

Potential Signatures and **Combined Constraints for First** Generation Leptoquarks

Luc Schnell SUSY 2021 26 August 2021 arXiv:2101.07811 arXiv:2104.06417 arXiv:2105.04844 arXiv:2107.13569

1. Introduction

- 1.1 Flavor Anomalies
- 1.2 Leptoquarks
- 1.3 Overview

Introduction Flavor Anomalies

 The Standard Model (SM) predicts lepton flavor universality (LFU).

Source: <u>https://cerncourier.com/a/who-ordered-all-of-that/</u>

 The Standard Model (SM) predicts lepton flavor universality (LFU).

Source: <u>https://cerncourier.com/a/who-ordered-all-of-that/</u>

 The Standard Model (SM) predicts lepton flavor universality (LFU).

Source: <u>https://cerncourier.com/a/who-ordered-all-of-that/</u>

The Standard Model (SM) predicts lepton • flavor universality (LFU).

Source: https://cerncourier.com/a/who-ordered-all-of-that/

• This is challenged by anomalies which have started to emerge in recent years, hinting at lepton flavor universality violation (LFUV).

The Standard Model (SM) predicts lepton • flavor universality (LFU).

Source: https://cerncourier.com/a/who-ordered-all-of-that/

• This is challenged by anomalies which have started to emerge in recent years, hinting at lepton flavor universality violation (LFUV).

The Standard Model (SM) predicts lepton • flavor universality (LFU).

Source: https://cerncourier.com/a/who-ordered-all-of-that/

• This is challenged by anomalies which have started to emerge in recent years, hinting at lepton flavor universality violation (LFUV).

Introduction Leptoquarks

Leptoquarks (LQs) are hypothetical BSM couplings.

Leptoquarks (LQs) are hypothetical BSM particles that feature tree-level quark-lepton

Leptoquarks (LQs) are hypothetical BSM couplings.

Field	Φ_1	$ ilde{\Phi}_1$	Φ_2	$ ilde{\Phi}_2$	Φ_3	V
$SU(3)_c$	3	3	3	3	3	3
$SU(2)_L$	1	1	2	2	3	1
$U(1)_Y$	$-\frac{2}{3}$	$-\frac{8}{3}$	$\frac{7}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{4}{3}$

Leptoquarks (LQs) are hypothetical BSM particles that feature tree-level quark-lepton

- couplings.
- appear e.g. in the *R*-parity violating MSSM.

Field	Φ_1	$ ilde{\Phi}_1$	Φ_2	$ ilde{\Phi}_2$	Φ_3	V
$SU(3)_c$	3	3	3	3	3	3
$SU(2)_L$	1	1	2	2	3	1
$U(1)_Y$	$-\frac{2}{3}$	$-\frac{8}{3}$	$\frac{7}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{4}{3}$

Leptoquarks (LQs) are hypothetical BSM particles that feature tree-level quark-lepton

Originally, they were considered in **Grand Unified theories** (Pati-Salam, SU(5), etc.), they also

- Leptoquarks (LQs) are hypothetical BSM particles that feature tree-level quark-lepton couplings.
- Originally, they were considered in **Grand Unified theories** (Pati-Salam, SU(5), etc.), they also appear e.g. in the *R*-parity violating MSSM.
- Due to their ability to explain the flavor anomalies, LQs started to receive wide attention in lacksquarerecent years.

Field	Φ_1	$ ilde{\Phi}_1$	Φ_2	$ ilde{\Phi}_2$	Φ_3	V
$SU(3)_c$	3	3	3	3	3	3
$SU(2)_L$	1	1	2	2	3	1
$U(1)_Y$	$-\frac{2}{3}$	$-\frac{8}{3}$	$\frac{7}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{4}{3}$

- Leptoquarks (LQs) are hypothetical BSM particles that feature tree-level quark-lepton couplings.
- Originally, they were considered in **Grand Unified theories** (Pati-Salam, SU(5), etc.), they also appear e.g. in the *R*-parity violating MSSM.
- Due to their ability to explain the flavor anomalies, LQs started to receive wide attention in \bullet recent years.
- If the couplings to the individual SM fermion generations are different, LQs generate LFUV. Experimentally, we have the highest sensitivity to LQs interacting with first generation fermions.

Field	$ \Phi_1 $	$ ilde{\Phi}_1$	Φ_2	$\tilde{\Phi}_2$	Φ_3	V
$SU(3)_c$	3	3	3	3	3	3
$SU(2)_L$	1	1	2	2	3	1
$U(1)_Y$	$-\frac{2}{3}$	$-\frac{8}{3}$	$\frac{7}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{4}{3}$

1. Introduction 1.3 Overview

1. Introduction 1.3 Overview

2. First Generation LQs

2.1 Lagrangian
2.2 Weak Eigenstates → Mass Eigenstates

3. Matching

4. Experimental Observables

4.1 Low-Energy Precision Observables4.2 High-Energy Direct Searches

5. Results

5.1 CMS Non-Resonant Di-Lepton Analysis5.2 Parity Violation Experiments5.3 Combined Constraints

6. Conclusions

2. First Generation LQs

2.1 Lagrangian

2.2 Weak Eigenstates \rightarrow Mass Eigenstates

Interactions with SM fermions:

Papers: <u>arXiv:2101.07811</u>, <u>arXiv:2105.04844</u>

Interactions with SM fermions:

$$\begin{array}{c|c} L & e \\ \hline \bar{Q} & \kappa_1^L \gamma_\mu V_1^\mu + \kappa_3 \gamma_\mu \left(\tau \cdot V_3^\mu \right) & \lambda_2^{LR} \Phi_2 \\ \hline \bar{d} & \tilde{\lambda}_2 \tilde{\Phi}_2^T i \tau_2 & \kappa_1^R \gamma_\mu V_1^\mu \\ \hline \bar{u} & \lambda_2^{RL} \Phi_2^T i \tau_2 & \tilde{\kappa}_1 \gamma_\mu \tilde{V}_1^\mu \\ \hline \bar{Q}^c & \lambda_3 i \tau_2 (\tau \cdot \Phi_3)^\dagger + \lambda_1^L i \tau_2 \Phi_1^\dagger & \kappa_2^{LR} \gamma_\mu V_2^{\mu\dagger} \\ \hline \bar{d}^c & \kappa_2^{RL} \gamma_\mu V_2^{\mu\dagger} & \tilde{\lambda}_1 \tilde{\Phi}_1^\dagger \\ \hline \bar{u}^c & \tilde{\kappa}_2 \gamma_\mu \tilde{V}_2^{\mu\dagger} & \lambda_1^R \Phi_1^\dagger \end{array}$$

First generation weak eigenstates

Interactions with SM fermions:

$$\begin{array}{c|c} L & e \\ \hline Q & \kappa_1^L \gamma_\mu V_1^\mu + \kappa_3 \gamma_\mu \left(\tau \cdot V_3^\mu \right) & \lambda_2^{LR} \Phi_2 \\ \hline d & \tilde{\lambda}_2 \tilde{\Phi}_2^T i \tau_2 & \kappa_1^R \gamma_\mu V_1^\mu \\ \hline u & \lambda_2^{RL} \Phi_2^T i \tau_2 & \tilde{\kappa}_1 \gamma_\mu \tilde{V}_1^\mu \\ \hline Q^c & \lambda_3 i \tau_2 (\tau \cdot \Phi_3)^\dagger + \lambda_1^L i \tau_2 \Phi_1^\dagger & \kappa_2^{LR} \gamma_\mu V_2^{\mu\dagger} \\ \hline d^c & \kappa_2^{RL} \gamma_\mu V_2^{\mu\dagger} & \tilde{\lambda}_1 \tilde{\Phi}_1^\dagger \\ \hline u^c & \tilde{\kappa}_2 \gamma_\mu \tilde{V}_2^{\mu\dagger} & \lambda_1^R \Phi_1^\dagger \end{array}$$

First generation weak eigenstates

Interactions with SM fermions:

$$\begin{array}{c|c} L & e \\ \hline Q & \kappa_1^L \gamma_\mu V_1^\mu + \kappa_3 \gamma_\mu \left(\tau \cdot V_3^\mu \right) & \lambda_2^{LR} \Phi_2 \\ \hline d & \tilde{\lambda}_2 \tilde{\Phi}_2^T i \tau_2 & \kappa_1^R \gamma_\mu V_1^\mu \\ \hline u & \lambda_2^{RL} \Phi_2^T i \tau_2 & \tilde{\kappa}_1 \gamma_\mu \tilde{V}_1^\mu \\ \hline Q^c & \lambda_3 i \tau_2 (\tau \cdot \Phi_3)^\dagger + \lambda_1^L i \tau_2 \Phi_1^\dagger & \kappa_2^{LR} \gamma_\mu V_2^{\mu\dagger} \\ \hline d^c & \kappa_2^{RL} \gamma_\mu V_2^{\mu\dagger} & \tilde{\lambda}_1 \tilde{\Phi}_1^\dagger \\ \hline u^c & \tilde{\kappa}_2 \gamma_\mu \tilde{V}_2^{\mu\dagger} & \lambda_1^R \Phi_1^\dagger \end{array}$$

First generation weak eigenstates

Interactions with SM fermions:

$$\begin{array}{c|c} L & e \\ \hline Q & \kappa_1^L \gamma_\mu V_1^\mu + \kappa_3 \gamma_\mu \left(\tau \cdot V_3^\mu \right) & \lambda_2^{LR} \Phi_2 \\ \hline d & \tilde{\lambda}_2 \tilde{\Phi}_2^T i \tau_2 & \kappa_1^R \gamma_\mu V_1^\mu \\ \hline u & \lambda_2^{RL} \Phi_2^T i \tau_2 & \tilde{\kappa}_1 \gamma_\mu \tilde{V}_1^\mu \\ \hline Q^c & \lambda_3 i \tau_2 (\tau \cdot \Phi_3)^\dagger + \lambda_1^L i \tau_2 \Phi_1^\dagger & \kappa_2^{LR} \gamma_\mu V_2^{\mu\dagger} \\ \hline d^c & \kappa_2^{RL} \gamma_\mu V_2^{\mu\dagger} & \tilde{\lambda}_1 \tilde{\Phi}_1^\dagger \\ \hline u^c & \tilde{\kappa}_2 \gamma_\mu \tilde{V}_2^{\mu\dagger} & \lambda_1^R \Phi_1^\dagger \end{array}$$

First generation weak eigenstates

Interactions with SM fermions:

$$\begin{array}{c|c} L & e \\ \hline \overline{Q} & \kappa_1^L \gamma_\mu V_1^\mu + \kappa_3 \gamma_\mu \left(\tau \cdot V_3^\mu \right) & \lambda_2^{LR} \Phi_2 \\ \hline \overline{d} & \tilde{\lambda}_2 \tilde{\Phi}_2^T i \tau_2 & \kappa_1^R \gamma_\mu V_1^\mu \\ \hline \overline{u} & \lambda_2^{RL} \Phi_2^T i \tau_2 & \tilde{\kappa}_1 \gamma_\mu \tilde{V}_1^\mu \\ \hline \overline{Q}^c & \lambda_3 i \tau_2 (\tau \cdot \Phi_3)^\dagger + \lambda_1^L i \tau_2 \Phi_1^\dagger & \kappa_2^{LR} \gamma_\mu V_2^{\mu\dagger} \\ \hline \overline{d}^c & \kappa_2^{RL} \gamma_\mu V_2^{\mu\dagger} & \tilde{\lambda}_1 \tilde{\Phi}_1^\dagger \\ \hline \overline{u}^c & \tilde{\kappa}_2 \gamma_\mu \tilde{V}_2^{\mu\dagger} & \lambda_1^R \Phi_1^\dagger \end{array}$$

First generation weak eigenstates

SUSY 2021, Luc Schnell

Interactions with SM fermions:

$$\begin{array}{c|c} L & e \\ \hline \overline{Q} & \kappa_1^L \gamma_\mu V_1^\mu + \kappa_3 \gamma_\mu \left(\tau \cdot V_3^\mu \right) & \lambda_2^{LR} \Phi_2 \\ \hline \overline{d} & \tilde{\lambda}_2 \tilde{\Phi}_2^T i \tau_2 & \kappa_1^R \gamma_\mu V_1^\mu \\ \hline \overline{u} & \lambda_2^{RL} \Phi_2^T i \tau_2 & \tilde{\kappa}_1 \gamma_\mu \tilde{V}_1^\mu \\ \hline \overline{Q}^c & \lambda_3 i \tau_2 (\tau \cdot \Phi_3)^\dagger + \lambda_1^L i \tau_2 \Phi_1^\dagger & \kappa_2^{LR} \gamma_\mu V_2^{\mu\dagger} \\ \hline \overline{d}^c & \kappa_2^{RL} \gamma_\mu V_2^{\mu\dagger} & \tilde{\lambda}_1 \tilde{\Phi}_1^\dagger \\ \hline \overline{u}^c & \tilde{\kappa}_2 \gamma_\mu \tilde{V}_2^{\mu\dagger} & \lambda_1^R \Phi_1^\dagger \end{array}$$

First generation weak eigenstates

Interactions with SM fermions:

$$\begin{array}{c|c} L & e \\ \hline \overline{Q} & \kappa_1^L \gamma_\mu V_1^\mu + \kappa_3 \gamma_\mu \left(\tau \cdot V_3^\mu \right) & \lambda_2^{LR} \Phi_2 \\ \hline \overline{d} & \tilde{\lambda}_2 \tilde{\Phi}_2^T i \tau_2 & \kappa_1^R \gamma_\mu V_1^\mu \\ \hline \overline{u} & \lambda_2^{RL} \Phi_2^T i \tau_2 & \tilde{\kappa}_1 \gamma_\mu \tilde{V}_1^\mu \\ \hline \overline{Q}^c & \lambda_3 i \tau_2 (\tau \cdot \Phi_3)^\dagger + \lambda_1^L i \tau_2 \Phi_1^\dagger & \kappa_2^{LR} \gamma_\mu V_2^{\mu\dagger} \\ \hline \overline{d}^c & \kappa_2^{RL} \gamma_\mu V_2^{\mu\dagger} & \tilde{\lambda}_1 \tilde{\Phi}_1^\dagger \\ \hline \overline{u}^c & \tilde{\kappa}_2 \gamma_\mu \tilde{V}_2^{\mu\dagger} & \lambda_1^R \Phi_1^\dagger \end{array}$$

First generation weak eigenstates

Feynman rules:

Paper: <u>arXiv:2105.04844</u>

Feynman rules:

- LQs, including
 - Interactions with SM fermions, gauge bosons and the Higgs

We recently published the complete Lagrangian and set of Feynman rules for the scalar

- LQ-LQ-Higgs(-Higgs), LQ-LQ-LQ(-Higgs) and LQ-LQ-LQ-LQ self-interactions.

Feynman rules:

- We recently published the complete Lagrangian and set of Feynman rules for the scalar LQs, including
 - Interactions with SM fermions, gauge bosons and the Higgs - LQ-LQ-Higgs(-Higgs), LQ-LQ-LQ(-Higgs) and LQ-LQ-LQ-LQ self-interactions.

A. Denner, H.Eck, O.Hahn, J. Küblbeck (Denner:1992vza)

$$\bar{\psi}_1 \Gamma \psi_2 = \bar{\psi}_2^c \Gamma' \psi_1^c$$

They feature a novel representation of interactions involving charge-conjugated fermions.

Feynman rules:

- We recently published the complete Lagrangian and set of Feynman rules for the scalar LQs, including
 - Interactions with SM fermions, gauge bosons and the Higgs - LQ-LQ-Higgs(-Higgs), LQ-LQ-LQ(-Higgs) and LQ-LQ-LQ-LQ self-interactions.
- They feature a novel representation of interactions involving charge-conjugated fermions.

A. Denner, H.Eck, O.Hahn, J. Küblbeck (Denner:1992vza) $\bar{\psi}_1 \Gamma \psi_2 = \bar{\psi}_2^c \Gamma' \psi_1^c$

We provide a FeynRules model file that allows for exports to FeynArts and MadGraph5_aMC@NLO, constituting a powerful tool for for the automatization of scalar LQ phenomenology studies.

2. First Generation LQs 2.2 Weak Eigenstates → Mass Eigenstates

Interactions with SM fermions:

Paper: arXiv:2101.07811

2. First Generation LQs 2.2 Weak Eigenstates → Mass Eigenstates

Interactions with SM fermions:

• We couple to the first generation weak eigenstates.

2. First Generation LQs **2.2 Weak Eigenstates** → Mass Eigenstates

- We couple to the first generation weak eigenstates.
- When going to the mass eigenstates, the unitary matrices U^{dL} , U^{uL} enter.

2. First Generation LQs **2.2 Weak Eigenstates** \rightarrow **Mass Eigenstates**

- We couple to the first generation weak eigenstates.
- When going to the mass eigenstates, the unitary matrices U^{dL} , U^{uL} enter.

$$\begin{split} d_{L,f} &\to U_{fi}^{d_L} d_{L,i} ,\\ d_{R,f} &\to U_{fi}^{d_R} d_{R,i} ,\\ u_{L,f} &\to U_{fi}^{u_L} u_{L,i} ,\\ u_{R,f} &\to U_{fi}^{u_R} u_{R,i} , \end{split}$$

2. First Generation LQs **2.2 Weak Eigenstates** \rightarrow **Mass Eigenstates**

- We couple to the first generation weak eigenstates.
- When going to the mass eigenstates, the unitary matrices U^{dL} , U^{uL} enter.

$$\begin{aligned} d_{L,f} &\to U_{fi}^{d_L} d_{L,i} ,\\ d_{R,f} &\to U_{fi}^{d_R} d_{R,i} ,\\ u_{L,f} &\to U_{fi}^{u_L} u_{L,i} ,\\ u_{R,f} &\to U_{fi}^{u_R} u_{R,i} , \end{aligned} \qquad V_{fi} \equiv U_{jf}^{u_L *} U_{ji}^{d_L} \end{aligned}$$
2. First Generation LQs **2.2 Weak Eigenstates** → Mass Eigenstates

Interactions with SM fermions:

- We couple to the first generation weak eigenstates.
- When going to the **mass** eigenstates, the unitary matrices U^{dL} , U^{uL} enter.

 $\begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$ $\begin{pmatrix} \cos(\beta) & \sin(\beta) \\ -\sin(\beta) & \cos(\beta) \end{pmatrix}$

2. First Generation LQs **2.2 Weak Eigenstates** → Mass Eigenstates

Interactions with SM fermions:

- We couple to the first generation weak eigenstates.
- When going to the mass eigenstates, the unitary matrices U^{dL} , U^{uL} enter.

Paper: <u>arXiv:2101.07811</u>

- using the Standard Model Effective Field Theory (SMEFT) framework.
- It assumes that NP enters at a scale Λ much higher than the SM scale. \bullet

• The linking between full LQ models and experimental observables can be done conveniently

- using the Standard Model Effective Field Theory (SMEFT) framework.
- It assumes that NP enters at a scale Λ much higher than the SM scale. lacksquare

$$\begin{aligned} \mathcal{L} &= \sum C_i O_i ,\\ O_{\ell q}^{(1)} &= [\bar{Q} \gamma^{\mu} Q] [\bar{L} \gamma_{\mu} L] ,\\ O_{\ell q}^{(3)} &= [\bar{Q} \tau^I \gamma^{\mu} Q] [\bar{L} \tau^I \gamma_{\mu} L] ,\\ O_{q e} &= [\bar{Q} \gamma^{\mu} Q] [\bar{e} \gamma_{\mu} e] ,\\ O_{\ell u} &= [\bar{u} \gamma^{\mu} u] [\bar{L} \gamma_{\mu} L] ,\\ O_{\ell d} &= [\bar{d} \gamma^{\mu} d] [\bar{L} \gamma_{\mu} L] ,\\ O_{e u} &= [\bar{u} \gamma^{\mu} u] [\bar{e} \gamma_{\mu} e] ,\\ O_{e d} &= [\bar{d} \gamma^{\mu} d] [\bar{e} \gamma_{\mu} e] ,\end{aligned}$$

The linking between full LQ models and experimental observables can be done conveniently

- lacksquareusing the Standard Model Effective Field Theory (SMEFT) framework.
- It assumes that NP enters at a scale Λ much higher than the SM scale. \bullet

$$\mathcal{L} = \sum C_i O_i ,$$

$$O_{\ell q}^{(1)} = [\bar{Q}\gamma^{\mu}Q][\bar{L}\gamma_{\mu}L] ,$$

$$O_{\ell q}^{(3)} = [\bar{Q}\tau^{I}\gamma^{\mu}Q][\bar{L}\tau^{I}\gamma_{\mu}L] ,$$

$$O_{q e} = [\bar{Q}\gamma^{\mu}Q][\bar{e}\gamma_{\mu}e] ,$$

$$O_{\ell u} = [\bar{u}\gamma^{\mu}u][\bar{L}\gamma_{\mu}L] ,$$

$$O_{\ell d} = [\bar{d}\gamma^{\mu}d][\bar{L}\gamma_{\mu}L] ,$$

$$O_{e u} = [\bar{u}\gamma^{\mu}u][\bar{e}\gamma_{\mu}e] ,$$

$$O_{e d} = [\bar{d}\gamma^{\mu}d][\bar{e}\gamma_{\mu}e] ,$$

The linking between full LQ models and experimental observables can be done conveniently

SUSY 2021, Luc Schnell

- ulletusing the Standard Model Effective Field Theory (SMEFT) framework.
- It assumes that NP enters at a scale Λ much higher than the SM scale. \bullet

$$\mathcal{L} = \sum C_i O_i ,$$

$$O_{\ell q}^{(1)} = [\bar{Q}\gamma^{\mu}Q][\bar{L}\gamma_{\mu}L] ,$$

$$O_{\ell q}^{(3)} = [\bar{Q}\tau^{I}\gamma^{\mu}Q][\bar{L}\tau^{I}\gamma_{\mu}L] ,$$

$$O_{q e} = [\bar{Q}\gamma^{\mu}Q][\bar{e}\gamma_{\mu}e] ,$$

$$O_{\ell u} = [\bar{u}\gamma^{\mu}u][\bar{L}\gamma_{\mu}L] ,$$

$$O_{\ell d} = [\bar{d}\gamma^{\mu}d][\bar{L}\gamma_{\mu}L] ,$$

$$O_{e u} = [\bar{u}\gamma^{\mu}u][\bar{e}\gamma_{\mu}e] ,$$

$$O_{e d} = [\bar{d}\gamma^{\mu}d][\bar{e}\gamma_{\mu}e] ,$$

 $C_{\ell q}^{(1)}$ $|\overline{\lambda_1^L}|^2$ Φ_1 $4m_{1}^{2}$ $ilde{\Phi}_1$ * Φ_2 * $ilde{\Phi}_2$ $3|\lambda_3^2|$ Φ_3 $4m_{2}^{2}$ κ_1^L V_1 $2M_{1}^{2}$ \tilde{V}_1 *

Paper: arXiv:2101.07811

The linking between full LQ models and experimental observables can be done conveniently

SUSY 2021, Luc Schnell

- lacksquareusing the Standard Model Effective Field Theory (SMEFT) framework.
- It assumes that NP enters at a scale Λ much higher than the SM scale. \bullet

$$\mathcal{L} = \sum C_i O_i ,$$

$$O_{\ell q}^{(1)} = [\bar{Q}\gamma^{\mu}Q][\bar{L}\gamma_{\mu}L] ,$$

$$O_{\ell q}^{(3)} = [\bar{Q}\tau^{I}\gamma^{\mu}Q][\bar{L}\tau^{I}\gamma_{\mu}L] ,$$

$$O_{q e} = [\bar{Q}\gamma^{\mu}Q][\bar{e}\gamma_{\mu}e] ,$$

$$O_{\ell u} = [\bar{u}\gamma^{\mu}u][\bar{L}\gamma_{\mu}L] ,$$

$$O_{\ell d} = [\bar{d}\gamma^{\mu}d][\bar{L}\gamma_{\mu}L] ,$$

$$O_{e u} = [\bar{u}\gamma^{\mu}u][\bar{e}\gamma_{\mu}e] ,$$

$$O_{e d} = [\bar{d}\gamma^{\mu}d][\bar{e}\gamma_{\mu}e] ,$$

 $C_{\ell q}^{(1)}$ $|\lambda_1^L|^2$ Φ_1 $4m_{1}^{2}$ $ilde{\Phi}_1$ * Φ_2 * $ilde{\Phi}_2$ $3|\lambda_3^2|$ Φ_3 $4m_{3}^{2}$ $|\kappa_1^L|^2$ V_1 $2M_{1}^{2}$ \tilde{V}_1 *

Paper: arXiv:2101.07811

The linking between full LQ models and experimental observables can be done conveniently

SUSY 2021, Luc Schnell

4. Experimental Observables

4.1 Low-Energy Precision Observables 4.2 High-Energy Direct Searches

4.1 Low-Energy Precision Observables

Paper: <u>arXiv:2101.07811</u>

Paper: <u>arXiv:2101.07811</u>

Cabibbo-Angle-Anomaly (CAA):

• The CAA is a deficit in first row CKM unitarity.

Cabibbo-Angle-Anomaly (CAA):

• The CAA is a deficit in first row CKM unitarity.

$$\mathcal{H}_{\text{eff}}^{\ell\nu} = \frac{4G_F}{\sqrt{2}} V_{jk} \hat{C}_{jk}^{e\nu} \left[\bar{u}_j \gamma^{\mu} P_L d_k \right] \left[\bar{e} \gamma_{\mu} P_L \nu_e \right],$$

Paper: <u>arXiv:2101.07811</u>

Cabibbo-Angle-Anomaly (CAA):

The CAA is a deficit in first row CKM unitarity. ●

• The CAA is a deficit in first row CKM unitarity.

$$|V_{us}^{\beta}| = \sqrt{1 - |V_{ud}^{\beta}|^2 - |V_{ub}|^2} \approx \sqrt{1 - |V_{ud}^{\beta}|^2}$$

$$\mathcal{H}_{\text{eff}}^{\ell\nu} = \frac{4G_F}{\sqrt{2}} V_{jk} \hat{C}_{jk}^{e\nu} \left[\bar{u}_j \gamma^{\mu} P_L d_k \right] \left[\bar{e} \gamma_{\mu} P_L \nu_e \right],$$

• The CAA is a deficit in first row CKM unitarity.

$$|V_{us}^{\beta}| = \sqrt{1 - |V_{ud}^{\beta}|^2 - |V_{ub}|^2} \approx \sqrt{1 - |V_{ud}^{\beta}|^2}$$

$$\mathcal{H}_{\text{eff}}^{\ell\nu} = \frac{4G_F}{\sqrt{2}} V_{jk} \hat{C}_{jk}^{e\nu} \left[\bar{u}_j \gamma^{\mu} P_L d_k \right] \left[\bar{e} \gamma_{\mu} P_L \nu_e \right],$$

$$\frac{2}{u}$$

 $V_{us}^{\beta} = 0.2281(7) ,$

2

The CAA is a deficit in first row CKM unitari lacksquare

$$|V_{us}^{\beta}| = \sqrt{1 - |V_{ud}^{\beta}|^2 - |V_{ub}|^2} \approx \sqrt{1 - |V_{ud}^{\beta}|^2}$$

$$\mathcal{H}_{\text{eff}}^{\ell\nu} = \frac{4G_F}{\sqrt{2}} V_{jk} \hat{C}_{jk}^{e\nu} \left[\bar{u}_j \gamma^{\mu} P_L d_k \right] \left[\bar{e} \gamma_{\mu} P_L \nu_e \right],$$

$$\frac{2}{u}$$

ity. 1

$$V_{us}^{\beta} = 0.2281(7),$$

$$V_{us}^{K_{\mu3}} = 0.22345(6)$$
$$V_{us}^{K_{\mu2}} = 0.22534(4)$$
$$V_{us}^{K_{e3}} = 0.22320(6)$$
$$V_{us}^{\tau} = 0.2195(19)$$

2

2

The CAA is a deficit in first row CKM unitari ullet

$$|V_{us}^{\beta}| = \sqrt{1 - |V_{ud}^{\beta}|^2 - |V_{ub}|^2} \approx \sqrt{1 - |V_{ud}^{\beta}|^2}$$

$$\mathcal{H}_{\text{eff}}^{\ell\nu} = \frac{4G_F}{\sqrt{2}} V_{jk} \hat{C}_{jk}^{e\nu} \left[\bar{u}_j \gamma^{\mu} P_L d_k \right] \left[\bar{e} \gamma_{\mu} P_L \nu_e \right],$$

$$\frac{2}{u}$$

ity. 1

$$V_{us}^{\beta} = 0.2281(7),$$
 $CAA \qquad \qquad V_{us}^{K_{\mu 3}} = 0.22345(4) \qquad \qquad V_{us}^{K_{\mu 2}} = 0.22534(4) \qquad \qquad V_{us}^{K_{\mu 3}} = 0.22320(4) \qquad \qquad V_{us}^{K_{\mu 3}} = 0.22320(4) \qquad \qquad V_{us}^{K_{\mu 3}} = 0.2195(19) \qquad \qquad V_{us}^{T} =$

2

2

ullet

Luc Schnell

June 30, 2021

ullet

Luc Schnell

June 30, 2021

 \bullet

Luc Schnell

June 30, 2021

4.1 Low-Energy Precision Observables

Parity violation experiments:

Paper: arXiv:2107.13569

Parity violation experiments:

•

Measure the parity-violating contribution to the scattering of leptons off the proton and nuclei.

Parity violation experiments:

Parity violation experiments:

- **Parity-violating electron scattering**
 - Low-energy scattering (Q_{weak} , P2)
 - Atomic parity violation (APV, Ra⁺)
 - Parity-violating deep inelastic scattering (PVDIS, SoLID)

Parity violation experiments:

- **Parity-violating electron scattering**
 - Low-energy scattering (Q_{weak} , P2)
 - Atomic parity violation (APV, Ra^+)
 - Parity-violating deep inelastic scattering (PVDIS, SoLID)

$$\mathcal{L}_{\text{eff}}^{ee} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(\frac{C_{1q}^e}{[\bar{q}\gamma^{\mu}q]} [\bar{e}\gamma_{\mu}\gamma_5 e] + \frac{C_{2q}^e}{[\bar{q}\gamma^{\mu}\gamma_5 q]} [\bar{e}\gamma_{\mu}e] \right),$$

Parity violation experiments:

- **Parity-violating electron scattering**
 - Low-energy scattering (Q_{weak} , P2)
 - Atomic parity violation (APV, Ra^+)
 - Parity-violating deep inelastic scattering (PVDIS, SoLID)
- **Coherent elastic neutrino-nucleus scattering** (COHERENT, many more)

$$\mathcal{L}_{\text{eff}}^{ee} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(\frac{C_{1q}^e}{[\bar{q}\gamma^{\mu}q]} [\bar{e}\gamma_{\mu}\gamma_5 e] + \frac{C_{2q}^e}{[\bar{q}\gamma^{\mu}\gamma_5 q]} [\bar{e}\gamma_{\mu}e] \right),$$

Parity violation experiments:

- **Parity-violating electron scattering**
 - Low-energy scattering (Q_{weak} , P2)
 - Atomic parity violation (APV, Ra^+)
 - Parity-violating deep inelastic scattering (PVDIS, SoLI
- **Coherent elastic neutrino-nucleus scattering** (COHERENT, many more)

$$\mathcal{L}_{\text{eff}}^{ee} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(C_{1q}^e [\bar{q}\gamma^{\mu}q] [\bar{e}\gamma_{\mu}\gamma_5 e] + C_{2q}^e [\bar{q}\gamma^{\mu}\gamma_5 q] [\bar{e}\gamma_{\mu}e] \right),$$

$$\mathsf{D}$$

$$\mathcal{L}_{\text{eff}}^{\nu_e\nu_e} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(\frac{C_{1q}^{\nu_e}}{[\bar{q}\gamma^{\mu}q]} \left[\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e \right] + \frac{C_{2q}^{\nu_e}}{[\bar{q}\gamma^{\mu}\gamma_5q]} \left[\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e \right] \right)$$

Parity violation experiments:

- **Parity-violating electron scattering**
 - Low-energy scattering (Q_{weak} , P2)
 - Atomic parity violation (APV, Ra⁺)
 - Parity-violating deep inelastic scattering (PVDIS, SoLI
- **Coherent elastic neutrino-nucleus scattering** (COHERENT, many more)

$$\mathcal{L}_{\text{eff}}^{ee} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(C_{1q}^e [\bar{q}\gamma^{\mu}q] [\bar{e}\gamma_{\mu}\gamma_5 e] + C_{2q}^e [\bar{q}\gamma^{\mu}\gamma_5 q] [\bar{e}\gamma_{\mu}e] \right),$$

$$\mathsf{D}$$

$$\mathcal{L}_{\text{eff}}^{\nu_e\nu_e} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(\frac{C_{1q}^{\nu_e}}{[\bar{q}\gamma^{\mu}q]} \left[\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e \right] + \frac{C_{2q}^{\nu_e}}{[\bar{q}\gamma^{\mu}\gamma_5q]} \left[\bar{\nu}_e\gamma_{\mu}(1-\gamma_5)\nu_e \right] \right)$$

4. Observables **4.2 High-Energy Direct Searches**

Papers: arXiv:2101.07811, arXiv:2104.06417

4. Observables **4.2 High-Energy Direct Searches**

Papers: <u>arXiv:2101.07811</u>, <u>arXiv:2104.06417</u>

4. Observables4.2 High-Energy Direct Searches

Papers: arXiv:2101.07811, arXiv:2104.06417

4. Observables4.2 High-Energy Searches

Non-resonant di-lepton analysis by CMS:

Paper: <u>arXiv:2104.06417</u>

4. Observables **4.2 High-Energy Searches**

Non-resonant di-lepton analysis by CMS:

 The CMS collaboration performed an analysis of non-resonant di-lepton events, finding an excess in di-electrons.
Non-resonant di-lepton analysis by CMS:

The CMS collaboration performed an analysis of non-resonant di-lepton events, finding an excess in di-electrons.

Source: arXiv:2103.02708

Non-resonant di-lepton analysis by CMS:

The CMS collaboration performed an analysis of non-resonant di-lepton events, finding an excess in di-electrons.

Source: arXiv:2103.02708

Paper: arXiv:2104.06417

$$R_{\mu\mu/ee} \equiv \frac{d\sigma(q\overline{q} \to \mu^+\mu^-)/dm_{\mu\mu}}{d\sigma(q\overline{q} \to e^+e^-)/dm_{ee}} \,,$$

Paper: arXiv:2104.06417

$$R_{\mu\mu/ee} \equiv \frac{d\sigma(q\overline{q} \to \mu^+\mu^-)/dm_{\mu\mu}}{d\sigma(q\overline{q} \to e^+e^-)/dm_{ee}} \,,$$

5. Results

5.1 CMS Non-Resonant Di-Lepton Analysis5.2 Parity Violation Experiments5.3 Combined Constraints

5.1 CMS Non-Resonant Di-Lepton Analysis

5.1 CMS Non-Resonant Di-Lepton Analysis

Paper: <u>arXiv:2104.06417</u>

$$R_{\mu\mu/ee} \equiv \frac{d\sigma(q\overline{q} \to \mu^+\mu^-)/d\pi}{d\sigma(q\overline{q} \to e^+e^-)/d\pi}$$

5. Results 5.1 CMS Non-Resonant Di-Lepton Analysis

LQ representations interfering constructively with the SM are preferred.

 $R_{\mu\mu/ee} \equiv \frac{d\sigma(q\overline{q} \to \mu^+\mu^-)/dm_{\mu\mu}}{d\sigma(q\overline{q} \to e^+e^-)/dm_{ee}}$

 $C_{1u}^e - C_{1d}^e$ Plane:

Paper: arXiv:2107.13569

$C_{1u}^e - C_{1d}^e$ Plane:

$$\mathcal{L}_{\text{eff}}^{ee} = \frac{G_F}{\sqrt{2}} \sum_{q=u,d,s} \left(C_{1q}^e \left[\bar{q} \gamma^{\mu} q \right] \left[\bar{e} \gamma_{\mu} \gamma_5 e \right] + C_{2q}^e \left[\bar{q} \gamma^{\mu} \gamma_5 q \right] \right[$$

$\left[\bar{e}\gamma_{\mu}e\right]$,

5.3 Combined Constraints

Exclusion limits for all LQ representations:

5. Results 5.3 Combined Constraints

Exclusion limits for all LQ representations:

5. Results 5.3 Combined Constraints

Exclusion limits for all LQ representations:

5.3 Combined Constraints

Exclusion limits for all LQ representations:

5. Results 5.3 Combined Constraints

Exclusion limits for all LQ representations:

precision observables and high-energy direct searches.

- precision observables and high-energy direct searches.
- Although the CAA could in principle be explained by the LQ representations S_3 , V_3 , the necessary parameter space is excluded by other observables we considered.

- precision observables and high-energy direct searches.
- Although the CAA could in principle be explained by the LQ representations S_3 , V_3 , the necessary parameter space is excluded by other observables we considered.
- **Parity violation experiments** yield strong constraints on LQ representations, we have \bullet compiled the current and prospective limits.

- precision observables and high-energy direct searches.
- Although the CAA could in principle be explained by the LQ representations S_3 , V_3 , the **necessary parameter space is excluded** by other observables we considered.
- **Parity violation experiments** yield strong constraints on LQ representations, we have lacksquarecompiled the current and prospective limits.
- The non-resonant di-lepton analyses performed by CMS and ATLAS are highly relevant for first generation LQs. The excess in di-electrons found by the former can be explained with the LQ representations $\tilde{S}_1, S_2, \tilde{V}_1, V_2$ ($\kappa_2^{RL} \neq 0$) and V_3 that interfere constructively with the SM contribution.

Thank you for your attention.

Backup Slides

Non-resonant di-lepton analysis by ATLAS:

Paper: <u>arXiv:2101.07811</u>

Non-resonant di-lepton analysis by ATLAS:

• ATLAS followed a different strategy, measuring the dilepton events in only one signal region from 2.2 to 6 **TeV** (constructive case).

Non-resonant di-lepton analysis by ATLAS:

- ATLAS followed a different strategy, measuring the dilepton events in only one signal region from 2.2 to 6 **TeV** (constructive case).
- They also measured a $\approx 2\sigma$ excess in di-electron \bullet events in the constructive channel, still consistent with the SM hypothesis.

Source: arXiv:2006.12946

Non-resonant di-lepton analysis by ATLAS:

- ATLAS followed a different strategy, measuring the dilepton events in only one signal region from 2.2 to 6 **TeV** (constructive case).
- They also measured a $\approx 2\sigma$ excess in di-electron lacksquareevents in the constructive channel, still consistent with the SM hypothesis.
- Their measurements can be recasted, yielding stringent constraints on first generation LQs.

Mass bounds:

Paper: arXiv:2107.13569

Mass bounds:

Paper: <u>arXiv:2107.13569</u>

Mass bounds:

Paper: <u>arXiv:2107.13569</u>

SUSY 2021, Luc Schnell

Mass bounds:

Paper: <u>arXiv:2107.13569</u>

SUSY 2021, Luc Schnell