Superconformal theories from S-fold geometries

Simone Giacomelli

Mathematical Institute, University of Oxford

SUSY 2021

Based on: 2001.00533, 2007.00647, 2010.03943, 2010.05889

With: F. Apruzzi, A. Bourget, J. F. Grimminger, A. Hanany,
 W. Peelaers, M. Martone, C. Meneghelli, S. Schafer-Nameki,
 M. Sperling, Y. Tachikawa, G. Zafrir, Z. Zhong

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Moduli space of $\mathcal{N} = 2$ theories and rank 1 models

The space of vacua of $\mathcal{N}=2$ theories has two distinguished branches:

- Coulomb Branch (CB): where vector multiplet scalars have nonzero vev (SU(2)_R unbroken);
- **Higgs Branch (HB):** where hypermultiplet scalars have nonzero vev (*U*(1)_{*R*} unbroken).
- $\mathcal{N}=2$ theories are labelled by their **rank** (i.e. CB dimension).

Rank 1 theories have been classified! Argyres, Lotito, Lü, Martone '15-'16. Our goal is to provide a uniform geometric construction of these models (and higher rank generalizations of these) using *S*-folds!

Moduli space of $\mathcal{N} = 2$ theories and rank 1 models

The space of vacua of $\mathcal{N}=2$ theories has two distinguished branches:

- Coulomb Branch (CB): where vector multiplet scalars have nonzero vev (SU(2)_R unbroken);
- **Higgs Branch (HB):** where hypermultiplet scalars have nonzero vev (*U*(1)_{*R*} unbroken).
- $\mathcal{N}=2$ theories are labelled by their **rank** (i.e. CB dimension).

Rank 1 theories have been classified! Argyres, Lotito, Lü, Martone '15-'16. Our goal is to provide a uniform geometric construction of these models (and higher rank generalizations of these) using *S*-folds!

$\mathcal{N} = 3$ theories in 4d from F-theory

S-folds: Type IIB compactifications involving an S-duality twist: Consider $U(1) \mathcal{N} = 4$ SYM and gauge a $\mathbb{Z}_{\ell} \subset U(1)_R \times SU(2)_F$. To preserve $\mathcal{N} = 3$ susy we embed \mathbb{Z}_{ℓ} in $SL(2, \mathbb{Z})$.

We can construct $\mathcal{N} = 3$ SCFTs by probing with r D3 branes a \mathbb{Z}_{ℓ} \mathcal{S} -fold geometry: Garcia-Etxebarria, Regalado '15; Aharony, Tachikawa '16.

$$\frac{T^2}{\omega_\ell} \begin{array}{cc} \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \overline{\omega_\ell} & \omega_\ell^{-1} & \omega_\ell & \omega_\ell^{-1} \end{array}; \quad \omega_\ell = e^{2\pi i/\ell} \quad \ell = 2, 3, 4, 6.$$

We can introduce discrete flux for H_3 and B_3 : Aharony, Tachikawa '16.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\mathcal{N} = 3$ theories in 4d from F-theory

S-folds: Type IIB compactifications involving an S-duality twist: Consider $U(1) \mathcal{N} = 4$ SYM and gauge a $\mathbb{Z}_{\ell} \subset U(1)_R \times SU(2)_F$. To preserve $\mathcal{N} = 3$ susy we embed \mathbb{Z}_{ℓ} in $SL(2, \mathbb{Z})$.

We can construct $\mathcal{N} = 3$ SCFTs by probing with r D3 branes a \mathbb{Z}_{ℓ} \mathcal{S} -fold geometry: Garcia-Etxebarria, Regalado '15; Aharony, Tachikawa '16.

$$rac{T^2}{\omega_\ell} \, \stackrel{\mathbb{C}}{=} \,$$

We can introduce discrete flux for H_3 and B_3 : Aharony, Tachikawa '16.

$\mathcal{N} = 3$ theories in 4d from F-theory

S-folds: Type IIB compactifications involving an S-duality twist: Consider $U(1) \mathcal{N} = 4$ SYM and gauge a $\mathbb{Z}_{\ell} \subset U(1)_R \times SU(2)_F$. To preserve $\mathcal{N} = 3$ susy we embed \mathbb{Z}_{ℓ} in $SL(2, \mathbb{Z})$.

We can construct $\mathcal{N} = 3$ SCFTs by probing with r D3 branes a \mathbb{Z}_{ℓ} \mathcal{S} -fold geometry: Garcia-Etxebarria, Regalado '15; Aharony, Tachikawa '16.

$$\frac{T^2}{\omega_\ell} \begin{array}{cc} \mathbb{C} & \mathbb{C} & \mathbb{C} \\ \hline \omega_\ell & \omega_\ell^{-1} & \omega_\ell & \omega_\ell^{-1} \end{array}; \quad \omega_\ell = e^{2\pi i/\ell} \quad \ell = 2, 3, 4, 6.$$

We can introduce discrete flux for H_3 and B_3 : Aharony, Tachikawa '16.

Value of ℓ	2	3	4	6
Discrete flux?	yes	yes	yes	no

$\mathcal{N} = 2$ instanton theories from D3 branes

We consider 7-branes with constant axio-dilaton. Mukhi, Dasgupta '96.

G	Ø	<i>SU</i> (2)	<i>SU</i> (3)	<i>SO</i> (8)	E_6	E ₇	<i>E</i> ₈
Δ_7	6/5	4/3	3/2	2	3	4	6

The angular variable around the 7-brane has periodicity $2\pi/\Delta_7$.

We probe the 7-brane with a stack of r D3 branes:

The gauge symmetry G on the 7-brane becomes the global symmetry in 4d. CB operators have dimension $\Delta_7, 2\Delta_7, \ldots, r\Delta_7$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\mathcal{N} = 2$ instanton theories from D3 branes

We consider 7-branes with constant axio-dilaton. Mukhi, Dasgupta '96.

G	Ø	<i>SU</i> (2)	<i>SU</i> (3)	<i>SO</i> (8)	E_6	E ₇	<i>E</i> ₈
Δ_7	6/5	4/3	3/2	2	3	4	6

The angular variable around the 7-brane has periodicity $2\pi/\Delta_7$.

We probe the 7-brane with a stack of r D3 branes:

	0	1	2	3	4	5	6	7	8	9
7-brane	x	X	X	X	X	X	X	X		
D3 brane	x	x	x	x						

The gauge symmetry G on the 7-brane becomes the global symmetry in 4d. CB operators have dimension $\Delta_7, 2\Delta_7, \ldots, r\Delta_7$.

$\mathcal{N} = 2 \mathcal{S}$ -folds = \mathcal{S} -folds + 7-branes

We wrap the 7-brane on $\mathbb{C}^2/\mathbb{Z}_\ell$ and combine this with a \mathbb{Z}_ℓ quotient of the 89-plane. To preserve $\mathcal{N} = 2$ supersymmetry this must be accompanied (for $\ell \neq 1$) by the action of $\mathbb{Z}_{\ell\Delta_7} \subset SL(2,\mathbb{Z})$.

We find the following possibilities:

For $\ell = 1 \ \Delta_7 = 1, 6/5, 4/3, 3/2, 2, 3, 4$ and 6;

For
$$\ell = 2 \Delta_7 = 1, 3/2, 2$$
 and 3;

• For
$$\ell = 3 \ \Delta_7 = 1, 4/3$$
 and 2;

• For
$$\ell = 4 \ \Delta_7 = 1$$
 and $3/2$;

• For
$$\ell = 5 \Delta_7 = 6/5$$
;

For $\ell = 6 \Delta_7 = 1$.

Each possibility leads to an infinite family of 4d $\mathcal{N}=2$ SCFTs

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$\mathcal{N} = 2 \mathcal{S}$ -folds = \mathcal{S} -folds + 7-branes

We wrap the 7-brane on $\mathbb{C}^2/\mathbb{Z}_\ell$ and combine this with a \mathbb{Z}_ℓ quotient of the 89-plane. To preserve $\mathcal{N} = 2$ supersymmetry this must be accompanied (for $\ell \neq 1$) by the action of $\mathbb{Z}_{\ell\Delta_7} \subset SL(2,\mathbb{Z})$.

We find the following possibilities:

• For
$$\ell = 1$$
 $\Delta_7 = 1, 6/5, 4/3, 3/2, 2, 3, 4$ and 6;

For
$$\ell = 2 \ \Delta_7 = 1, 3/2, 2$$
 and 3;

For
$$\ell = 3 \; \Delta_7 = 1, 4/3$$
 and 2;

• For
$$\ell = 4 \Delta_7 = 1$$
 and $3/2$;

For
$$\ell=5$$
 $\Delta_7=6/5;$

For
$$\ell = 6 \Delta_7 = 1$$
.

Each possibility leads to an infinite family of 4d $\mathcal{N} = 2$ SCFTs.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Mass deformation of $\mathcal{N} = 2 \mathcal{S}$ -fold theories

By deforming the 7-brane we implement mass deformations for the 4d theories on the probe D3 branes:

$\ell = 2$	$\ell = 3$	$\ell = 4$
(E_6,\mathbb{Z}_2)	(D_4,\mathbb{Z}_3)	(A_2,\mathbb{Z}_4)
\downarrow	\downarrow	\downarrow
(D_4,\mathbb{Z}_2)	(A_1,\mathbb{Z}_3)	$\mathbb{Z}_4 \ S$ – fold
\downarrow	\downarrow	
(A_2,\mathbb{Z}_2)	$\mathbb{Z}_3 S$ – fold	
\downarrow		
$\mathbb{Z}_2 \mathcal{S} - \textit{fold}$		

There are two families of $\mathcal{N}=2$ rank-1 SCFTs exhibiting this pattern of mass deformations. Argyres, Martone '16. They arise on a D3 probing S-folds with and without discrete flux. ・ロト ・ 戸 ・ イヨ ト ・ ヨ ・ うらぐ

The holonomy at infinity

We should prescribe the holonomy for G at infinity in $\mathbb{C}^2/\mathbb{Z}_{\ell}$. In the case at hand this is an order ℓ automorphism, with order ℓ' as an outer-automorphism. These are classified by Kac's theorem:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The holonomy at infinity

We should prescribe the holonomy for G at infinity in $\mathbb{C}^2/\mathbb{Z}_{\ell}$. In the case at hand this is an order ℓ automorphism, with order ℓ' as an outer-automorphism. These are classified by Kac's theorem:

ℓ	ℓ'	$G^{(\ell')}$	Dynkin diagram	$H_{\mathcal{T}}$	$H_{\mathcal{S}}$
2		$E_{6}^{(2)}$	$\begin{array}{c}1\\\circ\\\alpha_0\\\alpha_1\\\alpha_2\\\alpha_3\\\alpha_4\end{array}\overset{3}{\leftarrow} \begin{array}{c}2\\\circ\\\alpha_3\\\alpha_4\end{array}\overset{1}{\leftarrow}$	$(F_4)_{\alpha_0}$	$Sp(4)_{lpha_4}$
2	2	$D_{4}^{(2)}$	$ \begin{array}{c} 1\\ \circ\\ \alpha_0 \end{array} \leftarrow \begin{array}{c} 1\\ \circ\\ \alpha_1 \end{array} - \begin{array}{c} 1\\ \circ\\ \alpha_2 \end{array} \Rightarrow \begin{array}{c} 1\\ \circ\\ \alpha_3 \end{array} $	$SO(7)_{lpha_0}$	$(Sp(2)SU(2))_{\alpha_2}$
2	1	$A_{2}^{(1)}$	$egin{array}{cccc} 1&1&1&lpha\ \circ&-\circ&-\circ&-lpha\ lpha_0&lpha_1&lpha_2 \end{array}$	$SU(3)_{lpha_0lpha_0}$	$(Sp(1)U(1))_{\alpha_0\alpha_1}$
3	3	$D_{4}^{(3)}$	$\begin{array}{c} 1 \\ \circ \\ lpha_0 \end{array} - \begin{array}{c} 2 \\ \circ \\ lpha_1 \end{array} \Leftarrow \begin{array}{c} 1 \\ \circ \\ lpha_2 \end{array}$	$(G_2)_{\alpha_0}$	$SU(3)_{\alpha_2}$
3	1	$A_{1}^{(1)}$	$\begin{array}{c} 1 \\ \circ \end{array} - \begin{array}{c} 1 \\ \circ \end{array} - \begin{array}{c} lpha \\ lpha_1 \end{array}$	$SU(2)_{lpha_0lpha_0lpha_0}$	$U(1)_{lpha_0 lpha_0 lpha_1}$
4	2	$A_2^{(2)}$	$\begin{array}{c} 2 \\ \circ \rightleftharpoons \\ \alpha_0 \end{array} \stackrel{1}{} \alpha_1 \end{array}$	$SU(2)_{lpha_0}$	$SU(2)_{lpha_1lpha_1}$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Properties of the $\mathcal{T}_{G,\ell}^{(r)}$ SCFTs

Dimension of CB operators: $\ell \Delta_7, 2\ell \Delta_7, \ldots, (r-1)\ell \Delta_7, r\Delta_7$.

ℓ	G	Flavor Symmetry	а	С
2	E_6	$(F_4)_{6r} \times SU(2)_{6r^2-5r}$	$\frac{6r^2+r}{4}$	$\frac{6r^2+3r}{4}$
2	<i>D</i> ₄	$SO(7)_{4r} \times SU(2)_{4r^2-3r}$	r ²	$\frac{4r^2+r}{4}$
2	A_2	$SU(3)_{3r} \times SU(2)_{3r^2-2r}$	$\frac{6r^2-r}{8}$	$\frac{3r^2}{4}$
3	D_4	$(G_2)_{4r} imes U(1)$	$\frac{3N^2-N}{2}$	$\frac{6N^2-N}{4}$
3	A_1	$SU(2)_{8r/3} imes U(1)$	$\frac{2r^2-r}{2}$	$\frac{12r^2-5r}{12}$
4	A_2	$SU(2)_{3r} imes U(1)$	$\frac{12r^2 - 7r}{8}$	$\frac{6r^2-3r}{4}$
5	Ø	U(1)	$\frac{15r^2 - 11r}{10}$	$\frac{30r^2 - 21r}{20}$

For generic r the global symmetry is H_T times the isometry of the background, but enhances for $r \leq 2$. For r = 1 these are the G 1-instanton theories.

・ロト・西ト・ヨト・ヨー うへぐ

Properties of the $S_{G,\ell}^{(r)}$ SCFTs

Dimension of CB operators: $\ell \Delta_7, 2\ell \Delta_7, \ldots, (r-1)\ell \Delta_7, r\ell \Delta_7$.

ℓ	G	Flavor Symmetry	а	с
2	E ₆	$Sp(4)_{6r+1} imes SU(2)_{6r^2+r}$	$\frac{36r^2+42r+4}{24}$	$\frac{36r^2+54r+8}{24}$
2	D_4	$Sp(2)_{4r+1} imes SU(2)_{8r} imes SU(2)_{4r^2+r}$	$\frac{24r^2+24r+2}{24}$	$\frac{24r^2+30r+4}{24}$
2	A_2	$SU(2)_{3r+1} imes U(1) imes SU(2)_{3r^2+r}$	$\frac{18r^2+15r+1}{24}$	$\frac{18r^2+18r+2}{24}$
3	D ₄	$SU(3)_{12r+2} imes U(1)$	$\frac{36r^2+36r+3}{24}$	$\frac{36r^2+42r+6}{24}$
3	A_1	U(1) imes U(1)	$\frac{24r^2+20r+1}{24}$	$\frac{24r^2+22r+2}{24}$
4	A_2	$SU(2)_{12r+2} imes U(1)$	$\frac{36r^2+33r+2}{24}$	$\frac{36r^2+36r+4}{24}$

For generic r the global symmetry is H_S times the isometry of the background, but enhances for r = 1.

S-fold theories, Higgs branch and higgsings

For $\ell = 2, 3, 4$ we find the following sequence of RG flows:

$$\cdots \to \mathcal{S}_{G,\ell}^{(r)} \to \mathcal{T}_{G,\ell}^{(r)} \to \mathcal{S}_{G,\ell}^{(r-1)} \to \mathcal{T}_{G,\ell}^{(r-1)} \to \dots$$

From this we conclude that changing the holonomy at infinity (or switching-off the discrete flux) implements an higgsing.

We find that all S-fold SCFTs (we denote their Higgs branch as $\mathcal{M}_{G,\ell}^{(r)}$) have a \mathbb{Z}_{ℓ} discretely gauged version with Higgs branch $\mathcal{M}_{G,\ell}^{(r)}/\mathbb{Z}_{\ell}$. This is interpreted as new moduli spaces of G instantons on $\mathbb{C}^2/\mathbb{Z}_{\ell}$ with holonomy involving outer-automorphisms.

S-fold theories, Higgs branch and higgsings

For $\ell = 2, 3, 4$ we find the following sequence of RG flows:

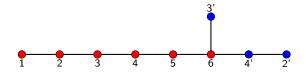
$$\cdots \to \mathcal{S}_{G,\ell}^{(r)} \to \mathcal{T}_{G,\ell}^{(r)} \to \mathcal{S}_{G,\ell}^{(r-1)} \to \mathcal{T}_{G,\ell}^{(r-1)} \to \dots$$

From this we conclude that changing the holonomy at infinity (or switching-off the discrete flux) implements an higgsing.

We find that all S-fold SCFTs (we denote their Higgs branch as $\mathcal{M}_{G,\ell}^{(r)}$) have a \mathbb{Z}_{ℓ} discretely gauged version with Higgs branch $\mathcal{M}_{G,\ell}^{(r)}/\mathbb{Z}_{\ell}$. This is interpreted as new moduli spaces of G instantons on $\mathbb{C}^2/\mathbb{Z}_{\ell}$ with holonomy involving outer-automorphisms.

S-fold theories in a nutshell

We can represent graphically $\mathcal{N} = 2 \mathcal{S}$ -fold SCFTs using an auxiliary affine E_8 Dynkin diagram:

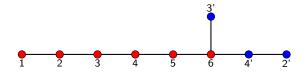


 \mathcal{T} theories with $\ell = 1, 2, 3, 4, 5, 6$. \mathcal{S} theories with $\ell = 2, 3, 4$.

This peculiar pattern arises because S-fold SCFTs (with $\ell \Delta_7 = 6$) arise as torus compactifications of 6d $\mathcal{N} = (1,0)$ theories.

S-fold theories in a nutshell

We can represent graphically $\mathcal{N} = 2 \mathcal{S}$ -fold SCFTs using an auxiliary affine E_8 Dynkin diagram:



 \mathcal{T} theories with $\ell = 1, 2, 3, 4, 5, 6$. \mathcal{S} theories with $\ell = 2, 3, 4$.

This peculiar pattern arises because S-fold SCFTs (with $\ell \Delta_7 = 6$) arise as torus compactifications of 6d $\mathcal{N} = (1, 0)$ theories.

An alternative construction from M-theory

Two realizations of rank-r E₈ MN theories: Minahan, Nemeschansky '96.

- S-fold theories with l = 1 and Δ₇ = 6. These correspond to r
 D3 branes probing a 7-brane of type E₈.
- Rank-r E-string on a torus: r M5 branes probing the M9 wall in M-theory.

In both cases a \mathbb{R}^4 transverse to the probes $(SU(2)_R \times SU(2)_F)$.

To realize S-folds with $\ell > 1$, we orbifold the \mathbb{R}^4 in both descriptions. This leads to orbi-instanton theories on the M-theory side!

An alternative construction from M-theory

Two realizations of rank-r E₈ MN theories: Minahan, Nemeschansky '96.

- S-fold theories with l = 1 and Δ₇ = 6. These correspond to r
 D3 branes probing a 7-brane of type E₈.
- Rank-r E-string on a torus: r M5 branes probing the M9 wall in M-theory.

In both cases a \mathbb{R}^4 transverse to the probes $(SU(2)_R \times SU(2)_F)$.

To realize S-folds with $\ell > 1$, we orbifold the \mathbb{R}^4 in both descriptions. This leads to orbi-instanton theories on the M-theory side!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $\square S$ -folds from six dimensions

6d Orbi-instanton theories

We consider 6d $\mathcal{N} = (1,0)$ obtained by wrapping the M9 brane on a ADE singularity \mathbb{C}^2/Γ . Del Zotto, Heckman, Tomasiello, Vafa '14.

The 6d SCFT is specified by the choice of holonomy at infinity for the E_8 gauge field (in one-to-one correspondence with homomorphisms $\rho : \Gamma \to E_8$). Its global symmetry is $G \times \Gamma$, where $G \subset E_8$ commutes with $\rho(\Gamma)$.

When $\Gamma = \mathbb{Z}_{\ell}$ the homomorphisms are specified by selecting nodes of the affine E_8 Dynkin diagram such that the sum of labels is ℓ . The 6d theories relevant for constructing *S*-fold theories are specified by selecting **a single node**. $\square S$ -folds from six dimensions

6d Orbi-instanton theories

We consider 6d $\mathcal{N} = (1,0)$ obtained by wrapping the M9 brane on a ADE singularity \mathbb{C}^2/Γ . Del Zotto, Heckman, Tomasiello, Vafa '14.

The 6d SCFT is specified by the choice of holonomy at infinity for the E_8 gauge field (in one-to-one correspondence with homomorphisms $\rho : \Gamma \to E_8$). Its global symmetry is $G \times \Gamma$, where $G \subset E_8$ commutes with $\rho(\Gamma)$.

When $\Gamma = \mathbb{Z}_{\ell}$ the homomorphisms are specified by selecting nodes of the affine E_8 Dynkin diagram such that the sum of labels is ℓ .

The 6d theories relevant for constructing S-fold theories are specified by selecting **a single node**.

The $\mathcal{S}_{G,\ell}^{(r)}$ theories from six dimensions

When the holonomy involves the nodes 2', 3' or 4' (therefore for $\ell = 2, 3, 4$) we find Mekareeya, Ohmori, Tachikawa, Zafrir '17; Cabrera, Hanany, Sperling '19.

$$[8] - \overline{SU(\ell) - SU(\ell)} - \cdots - SU(\ell) - [\ell]$$

We can construct $S_{G,\ell}^{(r)}$ theories (with $\ell \Delta_7 = 6$) by compactifying these 6d theories on T^2 with \mathbb{Z}_{ℓ} holonomies (case r = 1 studied by Ohmori, Tachikawa and Zafrir).

The $\mathcal{T}_{G,\ell}^{(r)}$ theories from six dimensions

Similarly, when the E_8 holonomy involves selecting the nodes 1, 2, 3, 4, 5 or 6 (for any $\ell \leq 6$) we get the theories

$$\underbrace{ \begin{array}{c} \text{E-string}}_{\ell} & \overbrace{SU(\ell) - SU(\ell)}^{r-1} & \cdots & -SU(\ell) \end{array} }_{\ell} \\ \end{array}$$

where a $SU(\ell)$ subgroup of E_8 (from the E-string) is gauged.

Via torus compactification we find the $\mathcal{T}_{G,\ell}^{(r)}$ theories with $\ell \Delta_7 = 6$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Concluding remarks

- We constructed a family of CY4 singularities which interpolate between 7-branes in flat space and $\mathcal{N} = 3 \mathcal{S}$ -folds. When probing these with D3 branes we can realize all rank 1 SCFTs and define higher rank generalizations thereof.
- The HB of these theories provide examples of ALE instantons with holonomy involving outer-automorphisms.
- Using systems of 3/7-branes in Type IIB we can construct many more (higher rank) N = 2 theories, setting the stage for a detailed classification of higher rank SCFTs.

Thank You!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Concluding remarks

- We constructed a family of CY4 singularities which interpolate between 7-branes in flat space and $\mathcal{N} = 3 \mathcal{S}$ -folds. When probing these with D3 branes we can realize all rank 1 SCFTs and define higher rank generalizations thereof.
- The HB of these theories provide examples of ALE instantons with holonomy involving outer-automorphisms.
- Using systems of 3/7-branes in Type IIB we can construct many more (higher rank) N = 2 theories, setting the stage for a detailed classification of higher rank SCFTs.

Thank You!