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Superconformal theories from S-fold geometries

Introduction

Moduli space of N = 2 theories and rank 1 models

The space of vacua of N = 2 theories has two distinguished
branches:

Coulomb Branch (CB): where vector multiplet scalars have
nonzero vev (SU(2)R unbroken);

Higgs Branch (HB): where hypermultiplet scalars have
nonzero vev (U(1)R unbroken).

N = 2 theories are labelled by their rank (i.e. CB dimension).

Rank 1 theories have been classified! Argyres, Lotito, Lü, Martone ’15-’16.

Our goal is to provide a uniform geometric construction of these
models (and higher rank generalizations of these) using S-folds!
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Introduction

N = 3 theories in 4d from F-theory

S-folds: Type IIB compactifications involving an S-duality twist:

Consider U(1) N = 4 SYM and gauge a Z` ⊂ U(1)R × SU(2)F .
To preserve N = 3 susy we embed Z` in SL(2,Z).

We can construct N = 3 SCFTs by probing with r D3 branes a Z`
S-fold geometry: Garcia-Etxebarria, Regalado ’15; Aharony, Tachikawa ’16.

T 2 C C C
ω` ω−1

` ω` ω−1
`

; ω` = e2πi/` ` = 2, 3, 4, 6.

We can introduce discrete flux for H3 and B3: Aharony, Tachikawa ’16.

Value of ` 2 3 4 6

Discrete flux? yes yes yes no
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Introduction

N = 2 instanton theories from D3 branes

We consider 7-branes with constant axio-dilaton. Mukhi, Dasgupta ’96.

G ∅ SU(2) SU(3) SO(8) E6 E7 E8

∆7 6/5 4/3 3/2 2 3 4 6

The angular variable around the 7-brane has periodicity 2π/∆7.

We probe the 7-brane with a stack of r D3 branes:

0 1 2 3 4 5 6 7 8 9

7-brane x x x x x x x x

D3 brane x x x x

The gauge symmetry G on the 7-brane becomes the global
symmetry in 4d. CB operators have dimension ∆7, 2∆7, . . . , r∆7.
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N = 2 SCFTs from S-folds and their properties

N = 2 S-folds = S-folds + 7-branes

We wrap the 7-brane on C2/Z` and combine this with a Z`
quotient of the 89-plane. To preserve N = 2 supersymmetry this
must be accompanied (for ` 6= 1) by the action of Z`∆7 ⊂ SL(2,Z).

We find the following possibilities:

For ` = 1 ∆7 = 1, 6/5, 4/3, 3/2, 2, 3, 4 and 6;

For ` = 2 ∆7 = 1, 3/2, 2 and 3;

For ` = 3 ∆7 = 1, 4/3 and 2;

For ` = 4 ∆7 = 1 and 3/2;

For ` = 5 ∆7 = 6/5;

For ` = 6 ∆7 = 1.

Each possibility leads to an infinite family of 4d N = 2 SCFTs.



Superconformal theories from S-fold geometries

N = 2 SCFTs from S-folds and their properties

N = 2 S-folds = S-folds + 7-branes

We wrap the 7-brane on C2/Z` and combine this with a Z`
quotient of the 89-plane. To preserve N = 2 supersymmetry this
must be accompanied (for ` 6= 1) by the action of Z`∆7 ⊂ SL(2,Z).

We find the following possibilities:

For ` = 1 ∆7 = 1, 6/5, 4/3, 3/2, 2, 3, 4 and 6;

For ` = 2 ∆7 = 1, 3/2, 2 and 3;

For ` = 3 ∆7 = 1, 4/3 and 2;

For ` = 4 ∆7 = 1 and 3/2;

For ` = 5 ∆7 = 6/5;

For ` = 6 ∆7 = 1.

Each possibility leads to an infinite family of 4d N = 2 SCFTs.



Superconformal theories from S-fold geometries

N = 2 SCFTs from S-folds and their properties

Mass deformation of N = 2 S-fold theories

By deforming the 7-brane we implement mass deformations for the
4d theories on the probe D3 branes:

` = 2 ` = 3 ` = 4

(E6,Z2) (D4,Z3) (A2,Z4)
↓ ↓ ↓

(D4,Z2) (A1,Z3) Z4 S − fold
↓ ↓

(A2,Z2) Z3 S − fold
↓

Z2 S − fold

There are two families of N = 2 rank-1 SCFTs exhibiting this
pattern of mass deformations. Argyres, Martone ’16.

They arise on a D3 probing S-folds with and without discrete flux.
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N = 2 SCFTs from S-folds and their properties

The holonomy at infinity

We should prescribe the holonomy for G at infinity in C2/Z`.
In the case at hand this is an order ` automorphism, with order `′

as an outer-automorphism.These are classified by Kac’s theorem:

` `′ G (`′) Dynkin diagram HT HS

2 2 E
(2)
6

1◦
α0

− 2◦
α1

− 3◦
α2

⇐ 2◦
α3

− 1◦
α4

(F4)α0 Sp(4)α4

2 2 D
(2)
4

1◦
α0

⇐ 1◦
α1

− 1◦
α2

⇒ 1◦
α3

SO(7)α0 (Sp(2)SU(2))α2

2 1 A
(1)
2

1◦
α0

− 1◦
α1

− 1◦
α2

− SU(3)α0α0 (Sp(1)U(1))α0α1

3 3 D
(3)
4

1◦
α0

− 2◦
α1

W
1◦
α2

(G2)α0 SU(3)α2

3 1 A
(1)
1

1◦
α0

− 1◦
α1

− SU(2)α0α0α0 U(1)α0α0α1

4 2 A
(2)
2

2◦
α0

1◦
α1

SU(2)α0 SU(2)α1α1
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N = 2 SCFTs from S-folds and their properties

Properties of the T (r)
G ,` SCFTs

Dimension of CB operators: `∆7, 2`∆7, . . . , (r − 1)`∆7, r∆7.

` G Flavor Symmetry a c

2 E6 (F4)6r × SU(2)6r2−5r
6r2+r

4
6r2+3r

4

2 D4 SO(7)4r × SU(2)4r2−3r r2 4r2+r
4

2 A2 SU(3)3r × SU(2)3r2−2r
6r2−r

8
3r2

4

3 D4 (G2)4r × U(1) 3N2−N
2

6N2−N
4

3 A1 SU(2)8r/3 × U(1) 2r2−r
2

12r2−5r
12

4 A2 SU(2)3r × U(1) 12r2−7r
8

6r2−3r
4

5 ∅ U(1) 15r2−11r
10

30r2−21r
20

For generic r the global symmetry is HT times the isometry of the
background, but enhances for r ≤ 2. For r = 1 these are the G
1-instanton theories.
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N = 2 SCFTs from S-folds and their properties

Properties of the S(r)
G ,` SCFTs

Dimension of CB operators: `∆7, 2`∆7, . . . , (r − 1)`∆7, r`∆7.

` G Flavor Symmetry a c

2 E6 Sp(4)6r+1 × SU(2)6r2+r
36r2+42r+4

24
36r2+54r+8

24

2 D4 Sp(2)4r+1 × SU(2)8r × SU(2)4r2+r
24r2+24r+2

24
24r2+30r+4

24

2 A2 SU(2)3r+1 × U(1)× SU(2)3r2+r
18r2+15r+1

24
18r2+18r+2

24

3 D4 SU(3)12r+2 × U(1) 36r2+36r+3
24

36r2+42r+6
24

3 A1 U(1)× U(1) 24r2+20r+1
24

24r2+22r+2
24

4 A2 SU(2)12r+2 × U(1) 36r2+33r+2
24

36r2+36r+4
24

For generic r the global symmetry is HS times the isometry of the
background, but enhances for r = 1.
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N = 2 SCFTs from S-folds and their properties

S-fold theories, Higgs branch and higgsings

For ` = 2, 3, 4 we find the following sequence of RG flows:

· · · → S(r)
G ,` → T

(r)
G ,` → S

(r−1)
G ,` → T (r−1)

G ,` → . . .

From this we conclude that changing the holonomy at infinity (or
switching-off the discrete flux) implements an higgsing.

We find that all S-fold SCFTs (we denote their Higgs branch as

M(r)
G ,`) have a Z` discretely gauged version with Higgs branch

M(r)
G ,`/Z`. This is interpreted as new moduli spaces of G instantons

on C2/Z` with holonomy involving outer-automorphisms.
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N = 2 SCFTs from S-folds and their properties

S-fold theories in a nutshell

We can represent graphically N = 2 S-fold SCFTs using an
auxiliary affine E8 Dynkin diagram:

1 2 3 4 5 6 4’

3’

2’

T theories with ` = 1, 2, 3, 4, 5, 6.
S theories with ` = 2, 3, 4.

This peculiar pattern arises because S-fold SCFTs (with `∆7 = 6)
arise as torus compactifications of 6d N = (1, 0) theories.
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S-folds from six dimensions

An alternative construction from M-theory

Two realizations of rank-r E8 MN theories: Minahan, Nemeschansky ’96.

S-fold theories with ` = 1 and ∆7 = 6. These correspond to r
D3 branes probing a 7-brane of type E8.

Rank-r E-string on a torus: r M5 branes probing the M9 wall
in M-theory.

In both cases a R4 transverse to the probes (SU(2)R × SU(2)F ).

To realize S-folds with ` > 1, we orbifold the R4 in both
descriptions. This leads to orbi-instanton theories on the M-theory
side!
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S-folds from six dimensions

6d Orbi-instanton theories

We consider 6d N = (1, 0) obtained by wrapping the M9 brane on
a ADE singularity C2/Γ. Del Zotto, Heckman, Tomasiello, Vafa ’14.

The 6d SCFT is specified by the choice of holonomy at infinity for
the E8 gauge field (in one-to-one correspondence with
homomorphisms ρ : Γ→ E8).
Its global symmetry is G × Γ, where G ⊂ E8 commutes with ρ(Γ).

When Γ = Z` the homomorphisms are specified by selecting nodes
of the affine E8 Dynkin diagram such that the sum of labels is `.

The 6d theories relevant for constructing S-fold theories are
specified by selecting a single node.



Superconformal theories from S-fold geometries

S-folds from six dimensions

6d Orbi-instanton theories

We consider 6d N = (1, 0) obtained by wrapping the M9 brane on
a ADE singularity C2/Γ. Del Zotto, Heckman, Tomasiello, Vafa ’14.

The 6d SCFT is specified by the choice of holonomy at infinity for
the E8 gauge field (in one-to-one correspondence with
homomorphisms ρ : Γ→ E8).
Its global symmetry is G × Γ, where G ⊂ E8 commutes with ρ(Γ).

When Γ = Z` the homomorphisms are specified by selecting nodes
of the affine E8 Dynkin diagram such that the sum of labels is `.

The 6d theories relevant for constructing S-fold theories are
specified by selecting a single node.



Superconformal theories from S-fold geometries

S-folds from six dimensions

The S(r)
G ,` theories from six dimensions

When the holonomy involves the nodes 2′, 3′ or 4′ (therefore for
` = 2, 3, 4) we find Mekareeya, Ohmori, Tachikawa, Zafrir ’17; Cabrera, Hanany, Sperling ’19.

8 SU(`) SU(`) . . . SU(`) `

r

1

We can construct S(r)
G ,` theories (with `∆7 = 6) by compactifying

these 6d theories on T 2 with Z` holonomies (case r = 1 studied by
Ohmori, Tachikawa and Zafrir).
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S-folds from six dimensions

The T (r)
G ,` theories from six dimensions

Similarly, when the E8 holonomy involves selecting the nodes
1, 2, 3, 4, 5 or 6 (for any ` ≤ 6) we get the theories

E-string SU(`) SU(`) . . . SU(`) `

r-1

`

where a SU(`) subgroup of E8 (from the E-string) is gauged.

Via torus compactification we find the T (r)
G ,` theories with `∆7 = 6.
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S-folds from six dimensions

Concluding remarks

We constructed a family of CY4 singularities which interpolate
between 7-branes in flat space and N = 3 S-folds. When
probing these with D3 branes we can realize all rank 1 SCFTs
and define higher rank generalizations thereof.

The HB of these theories provide examples of ALE instantons
with holonomy involving outer-automorphisms.

Using systems of 3/7-branes in Type IIB we can construct
many more (higher rank) N = 2 theories, setting the stage for
a detailed classification of higher rank SCFTs.

Thank You!
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