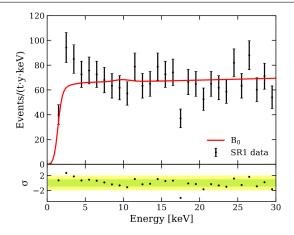
Anomaly-free leptophilic ALP and its LFV tests

Oscar Vives

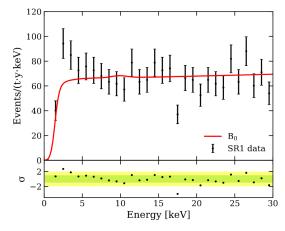
SUSY 2021, Beijing, 23 - 28 August

C. Han, M. L. López-Ibáñez, A. Melis, O. Vives and J. M. Yang, Phys. Rev. D 103 (2021) no.3, 035028

Sizeable discrepancy at Xenon1T



Sizeable discrepancy at Xenon1T



Excess in e^- recoil energy between 2 and 3 keV.

Possible explanations: Solar Axions, Neutrino magnetic moments, Axion-like Particles (ALPs)...

Possible explanations: Solar Axions, Neutrino magnetic moments, Axion-like Particles (ALPs)...

Solar Axions

Best fit to data with large coupling to e^- , 3.4σ

E. Aprile et al. [XENON], Phys. Rev. D 102 (2020) no.7, 072004

But ... not compatible with constraints from stellar cooling.

Possible explanations: Solar Axions, Neutrino magnetic moments, Axion-like Particles (ALPs)...

Solar Axions

Best fit to data with large coupling to e^- , 3.4σ

E. Aprile et al. [XENON], Phys. Rev. D 102 (2020) no.7, 072004

But ... not compatible with constraints from stellar cooling.

ALPs

Pseudo-Goldstone bosons from broken global symmetries with $m_a \simeq \mathcal{O}(\text{keV})$ and a weak coupling to e^- , could explain this excess However, X-ray observations forbid anomalous coupling to photons for $m_a \gtrsim 0.1$ keV

\implies $U(1)_{\rm em}$ anomaly-free ALP

SM particle content, only B - L and L are $U(1)_{em}$ anomaly-free with family universal charges.

But . . . breaking associated to N_R masses, too high in Seesaw models.

\implies $U(1)_{\rm em}$ anomaly-free ALP

SM particle content, only B - L and L are $U(1)_{em}$ anomaly-free with family universal charges.

But . . . breaking associated to N_R masses, too high in Seesaw models.

Can family-dependent anomaly-free U(1)breaking explain Xenon1T excess ??

\implies $U(1)_{\rm em}$ anomaly-free ALP

SM particle content, only B - L and L are $U(1)_{em}$ anomaly-free with family universal charges.

But . . . breaking associated to N_R masses, too high in Seesaw models.

Can family-dependent anomaly-free U(1)breaking explain Xenon1T excess ??

• Global flavor-dependent $U(1)_{\phi}$ symmetry spontaneously broken \Rightarrow Axion Like Particle

Model I: U(1) flavor symmetry

Scalar flavon field, ϕ , generates Yukawa couplings as function of

small vevs,
$$Y_{ij} = \left(\left(\frac{\langle \phi \rangle}{M} \right) \ll 1 \right)^n$$

with *n* function of charges.

Model I: U(1) flavor symmetry

Scalar flavon field, ϕ , generates Yukawa couplings as function of

small vevs,
$$Y_{ij} = \left(\left(\frac{\langle \phi \rangle}{M} \right) \ll 1 \right)^n$$
 . with *n* function of charges.

- Angular component of flavon becomes ALP, if $U(1)_{\phi}$ symmetry global.
- Anomaly-free $U(1)_{\phi}$: $\sum_{i} Q_{L_{i}} = 0$ and $\sum_{i} Q_{e_{i}} = 0$.

Field	$ au_{L}$	μ_L	eL	$ au_{R}$	μ_R	e _R	N _{R,i}	ϕ	H_1	H_2
$U(1)_{\phi}$	-1	0	1	1	0	-1	0	0	2	1
$U(1)_{\phi} Z_2$	+	+	+	—	_	—	—	+	—	+

Model I: U(1) flavor symmetry

Scalar flavon field, ϕ , generates Yukawa couplings as function of

small vevs,
$$Y_{ij} = \left(\left(\frac{\langle \phi \rangle}{M} \right) \ll 1 \right)^n$$
 . with *n* function of charges.

- Angular component of flavon becomes ALP, if $U(1)_{\phi}$ symmetry global.
- Anomaly-free $U(1)_{\phi}$: $\sum_{i} Q_{L_{i}} = 0$ and $\sum_{i} Q_{e_{i}} = 0$.

Field	$ au_{L}$	μ_L	eL	$ au_R$	μ_R	e _R	N _{R,i}	ϕ	H_1	H_2
$U(1)_{\phi}$	-1	0	1	1	0	-1	0	0	2	1
$U(1)_{\phi}$ Z_2	+	+	+	—	_	—	—	+	—	+

Soft-breaking of $U(1)_{\phi} \times Z_2$: $m^2 H_1 H_2$, with $m \sim \mathcal{O}(EW)$.

$$\longrightarrow m_a \simeq m^2/v_\phi$$

Yukawa coouplngs:

$$\mathcal{L}_{Y} \supset c_{ij}^{e} \, \epsilon^{n_{ij}^{e}} \, \overline{L}_{i} \, \widetilde{H}_{2} \, e_{j} + c_{ij}^{\nu} \, \epsilon^{n_{ij}^{\nu}} \, \overline{L}_{i} \, H_{2} \, N_{j} + (M_{R})_{ij} \, N_{R_{i}} \, N_{R_{j}}^{c},$$
with $\epsilon \simeq 0.1$ and $n_{ij}^{e} = q_{L_{i}} - q_{e_{j}} + q_{H_{2}}, \, n_{ij}^{\nu} = q_{L_{i}} - q_{N_{R,j}} - q_{H_{2}},$

$$n_{ij}^{e} = \begin{pmatrix} 4 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix}, \qquad n_{ij}^{\nu} = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}.$$

Yukawa coouplngs:

$$\mathcal{L}_{Y} \supset c_{ij}^{e} \, \epsilon^{n_{ij}^{e}} \, \overline{L}_{i} \, \widetilde{H}_{2} \, e_{j} + c_{ij}^{\nu} \, \epsilon^{n_{ij}^{\nu}} \, \overline{L}_{i} \, H_{2} \, N_{j} + (M_{R})_{ij} \, N_{R_{i}} \, N_{R_{j}}^{c},$$
with $\epsilon \simeq 0.1$ and $n_{ij}^{e} = q_{L_{i}} - q_{e_{j}} + q_{H_{2}}, \, n_{ij}^{\nu} = q_{L_{i}} - q_{N_{R,j}} - q_{H_{2}},$

$$n_{ij}^e = \begin{pmatrix} 4 & 3 & 2 \\ 3 & 2 & 1 \\ 2 & 1 & 0 \end{pmatrix}, \qquad n_{ij}^\nu = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}.$$

- After symmetry breaking: $\phi(x) = \frac{1}{\sqrt{2}} (v_{\phi} + s(x)) e^{i a(x)/v_{\phi}}$
- With couplings to charged leptons,

$$-\mathcal{L}_{ae} = i \frac{\partial_{\mu} a}{2f_{a}} \overline{e}_{i} \gamma^{\mu} \left(V_{ij}^{e} + \gamma^{5} A_{ij}^{e} \right) e_{j}.$$

$$V_{ij}^{e} = \frac{1}{2} \left(U_{R}^{e\dagger} Q_{e} U_{R}^{e} + U_{L}^{e\dagger} Q_{L} U_{L}^{e} \right), \qquad A_{ij}^{e} = \frac{1}{2} \left(U_{R}^{e\dagger} Q_{e} U_{R}^{e} - U_{L}^{e\dagger} Q_{L} U_{L}^{e} \right)$$

Generalize the previous structure to allow for larger mixings determined by a larger symmetry \mathcal{F} , with global $U(1)_{\phi}$ part of \mathcal{F}

Generalize the previous structure to allow for larger mixings determined by a larger symmetry \mathcal{F} , with global $U(1)_{\phi}$ part of \mathcal{F}

- Example, use same $U(1)_{\phi}$ charges, but $v_{\phi}/\Lambda \sim O(1)$.
- PMNS-like mixing in charged-leptons. Then:

$$V_{ij}^{e}, A_{ij}^{e} = rac{1}{2} U_{\mathrm{PMNS}}^{e\dagger} \left(Q_{e} \pm Q_{L} \right) U_{\mathrm{PMNS}}^{e}$$

Generalize the previous structure to allow for larger mixings determined by a larger symmetry \mathcal{F} , with global $U(1)_{\phi}$ part of \mathcal{F}

- Example, use same $U(1)_{\phi}$ charges, but $v_{\phi}/\Lambda \sim O(1)$.
- PMNS-like mixing in charged-leptons. Then:

$$V^{e}_{ij}, A^{e}_{ij} = rac{1}{2} U^{e\dagger}_{
m PMNS} \left(Q_{e} \pm Q_{L}
ight) U^{e}_{
m PMNS}$$

Although with PMNS mixings, $\longrightarrow A_{12}^e \simeq 0.52$ Although $V_{12}^e = 0$, as $Q_L = -Q_e$.

Generalize the previous structure to allow for larger mixings determined by a larger symmetry \mathcal{F} , with global $U(1)_{\phi}$ part of \mathcal{F}

- Example, use same $U(1)_{\phi}$ charges, but $v_{\phi}/\Lambda \sim O(1)$.
- PMNS-like mixing in charged-leptons. Then:

$$V^{e}_{ij}, A^{e}_{ij} = rac{1}{2} U^{e\dagger}_{
m PMNS} \left(Q_{e} \pm Q_{L}
ight) U^{e}_{
m PMNS}$$

Although with PMNS mixings, $\longrightarrow A_{12}^e \simeq 0.52$ Although $V_{12}^e = 0$, as $Q_L = -Q_e$.

LFV and Astrophysics Constraints

$$BR(e_i \rightarrow e_j a) = \frac{m_{e_i}^3}{16\pi\Gamma(e_j)} \frac{\left|\frac{C_{e_j}^e}{q}\right|^2}{4f_a^2} \left(1 - \frac{m_a^2}{m_{e_i}^2}\right)^2$$

with $\left|C_{ij}^{e}\right|^{2} = \left|V_{ij}^{e}\right|^{2} + \left|A_{ij}^{e}\right|^{2}$

Lepton decay	BF	R limit	Projection			
$ ext{BR}(\mu o e a)$	$< 2.6 \cdot 10^{-6}$	Jodidio et al.	$< 1.3\cdot 10^{-7}$	MEGII-fwd		
$ ext{BR}(\mu o e extbf{a})$	$< 2.1\cdot 10^{-5}$	TWIST	$< 7.3\cdot 10^{-8}$	Mu3e		
${ m BR}(\mu ightarrow e a \gamma)$	$<1.1\cdot10^{-9}$	Crystal Box				
$ ext{BR}(au o extbf{e} extbf{a})$	$<2.7\cdot10^{-3}$	ARGUS	$< 8.4\cdot 10^{-6}$	Belle-II		
$ ext{BR}(au o \mu extbf{a})$	$<4.5\cdot10^{-3}$	ARGUS	$< 1.6\cdot 10^{-5}$	Belle-II		

Results

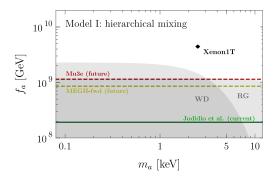
Analysis of Takahashi-Yamada-Yin, Xenon1T explained by ALP with $A_{11}^e \simeq 10^{-13} \frac{f_a}{m_e}$ for $m_a \in [2,3]$ keV.

If ALP flavor-dependent, can it be measured at LFV experiments??

Results

Analysis of Takahashi-Yamada-Yin, Xenon1T explained by ALP with $A_{11}^e \simeq 10^{-13} \frac{f_a}{m_e}$ for $m_a \in [2,3]$ keV.

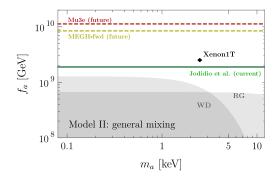
If ALP flavor-dependent, can it be measured at LFV experiments??



Results

Analysis of Takahashi-Yamada-Yin, Xenon1T explained by ALP with $A_{11}^e \simeq 10^{-13} \frac{f_a}{m_e}$ for $m_a \in [2,3]$ keV.

If ALP flavor-dependent, can it be measured at LFV experiments??



Conclusions

• Xenon1T excess can by explained by flavored ALP with minimal particle content.

• Simultaneously, LFV ALP interactions could be detected at low-energy experiments.

• ALP flavor couplings depend on charged-lepton mixings and charges.

• Flavor models of small mixings (CKM-like) produce too small effects for proposed experiments.

• Models of PMNS-like charged-lepton mixings explaining Xenon1T could be detectable in LFV experiments.