas can be generalized to provide guidance

6 / 23



Introduction – the counting problem

The original problem is thus mapped to

M5-M2 in X × S1 × R4

R→0−→ Type IIA D4-D2-D0 in X × R4

mirror−→ Type IIB D3 on calibrated L3 ⊂ Y  Fuk(Y )

[KLMVW]−→ calibrated γ on Σ  networks

Leaves out the interesting question of counting, i.e. how to compute Ω(γ).

This is where lessons from spectral networks become useful:

I [Gaiotto Moore Neitzke] solved a similar problem for Hitchin spectral curves

I our setup is different, but underlying physics ideas can be generalized to provide guidance

6 / 23



Introduction – 3d vacua and 3d BPS states

The main input from physics is a different perspective on Σ : F (x, y) = 0.

IR dynamics of M5 on L× S1 × R2 is described by a QFT T3d[L] (3d N = 2 U(1) GLSM)

I log x ∼ tFI is a FI coupling

I log y ∼ σ + i
2πR

∮
A3 is a field (the complexified scalar in the U(1) v.m.)

I for given coupling x, the field is in a vacuum configuration yi(x)  points on Σ = vacua
I the theory has BPS states interpolating between vacua yi and yj

I topological charge is classified by 1-chains a on Σ, with ∂a = yj − yi
I central charge Za ∼

∫
a
λ

But λ = log y d log x is multi-valued on Σ. Therefore, so is Za!
Physical properties of the BPS states of T3d[L] are really defined on a Z-covering

Σ̃
Z−→Σ
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Introduction – 3d vacua and 3d BPS states

On Σ̃ vacua of T3d[L] are promoted to towers of points

yj(x) ∈ Σ → (j,M) := log yj(x) + 2πiM ∈ Σ̃

A BPS state of charge a is a calibrated 1-chain

The calibrating BPS equations of an (i,N)→ (j,M) path are [KLMVW] [Eager Selmani Walcher]

(log yj − log yi + 2πi(M −N))
d log x

dτ
= eiϑ (ϑ = argZa)

These define arcs in C∗x which lift to a ⊂ Σ̃.
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Introduction – towards Ω(γ)

Physics defines counts of these BPS states µ(a) ∈ Q (a 3d lift of [Cecotti Fendley Intriligator Vafa])

Strikingly, the 3d BPS spectrum µ(a) encodes BPS invariants Ω(γ) of compact 1-cycles.
This follows from lifting 2d-4d wall-crossing of [Gaiotto Moore Neitzke] to 3d-5d systems on S1.

Bringing this to fruition requires

I Some way of computing µ(a) of 3d BPS states

I Some way of extracting Ω(γ) from µ(a)

I will describe a construction known as nonabelianization for exponential networks.
This is ∼ a topological redux of 3d tt∗ geometry [Cecotti Vafa] [Dubrovin] [CV+Neitzke] [CV+Gaiotto].
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Exponential Networks

Consider an algebraic curve Σ defined by F (x, y) = 0 in C∗ × C∗
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Exponential Networks – covering layers

We’ll view Σ as a ramified covering of the C∗ x-plane with sheets sheets yj(x), j = 1, . . . , d

Branch points of this ramification structure will be marked by , branch cuts by on C∗.

We also consider the differential
λ = log y d log x

It is multi-valued on Σ, but single-valued on Σ̃ −→ Σ with sheets (j,N) ≡ log yj + 2πiN .

There will be logarithmic branch cuts on Σ, denoted by .

Overall

Σ̃ −→ Σ −→ C∗x
(j,N) 7→ yj(x) 7→ x
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Exponential Networks – definitions

W(ϑ) is a network of trajectories on C∗ defined by solutions of

(log yj(x)− log yi(x) + 2πi n)
d log x

dτ
= eiϑ

parameterized by τ ∈ R, and labeled by (ij, n) for some n ∈ Z [Eager Selmani Walcher].

Boundary conditions: trajectories start from branch points with yi = yj , and n = 0:
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Exponential Networks – definitions

As a trajectory evolves in τ , it may cross branch cuts. This may change labeling
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Exponential Networks – definitions

Trajectories may also intersect transversely. New ones may be generated by these rules
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Exponential Networks – definitions

Globally, a network W(ϑ) is a collection of trajectories and their interactions. As τ → +∞ all
trajectories end up into punctures, for generic ϑ.
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Exponential Networks – definitions

Each trajectory is endowed with soliton data: an assignment of soliton degeneracies µ(a) ∈ Q
to (relative homology classes of) open paths on Σ̃ that start/end above the trajectory.

1. For trajectories sourced by branch points, µ(a) = 1 for the class of “simplest lifts” to Σ̃
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Exponential Networks – nonabelianization

2. For trajectories sourced at intersections, µ(a) on the newborn trajectories is fixed by
combinatorics of concatenations of incoming ones.

Example: (ij, n)-(jk,m) intersections.
I Incoming data: µ(a) for a ∈ Γ(ij,n) and µ(b) for b ∈ Γ(jk,m).
I Outgoing data: µ(c) =

∑
ab'c±µ(a)µ(b) for all concatenating a, b in class c ∈ Γ(ik,m+n)
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Exponential Networks – nonabelianization

(ij, n)-(ji,m) intersections are more involved, but soliton data on all descendant trajectories is
again fixed.

Θ :=
∑
N

∑
a:|i,N〉→|j,N+n〉
b:|i,N+n〉→|j,N+n+m〉

µ(a)µ(b)Xa◦b , Θ̄ :=
∑
N

∑
a:|i,N+m〉→|j,N+n+m〉
b:|i,N〉→|j,N+m〉

µ(a)µ(b)Xb◦a

E′ii = e
∑

k≥1
(−1)1+k

k
Θk

E′ij,n+k(n+m) = exp

∑
N

∑
a:|i,N〉→|i,N+n〉

µ(a)Xa · (−Θ̄)
k


E′jj = e

∑
k≥1

(−1)k

k
Θ̄k

E′ji,n+k(n+m) = exp

∑
N

∑
b:|j,N〉→|i,N+m〉

µ(b)Xb · (−Θ)
k



The definition of exponential networks W(ϑ) with soliton data µ(a) on trajectories is complete.
[Eager Selmani Walcher] [Banerjee L Romo]
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Exponential Networks – dependence on ϑ

I For a given W(ϑ), soliton data µ(a) is determined by the global topology of W(ϑ)

For special values of ϑ the topology of W jumps, because of saddle connections

Saddles on C∗ lift to closed cycles on Σ̃.
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Exponential Networks – dependence on ϑ

Claim: combinatorics of µ(a) counting open paths encode Ω(γ) of closed BPS cycles.
Invariance of certain generating series F =

∑
a µ(a)Xa, where µ(a) jump in a computable way,

implies that Xa must jump by Kontsevich-Soibelman morphisms encoding Ω(γ)

Xa → KΩ(γ)
γ (Xa) = Xa(1±Xγ)〈a,γ〉Ω(γ)

The full BPS spectrum can be obtained this way

I Given Σ fixes u ∈ B via BPS central charges via Zγ ∼
∮
γ
λ.

I All BPS states appear as saddles of W(ϑ), precisely when ϑ = argZγ .

I Analyzing µ(a) for trajectories of each saddle yields the spectrum Ω(γ).
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Results

For C3 with F = 1 + y + xy2 we find BPS saddles

with Zγ = k 2π
R and Ω(γ) = −1, corresponding to k D0 branes with k ∈ Z.

[Banerjee L Romo – 1811.02875]
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Results

For O(−1)2 → P1 with F = 1 + y + xy +Qxy2 we find BPS saddles

. . .

BPS states with

I Zγ = k 2π
R and Ω(γ) = −2, corresponding to k D0 branes with k ∈ Z

I Zγ = k 2π
R −

i
R logQ and Ω(γ) = 1, corresponding to D2 bound to k D0’s, for k ∈ Z

[Banerjee L Romo – 1910.05296]
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Conclusions

I Further results for O(0)⊕O(−2)→ P1 and KF0
match, and extend, known results for

(rank-0) DT invariants of DbCoh(X) ' Fuk(Y ). [Banerjee L Romo – 1910.05296, 2012.09769]

I Nonabelianization for W(ϑ) computes BPS states of M-theory on X × S1 × R4.
I Define a count of sLags in the mirror Y , motivated by physics
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