Super-Soft CP violation

Alessandro Valenti

Department of Physics and Astronomy "Galileo Galilei" - University of Padova

SUSY 2021 - 27 August 2021

Based on the works:

- [1] L. Vecchi, AV "The CKM Phase and $ar{ heta}$ in Nelson-Barr Models" JHEP07(2021)203
- [2] L. Vecchi, AV "Super-Soft CP Violation" JHEP07(2021)152

The Strong CP problem

$$\mathcal{L}_{topo}^{QCD} = \frac{g_s^2}{32\pi^2} \bar{\theta} \; G_{\mu\nu}^a \widetilde{G}^{a\mu\nu}, \qquad \bar{\theta} = \theta_{QCD} + \text{arg det } Y_u Y_d \lesssim 10^{-10} \; \text{C. Abel et al. (2020)}$$

Solutions? Spurious symmetries of \mathcal{L}_{topo}^{QCD} :

- anomalous $\mathit{U}(1): \bar{\theta} \to \bar{\theta} + \alpha$
 - -) linear: massless up quark → ruled out (PhysRevLett.125.232001 (2020))
 - -) non-linear: $U(1)_{PQ} \rightarrow \text{axion}$
- ullet P: $ar{ heta}
 ightarrow -ar{ heta}.$ Mirror world, ...
- ullet CP: $ar{ heta}
 ightarrow -ar{ heta}.$ Nelson-Barr models

"good" UV symmetries: gauged in extra dimensions

Dine, Leigh, MacIntire (1992)

Choi, Kaplan, Nelson (1993)

Nelson-Barr models

Focus on "d-mediation" (q excluded, u fine-tuned. See [1] and L. Vecchi, JHEP04(2017)149)

$$-\mathcal{L}_{\mathrm{Yuk}}^{d} = y_{u}qHu + y_{d}q\widetilde{H}d + y\Sigma\psi d + m_{\psi}\psi\psi^{c} + hc$$

- UV: CP is a symmetry. $y_d, y_u, y_\ell, y, m_\psi \in \mathbb{R} \& \theta_{QCD} = 0$
- IR: $\Sigma \to \langle \Sigma \rangle \in \mathbb{C}$. Spontaneous CPV, controlled by $\xi^{\dagger} = y \langle \Sigma \rangle$. Nelson-Barr class: $\bar{\theta}_{tree} = 0$. But
 - 1) can we keep $\bar{\theta} < 10^{-10}$, including loop and UV effects?
 - 2) can we reproduce SM CPV?

Complete study in [1]. In summary:

1) a) $\Sigma^{\dagger}\Sigma G\widetilde{G}/f_{UV}^2 < 10^{-10} \longrightarrow \left\langle \Sigma \right\rangle/f_{UV} < 10^{-5}$. CP violation must be soft

b) "reducible" contributions: need $y \ll 10^{-3} - 10^{-4}$

- c) "irreducible" contributions of ψ + SM:
 - -) decoupling 2-loops ok for $M \gtrsim \text{TeV}$ $(M^2 = \xi^{\dagger} \xi + m_{\psi}^2)$
 - -) non-decoupling 3-loops: ok, only weak bounds on ξ/m_ψ (stronger from 2) later)
- d) must avoid $q\tilde{H}\psi^c$: chiral U(1) needed (non-decoupling 2-loops too big)

2) Diagonalizing, $Y_dY_d^\dagger=y_d\left(1-\frac{\xi\xi^\dagger}{M^2}\right)y_d^T.$ Reproduces SM if

$$1<\frac{|\xi|}{m_{\psi}}\ll 10^3$$

[1] L. Vecchi, AV. JHEP07(2021)203

How can we guarantee 1), 2) from a UV point of view?

1 D > 1 D > 1 E > 1 E > E 9 Q C

5/16

A. Valenti (UniPD) Super-Soft CP violation SUSY2021

Idea

Confining CPV sector with chiral U(1):

$$y\psi\Sigma d
ightarrow rac{\chi\chi^c\psi d}{f_{UV}^2}$$
 $m_\psi\psi\psi^c
ightarrow rac{\lambda\lambda\psi\psi^c}{f_{UV}^2}$ $rac{\langle\chi\chi^c
angle}{f_{UV}^2} \sim rac{\langle\lambda\lambda
angle}{f_{UV}^2} \sim rac{4\pi f^3}{f_{UV}^2} \Longleftrightarrow y\,\langle\Sigma\rangle \sim m_\psi\,2)$

- Selection rules: only non-renormalizable operators 1a), no $q\tilde{H}\psi^c$ 1c)
- $f/f_{UV} < 10^{-5}$ by dimensional transmutation 1a)
- $y \sim 4\pi f^2/f_{UV}^2 \ll 10^{-4} \text{ 1b}$

How does CPV arise?

Spontaneous CP violation

Vafa-Witten:

$$\langle \chi_{\alpha} \chi_{\beta}^{\mathsf{c}} \rangle = \mathsf{C} \delta_{\alpha\beta}, \mathsf{C} = \mathsf{C}^{\dagger}.$$

CPV only from higher-dimensional operators generating potential for pNGBs:

$$\mathcal{L}_{UV} \supset c_{lphaeta;\gamma\delta} rac{(\chi_lpha\chi_eta^{f c})(\chi_\gamma\chi_\delta^{f c})^\dagger}{f_{UV}^2} \ \langle \chi\chi^{f c}
angle \sim 4\pi f^3 e^{i\langle\pi
angle/f}
ightarrow ext{CPV!} \qquad (m_\pi \sim 4\pi rac{f^2}{f_{UV}})$$

- but how to keep m_{ψ} real? \rightarrow gauge the chiral U(1)
 - ·) pNGB of $\lambda\lambda$ eaten by A_{μ} : no physical m_{ψ} phase $(m_A\sim gf)$
 -) possible hadrons phases \rightarrow need $f/f_{UV} < 10^{-5}$

• $m_{\psi} \ll 4\pi f \ll 4\pi f_{UV}$: CP violation is Super-soft pNGBs and hadrons interactions irrelevant: $\sim f^2/f_{UV}^2$ suppression Additional unrelated NP allowed as long as $\Lambda_{NP} \gg m_{\psi}$.

- $m_{\psi} \ll 4\pi f \ll 4\pi f_{UV}$: CP violation is Super-soft pNGBs and hadrons interactions irrelevant: $\sim f^2/f_{UV}^2$ suppression Additional unrelated NP allowed as long as $\Lambda_{NP} \gg m_{\psi}$.
- Predictivity: taking $f_{UV}\sim M_P,~m_\psi\sim 4\pi\frac{f^3}{M_P^2}\sim 10^{-14}~M_P\sim 10$'s TeV Directly (collider) and indirectly (flavor & CP observables) accessible!

[1] L. Vecchi, AV. JHEP07(2021)203

- $m_{\psi} \ll 4\pi f \ll 4\pi f_{UV}$: CP violation is Super-soft pNGBs and hadrons interactions irrelevant: $\sim f^2/f_{UV}^2$ suppression Additional unrelated NP allowed as long as $\Lambda_{NP} \gg m_{\psi}$.
- Predictivity: taking $f_{UV}\sim M_P,~m_\psi\sim 4\pi\frac{f^3}{M_P^2}\sim 10^{-14}~M_P\sim 10$'s TeV Directly (collider) and indirectly (flavor & CP observables) accessible!
- Extra states: confining sector generically requires other (almost) decoupled states → DM & cosmological signatures

- $m_{\psi} \ll 4\pi f \ll 4\pi f_{UV}$: CP violation is Super-soft pNGBs and hadrons interactions irrelevant: $\sim f^2/f_{UV}^2$ suppression Additional unrelated NP allowed as long as $\Lambda_{NP} \gg m_{\psi}$.
- Predictivity: taking $f_{UV}\sim M_P,~m_\psi\sim 4\pi\frac{f^3}{M_P^2}\sim 10^{-14}~M_P\sim 10$'s TeV Directly (collider) and indirectly (flavor & CP observables) accessible!
- Extra states: confining sector generically requires other (almost) decoupled states → DM & cosmological signatures
- Baryogenesis: possible through low scale leptogenesis

A. Valenti (UniPD)

Conclusion

Robust solutions of the Strong CP problem based on Spontaneous CP violation can be built. In the UV, CP is *exact*: no quality problem

A confining CP violating sector works well and is remarkably predictive: VLQ at collider scale and possible cosmological signatures

SUSY-based completions can address some of the issues, but leave questions (why m_ψ real?)

Thanks for your attention!

Requirements for a real m_{ψ} :

- i) λ must appear in a single family (no chiral flavor symmetries for λ)
- ii) the chiral U(1) must be gauged
- iii) the chiral U(1) must commute with the flavor symmetries of χ, χ^c
- iv) $f/f_{UV} < 10^{-5}$

In this way:

- i)-iii): the unique pNGB $\lambda\lambda\sim 4\pi f^3e^{i\rho}$ of the axial U(1) is eaten by A_μ , no physical phase
- iv) : other sources for $\langle \lambda \lambda \rangle$'s phase
 - \bullet contamination from other pNGB, at least dim. 6+ operators
 - composite hadrons at $\sim 4\pi f$ with $V=V_0+V_1$. V_0 conserves CP (Vafa-Witten), V_1 dim.6+ \to arg $m_\psi\sim V_1/V_0\sim f^2/f_{UV}^2$

Taking $f/f_{UV} < 10^{-5}$ addresses both.

An explicit realization

Fields	$\int SU(3)_c$	$SU(2)_w$	$U(1)_Y$	<i>SU</i> (3)	U(1)
ψ_1	3	1	$-\frac{1}{3}$	1	+1
$\psi_{ extsf{2}}$	3	1	$-\frac{1}{3}$	1	-1
ψ^c_1	$\frac{\overline{3}}{3}$	1	$+\frac{1}{2}$	1	$-\frac{1}{3}$
ψ_2^{c}	3	1	$+\frac{1}{3}$	1	$+\frac{1}{3}$
ψ_1'	1	2	$+\frac{1}{2}$	1	+1
ψ_2'	1	2	$+\frac{1}{2}$	1	-1
$\psi_1^{\prime c}$	1	2	$-\frac{1}{2}$	1	$-\frac{1}{3}$
$\psi_2^{\prime c}$	1	2	$-\frac{1}{2}$	1	$+\frac{1}{3}$
$\chi_{\alpha=1,2}$	1	1	0	3	$+\frac{1}{2}$
$\chi_{\alpha=1,2}^c$	1	1	0	3	$+\frac{\overline{1}}{2}$
λ	1	1	0	8	$-\frac{1}{3}$
$N_{I=1,2,3,4}$	1	1	0	1	$-\frac{2}{3}$
$N'_{I=1,2,3,4}$	1	1	0	1	$-\frac{1}{6}$

Interactions:

ullet CPV mediation: $\langle \chi_{lpha} \chi_{eta}^{m{c}}
angle = c_{\chi} 4 \pi f^3 \left(e^{i rac{\pi \cdot \sigma}{f}}
ight)_{lpha eta},$

$$(\chi_{\alpha}\chi_{\beta}^{\mathsf{c}})^{\dagger}\psi_{1}\mathsf{d}, \quad \chi_{\alpha}\chi_{\beta}^{\mathsf{c}}\psi_{2}\mathsf{d}, \quad (\chi_{\alpha}\chi_{\beta}^{\mathsf{c}})^{\dagger}\psi_{1}^{\prime}\ell, \quad \chi_{\alpha}\chi_{\beta}^{\mathsf{c}}\psi_{2}^{\prime}\ell$$

• m_{ψ} : $\langle \lambda \lambda \rangle = c_{\lambda} 4\pi f^3$,

$$\psi_1 \psi_1^c \lambda \lambda, \quad \psi_2 \psi_2^c (\lambda \lambda)^{\dagger}, \quad \psi_1' \psi_1'^c \lambda \lambda, \quad \psi_2' \psi_2'^c (\lambda \lambda)^{\dagger}$$

- CPV potential: $c_{\alpha\beta;\gamma\delta}(\chi_{\alpha}\chi_{\beta}^c)(\chi_{\gamma}\chi_{\delta}^c)^{\dagger}/f_{UV}^2$. $m_{\pi} \sim 4\pi f^2/f_{UV} \sim 10^{8-9} \text{ GeV}$
- Spectator masses:
 - -) $\chi_{\alpha}\chi_{\beta}^{c}\lambda N_{I}/f_{UV}^{2}$. Seesaw with $\langle \chi\chi^{c}\lambda \rangle$, $m_{N}\sim 4\pi f^{5}/f_{UV}^{4}\sim \text{KeV}$
 - -) $N'N'(\chi\chi^c)(\lambda\lambda)/f_{UV}^4$. $m_{N'}\sim 4\pi f^6/f_{UV}^5\sim {\rm meV}$
- ullet Other irrelevant dim. 6 interactions, suppressed by f_{UV}^2 .

- ψ, ψ' phenomenology: see [1]. Indirect observables (FV): large portion of parameters space allowed. Direct search @LHC: $m_{\psi} > 1.4$ TeV
- Cosmology: need $T_{REH} \ll 4\pi f/25 \sim 10^{11-13}$ GeV to avoid defects. N warm DM:

$$rac{
ho_{\it N}}{s} \simeq rac{
ho_{\it DM}}{s} \; \left(rac{\sum_{l=1}^4 m_{\it N_l}}{4\;{
m keV}}
ight) \left(rac{10^{13}\;{
m GeV}}{f}
ight)^4 \left(rac{T_{\it REH}}{10^{11}\;{
m GeV}}
ight)^3$$

Baryogenesis: modify spectator sector

$$\begin{array}{c|c} & U(1) \\ \hline N_{1,2} & -\frac{1}{3} \\ N'_{1,\cdots,5} & -\frac{2}{3} \\ X_{1,2,3} & +\frac{1}{2} \\ X'_{1,\cdots,5} & -\frac{1}{6} \\ \end{array}$$

- Interactions: $\psi_2'^c HN$ and dim.6 Majorana masses for N,N',X, dim.9 for X'
- Baryogenesis through resonant leptogenesis via $N, N' \rightarrow {\psi'}^{c\dagger} H^{\dagger}, {\psi'}^{c} H \rightarrow \ell^{\dagger} H^{\dagger}, \ell H$
- ullet $m_X \sim {
 m TeV}$: cold DM candidate for $T_{REH} \sim 10^8 {
 m ~GeV}$

