Non-Unitary TQFTs from 3d $\mathcal{N} = 4$ Rank-0 SCFTs

Myungbo SHIM

Department of Physics Kyung Hee University, Seoul, Korea

The XXVIIIth International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2021)

mbshim1213@khu.ac.kr

August 26th, 2021

Myungbo SHIM (Kyung Hee University)

TQFT from $\mathcal{N} = 4$ SCFTs in 3d

Based on arXiv:2103.09283 [hep-th]

In collaboration with Dongmin Gang (SNU), Sungjoon Kim (POSTECH), Kimyeong Lee (KIAS), and Masahito Yamazaki (IPMU)

Myungbo SHIM (Kyung Hee University) TQFT fro

TQFT from $\mathcal{N} = 4$ SCFTs in 3d

August 26th, 2021

Interesting Correspondence between TQFT and SCFTs

In this presentation, we report an interesting correspondence between non-unitary TQFTs and $\mathcal{N}=4$ Rank-0 SCFTs in 3d.

Proposals and Dictionaries

From SUSY ptn in "degenerate limits" of $\mathcal{N}=4$ Rank-0 SCFTs, we obtained partial "modular data" of non-unitary TQFTs.

The First Application: Bounds for F_{S^3} of all $\mathcal{N} = 4$ SCFTs

As a direct application of our dictionary, we obtained lower bounds for round 3-sphere free energy, F_{S^3} , of our rank-0 SCFTs from the modular data.

< □ > < 同 > < 回 > < 回 > < 回 >

$\mathcal{N}=4$ Supersymmetry: 8 Real Supercharges

$\mathrm{SO}(4) \cong \mathrm{SU}(2)_L \times \mathrm{SU}(2)_R$ R-Symmetry

Let *R* and *R'* be two Cartans of $SU(2)_L$ and $SU(2)_R$ resp. and let R_{ν} and *A* be two Cartans of SO(4) R-symmetry. (ν : mixing parameter)

 $R_{\rm IR} = R_{\nu=0} = R + R', \qquad A = R - R', \qquad R_{\nu} = R + R' + \nu A,$

In $\mathcal{N}=2$ language, R_{ν} is U(1) R-symmetry and A is U(1) flavor symmetry.

Multiplets

- V Vector multiplet: N = 2 vector V + N = 2 chiral multiplet Φ_{adj} in adjoint representation of gauge group
- *h* Hypermultiplet: $\mathcal{N} = 2$ chiral Φ + anti-chiral multiplet $\overline{\Phi}$ in R and \overline{R} representations.
- $h_{\frac{1}{2}}$ Half-hyper: If the gauge group is pseudo-real, there is a relation between Φ and $\overline{\Phi}$. Then, the d.o.f is just a half of *h*.

Why 8 Real Supercharges?

Rich Structures with Various Dimensionality

- 1: 5D, 6D SCFTs predicted by String/M-theory constructions
- 2: Class- ${\cal S},$ Seiberg-Witten, Argyres-Douglas, AGT Correspondences, etc. for 4d ${\cal N}=2$
- 3: 3d mirror symmetry, Rozansky-Witten, 1d TQM, etc. for 3d $\mathcal{N} = 4$.
- 4: Rich vacuum moduli structure of SCFTs

Classification Program of SCFTs by Rank

$$\operatorname{rank} := \dim_{\mathbb{C}}(\mathcal{M}_{\operatorname{Coulomb}}) > 0 \text{ for } D \ge 4$$

In higher dimensions than 3, it is believed that there is no rank-0 SCFTs. NB: 5,6D rank-0 theories are constructed by geometric engineering, but it is uncertain that they are interacting theories [Closset, Schafer-Nameki, Wang 2020]

Rank of 3d SCFTs

SCFTs in 3d

- 1: Non-trivial rank-0 SCFTs are found quite recently.[Gang, Yamazaki 2018]
- 2: Coulomb and Higgs branches are exchangeable by 3d mirror symmetry [Intriligator and Seiberg 1996]
- 3: Needs for a notion of rank invariant under 3d mirror symmetry

Refined Definition

The terminology "Rank" of SCFT is refined to maximum complex dimensions of vacuum moduli space in Coulomb and Higgs branch since

 $\operatorname{rank} := \max(\dim_{\mathbb{C}}(\mathcal{M}_{\operatorname{Coulomb}}), \dim_{\mathbb{C}}(\mathcal{M}_{\operatorname{Higgs}}))$

Using this modified notion of rank in 3d,

Rank-0 Theory := Theory with no Higgs and Coulomb branches

Why Rank-0 SCFTs?

Technical Difficulties for Classification Program

- 1: No Coulomb and Higgs branch operator
- 2: Thus, traditional schemes do not work
- 3: No Flavor Symmetry \rightarrow Only $T_{\mu\nu}$ multiplet \rightarrow Difficult to conformal bootstrap

Some Properties of Rank-0 Theory

Coulomb/Higgs branch operators are charged under $SU(2)_{L/R}$ of SO(4)R-symmetry. Flavor current multiplets includes Coulomb or Higgs branch operators

- 1: There are no flavor commuting with R-symmetry for Rank-0 theories.
- 2: SUSY should be no more than $\mathcal{N} = 5$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Degenerate Limit of $\mathcal{N} = 4$ Rank-0 SCFTs

Degenerate Limit or Coulomb/Higgs Branch Limit

The degenerate limits are defined by a certain non-trivial R-charge assignment $\nu \neq 0$ under absence of real mass parameter m = 0 or a trivial fugacity variable $\eta = 1$ for U(1)_A

SCFTs in Degenerate Limits

- 1: $SCI(m = 0, \nu = 1) \rightarrow Hilbert$ series on Coulomb branch.
- 2: $SCI(m = 0, \nu = -1) \rightarrow Hilbert$ series on Higgs branch.
- 3: Rank-0 SCFTs have no Coulomb and Higgs branch \Rightarrow No Local Operators

TQFTs have NO local operators

Hilbert-series counts gauge invariant local operators. TQFT has no local operators except the identity operator.

3

(a)

Our Main Proposal [Gang, Kim, Lee, MS, Yamazaki 2021]

Non-Unitary TQFTs emerge from degenerate limits of $\mathcal{N}=4$ SCFTs In a partition function level,

$$\mathcal{Z}^{\mathbb{B}}_{\mathcal{T}_{\mathrm{rank}\ 0}}\left(b^{2}, m\ (\mathrm{or}\ \eta), \nu; s\right) \xrightarrow{m \to 0\ (\mathrm{or}\ \eta \to 1),\ \nu \to \pm 1} \mathcal{Z}^{\mathcal{M}_{g,p}}_{\mathrm{TFT}_{\pm}[\mathcal{T}_{\mathrm{rank}\ 0}]}(s)\ .$$

Classification of $\mathcal{N}=4$ rank-0 SCFTs

In terms of mathematically well-defined TQFTs, we initiate classification of $\mathcal{N}=4$ rank-0 theories

Not Only for Partition Functions

We also established a dictionary between non-unitary TQFTs and rank-0 SCFTs

・ 同 ト ・ ヨ ト ・ ヨ ト

Our Main Result: Dictionaries

$\mathrm{TFT}_{\pm}[\mathcal{T}_{\mathrm{rank}\ 0}]$	$\mathcal{T}_{\mathrm{rank}\;0}$
$\mathcal{Z}_{\mathrm{TFT}_+}^{\mathcal{M}_{g,p}}(s)$	BPS partition function $\mathcal{Z}^{\mathbb{B}}_{\mathcal{T}_{\mathrm{rank }0}} _{\nu \to \pm 1.m=0}(s)$
	with (topology of \mathbb{B}) = $\mathcal{M}_{g,p}$
Spin or non-spin	Later Slide
Rank N	Witten index
	Be the vacua $\{\vec{z}_{\alpha}\}_{\alpha=0}^{N-1}$
Simple objects	or
	BPS loop operators $\{\mathcal{O}^{\pm}_{\alpha}(\vec{z})\}_{\alpha=0}^{N-1}$
$(S_{0lpha}^{\pm})^{-2}$	$\mathcal{H}_lpha({ extsf{m}}={ extsf{0}}, u ightarrow\pm{ extsf{1}};{ extsf{s}}=-{ extsf{1}})$
$T^{\pm}_{lphaeta}$ (only for non-spin)	$\left. \delta_{lphaeta}(\mathcal{F}_{lpha}/\mathcal{F}_{lpha=0}) ight _{ u ightarrow \pm 1,m=0}$
$(T^2)^{\pm}_{lphaeta}$	$\left. \delta_{lphaeta} (\mathcal{F}_lpha/\mathcal{F}_{lpha=0})^2 ight _{ u ightarrow \pm 1,m=0,s=-1}$
S^{\pm}_{00}	$ig {\mathcal Z}^{{\mathcal S}^{\boldsymbol{b}}_{\boldsymbol{\mathcal T}_{\mathrm{rank}}}}_{{\mathcal T}_{\mathrm{rank}}_0}(m=0, u ightarrow\pm1)ig $
$W^{\pm}_{eta}(lpha)$	$\mathcal{O}^\pm_lpha(ec{z}_eta)ert_{ u ightarrow\pm1,m=0}$
$max_lpha(-\log S_{0lpha}^\pm)$	F (three-sphere free energy)

TQFT from $\mathcal{N}=4$ SCFTs in 3d

The First Application: Bounds for F_{S^3} - 1

Topologically Twisted Indices \Leftrightarrow Ground State Degeneracy of TQFT From the dictionary on partition functions,

$$\mathcal{Z}_{\mathrm{rank-0}}^{S^1 \times \Sigma_g}(s) \Big|_{m=0,\nu=\pm 1} = |\mathrm{GSD}|_g \in \mathbb{Z}, \qquad |\mathrm{GSD}|_g = \sum_{i=1}^r x_i^{1-g}, (x_i > 0)$$

 x_i denotes one of $(S_{0\alpha})^2$ with the dictionary

$$\sqrt{x_1} := \left. \mathcal{Z}_{\mathrm{rank-0}}^{S_b^3}(s) \right|_{m=0,\nu=\pm 1}, \qquad \sqrt{x_2} := \left. \sqrt{\min\left\{x_i\right\}} = \left. \mathcal{Z}_{\mathrm{rank-0}}^{S^3}(s) \right|_{I\!R} \right.$$

Non-unitary condition:

 $x_1 > x_2$

The First Application: Bounds for F_{S^3} - 2

Topologically Twisted Indices \Leftrightarrow Ground State Degeneracy of TQFT GSD of TQFTs on $\Sigma^1\times\Sigma_g$ are

 $|GSD|_0 = 1$ $|GSD|_1 = Witten Index = r$ $|GSD|_2 = k \in \mathbb{Z}$

For TQFTs, Witten index indicates the number of simple objects including the identity. Therefore, Witten index of TQFTs starts from 2 for non-trivial TQFTs.

Bounds for F_{S^3} of rank-0 SCFT of Witten index r

$$\sum_{i=1}^{r} x_i = 1 \& x_1 > x_2 \Rightarrow x_2 = \min(x_i) < \frac{1}{r} \Rightarrow F_{S^3} = -\frac{1}{2} \log x_2 > \frac{1}{2} \log r$$

since at least one is larger than others from the non-unitary condition.

12/32

イロト イポト イヨト イヨト

The First Application: Universal Bounds for F_{S^3} - 3

A Minimal Non-Trivial TQFT

A minimal non-trivial TQFT have one simple object in addition to the identity.

$$\operatorname{GSD}|_0 = x_1 + x_2 = 1$$
 & $|\operatorname{GSD}|_2 = \frac{1}{x_1} + \frac{1}{x_2} = k \in \mathbb{Z}, \qquad x_1 > x_2$

We obtained

$$x_1 = \frac{1}{2} + \frac{1}{2}\sqrt{\frac{k-4}{k}}, \qquad x_2 = \frac{1}{2} - \frac{1}{2}\sqrt{\frac{k-4}{k}} < \frac{1}{2}, \qquad k \ge 5$$

For k = 5, minimum values for F_{S^3} obtained as

$$F_{S^3}^{\mathrm{rank-0}} \ge F_{S^3}^{\mathrm{min}} = -\frac{1}{2}\log x_2^{\mathrm{min}} = -\log\left(\sqrt{\frac{5-\sqrt{5}}{10}}\right) > \frac{1}{2}\log 2$$

It is saturated by $F_{S^3}(\mathcal{T}_{\mathrm{rank-0}}^{\min})$ [Gang, Yamazaki 2018]

Myungbo SHIM (Kyung Hee University) TQFT from $\mathcal{N} = 4$ SCFTs in 3d

SUSY Partition Function: Versatile Tools

Main Toolkit: Supersymmetric Partition Functions

- 1: Partition functions of TQFT from SUSY partition function in degenerate limits of rank-0 theories
- 2: Modular data from Bethe Vacua Method

Target Supersymmetric Partition Functions

- 1 : S^3 partition function $\rightarrow F_{S^3} = \log \mathcal{Z}_{S^3}$ [Jafferis 2010]
- 2 : S_b^3 Squashed three-sphere partition function [Hama, Hosomichi, Lee 2011]
- 3 : $S^1 \times S^2$ partition function \Leftrightarrow Superconformal Index (SCI) [Kim 2009, Imamura, Yokoyama 2011, Kapustin, Willett 2011]
- 4 : $S^1 \times \Sigma_{\mathfrak{g}}$ partition function \Leftrightarrow Topologically Twisted Index ($\mathfrak{g}=0 \rightarrow$ SCI)

イロト イポト イヨト イヨト 二日

Evidence for TQFT: Superconformal Index

SCI in Degenerate Limit: No Local Operators

$$\mathcal{I}^{\rm sci}(q,\eta=1,\nu=\pm 1;s=\pm 1) = \mathcal{I}^{\rm sci}(q,\eta,\nu=0;s=\pm 1)\Big|_{\eta \to (\pm q^{\frac{1}{2}})} = 1$$

Superconformal Index: SUSY Partition Function on $S^1 \times S^2$ Generic structure of SCI with a gauge group G is the below.

$$\begin{split} \mathcal{I}^{\rm sci}(q,\eta,\nu=0;s=1) \\ = \sum_{\mathsf{m}} \oint_{|a_i|=1} \left(\prod_{i=1}^{\mathrm{rank}\,G} \frac{da_i}{2\pi i a_i} \right) \Delta_G(\mathsf{m},\mathsf{a};q) q^{\epsilon_0(\mathfrak{n})} \mathcal{I}_0^{cs}(\mathsf{m},\mathsf{a}) \mathrm{P.E.}[f_{\rm single}(q,\mathsf{a},\eta;\mathsf{m})] \,. \end{split}$$

Localization Recipes

Each building blocks in the above formula are obtained by localization recipes with matter contents [Kapustin, Willett 2011, Imamura, Yokoyama 2011]

August 26th, 2021

15/32

Myungbo SHIM (Kyung Hee University) TQFT from $\mathcal{N} = 4$ SCFTs in 3d

Modular Data from Bethe Vacua Methods

SUSY Localization on Squashed Three Sphere

Field contents + charge table $\rightarrow S_b^3$ partition function by localization [Hama, Hosomichi, Lee 2011]

Method of Bethe Vacua

From the squashed three-sphere partition function, one can consider twisted superpotential and its saddle points, Bethe Vacua, from S_b^3 partition function. Then, one can construct handle gluing \mathcal{H} , fibering \mathcal{F} operators, and general topologically twisted indices [Closset, Kim, Willett 2017, 2018]

Bethe Vacua Recipes - 1 : Asymptotic Expansion

 $\mathcal{Z}_{S^3_h}$, Twisted Superpotential \mathcal{W} , and Perturbative Expansions around Saddles

$$\mathcal{Z}^{S^{3}_{b}}(b,m,\nu) = \int \left(\prod_{i=1}^{\operatorname{rank}(G)} \frac{dZ_{i}}{\sqrt{2\pi\hbar}} \right) \exp[\log \mathcal{I}_{\hbar}(Z,m,\nu)] , \quad \hbar := 2\pi i b^{2} .$$
$$\mathcal{W}_{n} : \log \mathcal{I}_{\hbar}(\vec{Z},m,\nu) \xrightarrow{\hbar \to 0} \sum_{n=0}^{\infty} \hbar^{n-1} \mathcal{W}_{n}(\vec{Z},n,\nu) .$$

Around the saddles,

$$\mathcal{Z}^{S_b^3}(b,m,\nu) = |\operatorname{Weyl}(G)| \times \int \prod_{i=1}^{\operatorname{rank}(G)} \frac{d(\delta Z_i)}{\sqrt{2\pi\hbar}} \exp\left(\frac{1}{\hbar} \mathcal{W}_0^{\vec{n}_\alpha}(\vec{Z}^\alpha + \delta \vec{Z}, m, \nu)\right)$$
$$+ \sum_{n=1}^{\infty} \hbar^{n-1} \mathcal{W}_n(\vec{Z} + \delta \vec{Z}, m, \nu) \longrightarrow \exp\left(\sum_{n=0}^{\infty} \hbar^{n-1} \mathcal{S}_n^\alpha(m, \nu)\right)$$

Myungbo SHIM (Kyung Hee University)

TQFT from $\mathcal{N} = 4$ SCFTs in 3d

August 26th, 2021 17 / 32

Bethe Vacua Recipes - 2: Bethe Vacua and Entries of Modular Matrices

Bethe Vacua: Saddle Points

$$\frac{\left\{\vec{z} : \left(\exp(\partial_{Z_{i}}\mathcal{W}_{0})\big|_{\vec{Z} \to \log \vec{z}}\right) = 1, \ w \cdot \vec{z} \neq \vec{z} \quad \forall \text{ non-trivial } w \in \operatorname{Weyl}(G)\right\}_{i=1}^{\operatorname{rank}(G)}}{\operatorname{Weyl}(G)}$$

Handle Gluing $\mathcal H$ and Fibering $\mathcal F$ Operators: Recipes and Dictionaries

$$\mathcal{H}_{\alpha}(\eta,\nu;s=-1) = e^{i\varphi} \exp\left(-2\mathcal{S}_{1}^{\alpha}(m,\nu)\right)\Big|_{m=\log\eta} \Rightarrow \left(\mathcal{S}_{0\alpha}^{\pm}\right)^{-2} \\ \mathcal{F}_{\alpha}(\eta,\nu;s=-1) = \exp\left(\frac{\mathcal{S}_{0}^{\alpha}(m,\nu)}{2\pi i}\right) \Rightarrow \left(T^{2}\right)_{\alpha\beta}^{\pm} = \delta_{\alpha\beta}(\mathcal{F}_{\alpha}/\mathcal{F}_{\alpha=0})^{2}$$

Myungbo SHIM (Kyung Hee University)

TQFT from $\mathcal{N} = 4$ SCFTs in 3d

■ ▶ ◀ ≣ ▶ ◀ ≣ ▶ August 26th, 2021

3

18/32

Bethe Vacua Recipes - 3 : Topologically Twisted Index

Twisted Index on $S^1 imes_p \Sigma_\mathfrak{g}$

$$\mathcal{Z}^{\mathcal{M}_{g,p}}(\textit{m}, \nu, \textit{s}) = \sum_{\vec{z}_{lpha} : ext{ Bethe-vacua}} (\mathcal{H}_{lpha}(\eta = e^{\textit{m}}, \nu; \textit{s}))^{g-1} (\mathcal{F}_{lpha}(\textit{m}, \nu; \textit{s}))^{p}$$

Twisted Index on $S^1 imes \Sigma_{\mathfrak{g}} o$ Ground State Degeneracy of TQFTs

$$egin{aligned} \mathcal{Z}^{\mathcal{M}_{g,\mathbf{0}}}(m,
u,s) &= \mathcal{Z}^{\mathcal{S}^{\mathbf{1}} imes \Sigma_g}(m,
u,s) = \sum_{ec{z}_lpha \,:\, ext{Bethe-vacua}} (\mathcal{H}_lpha(\eta=e^m,
u;s))^{g-1} \ \mathcal{Z}^{\mathcal{S}^{\mathbf{1}} imes \Sigma_g}(m=0,
u=\pm 1,s) &= | ext{GSD}|_g \in \mathbb{Z} \end{aligned}$$

For TQFT: Trivial SCI

$$\mathcal{I}^{\mathrm{sci}} = \mathcal{Z}^{S^{1} \times \Sigma_{g=o}}(m, \nu, s) = \sum_{\vec{z}_{\alpha} : \text{Bethe-vacua}} (\mathcal{H}_{\alpha}(\eta = e^{m}, \nu; s))^{-1} = 1$$

Myungbo SHIM (Kyung Hee University)

TQFT from $\mathcal{N}=4$ SCFTs in 3d

Rests of Modular Data

Basic Operators and Fusions in TQFTs

Basic operators w.r.t. A and B cycles act on the Hilbert space of TQFTs

$$\mathcal{O}^{\mathcal{A}}_{\beta}|\alpha
angle = \mathcal{W}_{\beta}(\alpha)|\alpha
angle, \qquad \qquad \mathcal{O}^{\mathcal{B}}_{\beta}|\alpha
angle = \mathcal{O}^{\mathcal{B}}_{\beta}\mathcal{O}^{\mathcal{B}}_{\alpha}|0
angle = \sum_{\gamma=0}^{N-1} \mathcal{N}^{\gamma}_{\alpha\beta}|\gamma
angle,$$

where $W_{\beta}(\alpha) = S_{\alpha\beta}/S_{\alpha0}$.

Fusion Rings and Verlinde Formula

Fusions of operators form a commutative ring, and the fusion coefficient can be obtained from S matrix by Verlinde formula

$$\mathcal{O}^{B}_{\beta}\mathcal{O}^{B}_{\alpha} = \sum_{\gamma=0}^{N-1} N^{\gamma}_{\alpha\beta}\mathcal{O}^{B}_{\gamma}, \qquad \qquad N^{\gamma}_{\alpha\beta} = \sum_{\delta=0}^{N-1} \frac{S_{\delta\alpha}S_{\delta\beta}\bar{S}_{\delta\gamma}}{S_{0\delta}}$$

Myungbo SHIM (Kyung Hee University)

TQFT from $\mathcal{N} = 4$ SCFTs in 3d

 ▶
 ▲
 ■
 ▲
 ■
 ■

 August 26th, 2021
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■

20 / 32

▲ 西型

Unitarity Condition of Modular Data

Unitarity $S^{-1} = S^{\dagger}$

Identity operator has minimum categorical dimensions $\{S_{0\alpha}\}$

 $|S_{00}| \leq |S_{0\alpha}|$

Non-Unitary Condition

Identity operator has not minimum categorical dimensions $\{S_{0\alpha}\}$

 $|S_{00}| > |\min(S_{0\alpha})|$

Combining with dictionary for F_{S^3} , this condition is related F-maximization.

Classification of TQFTs and $\mathcal{N}=4$ Rank-0 SCFTs

Classification by Rank(Witten Index) of TQFTs

- 1: All 35 Unitary Modular Tensor Categories ($r \le 4$) up to ribbon tensor equivalences are classified [Rowell, Stong, Wang 2007]
- 2: Rank 5 Modular Tensor Categories [Bruillard, Ng, Rowell, Wang 2015]
- 3: Partial list of primitive UMTC of r = 7, 8, 9 [Wen 2015]
- 4: Classification of Fermionic MTC [Bruillard, Galindo, Hagge, Ng, Plavnik, Rowell, Wang 2016]

Classification of $\mathcal{N}=4$ Rank-0 SCFTs

Using the correspondence, $\mathcal{N}=4$ Rank-0 SCFTs can be classified by classification of TQFT by Witten index.

イロト イポト イヨト イヨト 二日

Summary: Dictionaries

$\mathrm{TFT}_{\pm}[\mathcal{T}_{\mathrm{rank}\;0}]$	$\mathcal{T}_{\mathrm{rank}\;0}$	
$\mathcal{Z}_{\mathrm{TFT}_{\pm}}^{\mathcal{M}_{g,p}}(s)$	BPS partition function $\mathcal{Z}^{\mathbb{B}}_{\mathcal{T}_{\mathrm{rank }0}} _{\nu \to \pm 1, m=0}(s)$	
	with (topology of \mathbb{B}) = $\mathcal{M}_{g,p}^{-}$	
Spin or non-spin	Next Slide	
Rank N	Witten index	
	Bethe vacua $\{\vec{z}_{\alpha}\}_{\alpha=0}^{N-1}$	
Simple objects	or	
	BPS loop operators $\{\mathcal{O}^{\pm}_{\alpha}(\vec{z})\}_{\alpha=0}^{N-1}$	
$(S_{0lpha}^{\pm})^{-2}$	$\mathcal{H}_lpha({ extsf{m}}={ extsf{0}}, u ightarrow\pm{ extsf{1}};{ extsf{s}}=-{ extsf{1}})$	
$T^{\pm}_{\alpha\beta}$ (only for non-spin)	$\left. \left. \delta_{lphaeta}(\mathcal{F}_{lpha}/\mathcal{F}_{lpha=0}) ight _{ u ightarrow \pm 1,m=0}$	
$(T^2)^{\pm}_{lphaeta}$	$\left. \delta_{lphaeta}(\mathcal{F}_{lpha}/\mathcal{F}_{lpha=0})^2 ight _{ u ightarrow \pm 1,m=0,s=-1}$	
S_{00}^{\pm}	$\left \mathcal{Z}^{\mathcal{S}^{\boldsymbol{b}}_{\boldsymbol{\mathcal{T}}_{\mathrm{rank}}}}_{\mathcal{T}_{\mathrm{rank}}0}(m=0, u ightarrow\pm1) ight $	
$W^{\pm}_{eta}(lpha)$	$\mathcal{O}^\pm_lpha(ec{z}_eta)ert_{ u ightarrow\pm1,m=0}$	
$\max_{lpha}(-\log S_{0lpha}^{\pm})$	F (three-sphere free energy)	

Lee-Yang TQFT

Minimal Rank-0 Theory \mathcal{T}_{min}

UV $\mathcal{N} = 2 \text{ U}(1)_{k=-3/2}$ with a chiral multiplet of charge 1

In IR, supersymmetries are enhanced to $\mathcal{N} = 4$.

What is minimal? Degrees of Freedom

At the first shot, it seems that a theory with a free chiral multiplet has minimal degrees of freedom.

Comparison of central charge [Gang, Yamazaki 2018]

Central charge is one of measures of degrees of freedom of conformal theories.

$$rac{C_{\mathcal{T}}(\mathcal{T}_{\min})}{C_{\mathcal{T}}(\mathrm{free \ theory \ with \ single \ } \Phi)}\simeq 0.992549$$

Myungbo SHIM (Kyung Hee University)

TQFT from $\mathcal{N} = 4$ SCFTs in 3d

August 26th, 2021

24 / 32

< □ > < 同 > < 回 > < 回 > < 回 >

Lee-Yang TQFT from Degenerate Limit of \mathcal{T}_{min}

Check of SCI

SCI with conformal R-charges is

$$\mathcal{I}^{\mathrm{sci}}_{\mathcal{T}_{\min}}ig(q,u,
u=0;s=1ig) = 1-q+\left(\eta+rac{1}{\eta}
ight)q^{3/2}-2q^2+\cdots \,.$$

Consider non-trivial R-charge mixing, $\nu=\pm 1,$ SCI is

$$\begin{aligned} \mathcal{I}_{\mathcal{T}_{\min}}^{\mathrm{sci}}\left(q,\eta,\nu,s=1\right)\big|_{\nu\to\pm1} \\ &=1+\left(-1+\eta^{\mp1}\right)q+\left(-2+\eta+\frac{1}{\eta}\right)q^2+\left(-2+\eta+\frac{1}{\eta}\right)q^3+\cdots \end{aligned}$$

Taking $\eta \rightarrow$ 1, SCI yields 1. This would be reproduced from twisted index with $\mathfrak{g}=\mathbf{0}.$

Modular Data from Bethe-Vacua

S_b^3 Partition Function from Localization Formula

From the Localization Recipes in previous slides with k = -3/2, $R_{\Phi} = \Delta_{\Phi} = 1/2$, charge +1, one can construct $Z^{S_b^3}$ as

$$\mathcal{Z}_{\mathcal{T}_{\min}}^{S_b^3}(b,m,\nu) = \int \frac{dZ}{\sqrt{2\pi\hbar}} \exp\left[-\frac{Z^2 + 2Z\left(m + (i\pi + \frac{\hbar}{2})\nu\right)}{2\hbar}\right] \psi_{\hbar}(Z)$$

Bethe-Vacua

Bethe-vacua of
$$\mathcal{T}_{\min}$$
 : $\left\{z \ : \ \frac{(z-1)}{z^2}e^{-m-i\pi\nu}=1\right\}$

Myungbo SHIM (Kyung Hee University)

TQFT from $\mathcal{N} = 4$ SCFTs in 3d

 3

26 / 32

Modular Data from Bethe-Vacua

Handle-Gluing and Fibering Operators

$$\left\{ \mathcal{F}_{\alpha}(m=0,\nu\to\pm 1,s=-1) \right\}_{\alpha=0,1} \longrightarrow \left\{ \exp\left(-\frac{7i\pi}{60}\right), \exp\left(\frac{17i\pi}{60}\right) \right\}$$
$$\left\{ \mathcal{H}_{\alpha}(m=0,\nu\to\pm 1,s=-1) \right\}_{\alpha=0,1} \longrightarrow \left\{ \frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2} \right\}$$

Modular Matrices (S, T) obtained but for S_{11}

$$S = \begin{pmatrix} \sqrt{\frac{1}{10} \left(\sqrt{5} + 5\right)} & -\sqrt{\frac{1}{10} \left(5 - \sqrt{5}\right)} \\ -\sqrt{\frac{1}{10} \left(5 - \sqrt{5}\right)} & -\sqrt{\frac{1}{10} \left(\sqrt{5} + 5\right)} \end{pmatrix} , \qquad T = \begin{pmatrix} 1 & 0 \\ 0 & \exp(-\frac{2\pi i}{5}) \end{pmatrix}$$

Myungbo SHIM (Kyung Hee University)

TQFT from $\mathcal{N} = 4$ SCFTs in 3d

 3

27 / 32

Anyons of Lee-Yang TQFT from Loop Operators

Identification of Simple Objects

For a U(1) gauge theory, the supersymmetric dyonic loop operator $\mathcal{O}_{(p,q)}$ of (electric charge, magnetic charge)=(p,q) is

$$\mathcal{O}_{(p,q)} = z^p (1 - z^{-1})^q \; .$$

Two simple objects in Lee-Yang MTC identified as a supersymmetric loop operators as

$$\mathcal{O}_{\alpha=0} = \mathcal{O}_{(0,0)} = (\text{identity operator}), \quad \mathcal{O}_{\alpha=1} = \mathcal{O}_{(p,q)=(1,0)}.$$

Completing S-Matrix

Completing S-matrix other than the first row/column, the belows are required to compute.

$$W_{\beta=0,1}(0) = 1$$
, $W_{\beta=0}(1) = z_0 = \frac{1}{2}(\sqrt{5}-1)$, $W_{\beta=1}(1) = z_1 = \frac{1}{2}(-\sqrt{5}-1)$

Infinitely Many Examples

Table of Examples [Gang, Kim, Lee, MS, Yamazaki 2021]

$\mathcal{T}_{\mathrm{rank}\;0}$	$\mathrm{TFT}_{\pm}[\mathcal{T}_{\mathrm{rank}\;0}]$	Set of $\{ S_{0\alpha}^{\pm} \}$	$\exp(-F)$
\mathcal{T}_{\min}	(Lee-Yang)	$\{\sqrt{\frac{5+\sqrt{5}}{10}}, \sqrt{\frac{5-\sqrt{5}}{10}}\}$	$\sqrt{\frac{5-\sqrt{5}}{10}}$
$(U(1)_1 + H)$	$\operatorname{Gal}_d(SU(2)_6)/\mathbb{Z}_2^f$	$\{2\zeta_{6}^{1},2\zeta_{6}^{3}\}$	$2\zeta_6^1$
	(with $d = \zeta_6^3$)		
$SU(2)_k^{rac{1}{2}\oplusrac{1}{2}}$	$\operatorname{Gal}_d(SU(2)_{4 k -2})/\mathbb{Z}_2^f$	$ig\{2\zeta_{4 k -2}^{2n-1}ig\}_{n=1}^{ k }$	$2\zeta^1_{4 k -2}$
(k > 1)	(with $d = \zeta_{4 k -2}^{2 k -1}$)		
$T[SU(2)]_{k_1,k_2}$	See the caption	$\left\{ \left(\frac{1}{\sqrt{2}} \zeta_{ k_1k_2 - 1 - 2}^n \right)^{\otimes 2} \right\}_{n=1}^{ k_1k_2 - 1 - 1}$	$\frac{1}{\sqrt{2}}\zeta^1_{ k_1k_2-1 -2}$
$\frac{T[SU(2)]}{SU(2)^{\text{diag}}_{ k =3}}$	$(\text{Lee-Yang})^{\otimes 2} \otimes U(1)_2$	$\left\{\frac{1}{\sqrt{10}}^{\otimes 4}, \frac{5+\sqrt{5}}{10\sqrt{2}}^{\otimes 2}, \frac{5-\sqrt{5}}{10\sqrt{2}}^{\otimes 2}\right\}$	$\frac{5-\sqrt{5}}{10\sqrt{2}}$
$\frac{T[SU(2)]}{SU(2)^{\text{diag}}_{ k =4}}$	$\frac{\operatorname{Gal}_{\zeta_{10}^7}(SU(2)_{10}) \times SU(2)_2}{\mathbb{Z}_2^{\operatorname{diag}}}$	$\left\{\frac{1}{2}, \frac{1}{2\sqrt{3}}^{\otimes 5}, \frac{3+\sqrt{3}}{12}^{\otimes 2}, \frac{3-\sqrt{3}}{12}^{\otimes 2}\right\}$	$\frac{3-\sqrt{3}}{12}$
$\frac{T[SU(2)]}{SU(2)^{\text{diag}}_{ k =5}}$	$\operatorname{Gal}_d((G_2)_3)\otimes U(1)_{-2}$	$\left\{ \frac{1}{\sqrt{6}}^{\otimes 2}, \frac{1}{\sqrt{14}}^{\otimes 6}, \right.$	$\sqrt{\frac{5}{84} - \frac{1}{4\sqrt{21}}}$
	$\left(d=\sqrt{rac{5}{84}+rac{1}{4\sqrt{21}}} ight)$	$\sqrt{rac{5}{84}\pmrac{1}{4\sqrt{21}}}^{\otimes 2}\}$	
		$\Big\{ rac{1}{\sqrt{2 k -4}}^{\otimes (k -3)}, rac{1}{\sqrt{2 k +4}}^{\otimes (k +1)} \Big\}$	$\frac{1}{\sqrt{8 k -16}}$
$\frac{T[SU(2)]}{SU(2)^{\text{diag}}_{ k \geq 6}}$?	$(rac{1}{\sqrt{8 k -16}}+rac{1}{\sqrt{8 k +16}})^{\otimes 2} \; ,$	$-rac{1}{\sqrt{8 k +16}}$
		$\left(\frac{1}{\sqrt{8 k -16}} - \frac{1}{\sqrt{8 k +16}}\right)^{\otimes 2}$	

Myungbo SHIM (Kyung Hee University)

TQFT from $\mathcal{N} = 4$ SCFTs in 3d

Non-Unitary TQFT data can be obtained from SCFTs in the degenerate limits

Lower bound for F_{S^3} is obtained. \mathcal{T}_{\min} saturates the bound

The dictionaries are supported by infinitely many examples For more detail, please take a look at our paper arXiv:2103.09283 [hep-th]

Myungbo SHIM (Kyung Hee University)

TQFT from $\mathcal{N}=4$ SCFTs in 3d

30/32

Natural Questions

Classification of Rank-0 SCFTs and Dualities

Does the same TQFT imply dualities between rank-0 SCFTs?

Relation with Rozansky-Witten Theory

In RW theories, one can obtained Unitary TQFTs. We conjectures our Non-Unitary TQFTs are Galois Conjugate of them.

Relation with 4d $\mathcal{N} = 2$ Argyres-Douglas Theories

31/32

Thank You

THANK YOU for YOUR ATTENTION

Myungbo SHIM (Kyung Hee University) TQF

TQFT from $\mathcal{N}=4$ SCFTs in 3d

August 26th, 2021

(a)

32 / 32

3