Recent Astro-Particle & Exotic Physics results from MicroBooNE

David Marsden
University of Manchester
For the MicroBooNE Collaboration

SUSY 2021

MicroBooNE introduction

Also many diverse topics in astroparticle and exotic physics, which can be explored with MicroBooNE - what we'll look at now

LArTPCs introduction

- Scintillation and ionisation signals used to produce bubble chamber like images of events
- Offers excellent spatial resolution
 - 3 mm in MicroBooNE
- Excellent calorimetry and low thresholds
 - 100 keV for electrons
 - 20 MeV for protons

JINST 12 (2017) 09, P09014

LArTPCs introduction - Event display

- Allows for powerful particle identification
- We can detect:
 - Cosmic ray muons O(1-10 GeV)
 - Beam neutrino interactions O(GeV)
 - Supernova neutrinos O(10 MeV)
 - Anomalous final states - new physics!

MeV Scale reconstruction

- MeV scale event reconstruction is important for many low energy studies
- Used "blips" of ionisation from low-energy gammas

MICROBOONE-NOTE 1076-PUB

Applications:

Supernova neutrino reconstruction Muon/pion separation Some BSM searches e.g. millicharged particles

Continuous readout for supernova neutrino detection

- Detecting a supernova neutrino burst requires continuous data readout (33GB/s raw data from MicroBooNE)
- Pioneered a system to zero-suppress and compress data
- Evaluated performance by looking at reconstruction of Michel electrons

Cosmic ray measurement

- Used MicroBooNE data to measure the rate of cosmic ray muons at the surface at Fermilab
- Found good agreement with a CORSIKA simulation
- Useful for tuning cosmic simulation and as an input for future experiments at Fermilab, including SBN program and DUNE

Neutron-antineutron oscillation

- Searched for this baryon-number violating process in argon
- Trained a Convolutional Neural Network (CNN) to identify signal over cosmic-induced background

MicroBooNE will not have competitive sensitivity but have pioneered

techniques which may be used in DUNE

Heavy Neutral Leptons

- Searches for neutral leptons with mass O(100 MeV)

Could decay inside MicroBooNE

Heavy Neutral Leptons

Phys.Rev.D101, 052001 (2020)

- First HNL search using a LArTPC
- Developed a "late window" trigger specifically for this analysis
 - Effectively eliminates in-beam neutrino events which would be background
- Looked for decays to muon+pion to set a limit on HNL mixing element $|U_{\mu 4}|$
- No excess discovered

— E949

Heavy Neutral Leptons Further Work

- Using Kaons decaying at rest from NuMI to set a new limit for MicroBooNE
- These HNLs would enter the detector at a large angle and would be mono-energetic
- Simultaneously looking for similar Higgs Portal Scalar decays ($\mu^+\mu^-$ or $\pi^+\pi^-$)
- Also exploring other decay channels to probe different mass ranges of HNL

Dark Tridents

- Can explore BSM models with e⁺e⁻
 final states (could explain MiniBooNE
 Low Energy Excess)
- Use CNNs to discriminate signal from background
- Backgrounds come from shower-like events, e.g π^0 neutrino interactions

Summary

- MicroBooNE is performing a variety of astroparticle and exotic physics searches in addition to other primary physics studies
- Recent exciting results include:
 - Supernova continuous readout (<u>JINST 16, 02, P02008 (2021)</u>)
 - MeV Scale Physics (<u>MICROBOONE-NOTE</u> 1076-PUB)
 - Cosmic ray rate measurement (<u>JINST 16</u>, 04004 (2021))
 - Neutron-antineutron oscillation analysis (MICROBOONE-NOTE-1093-PUB)
 - Searches for heavy neutral leptons (<u>Phys.Rev.D101, 052001 (2020)</u>) and Higgs portal scalars (<u>arXiv:2106.00568</u>)
- Many more results to come!

Simulated Heavy Neutral Lepton decay in MicroBooNE

Backup

Millicharged Particles

- Particles with a fraction of electric charge, potential dark matter candidates
- Could scatter off atomic electrons and cause "blips" of ionisation in LAr
 - MeV scale reconstruction useful
- Previous search in much smaller LArTPC ArgoNeuT, MicroBooNE could improve limits

