Light particles with baryon and lepton numbers

Julian Heeck

SUSY 2021

8/24/2021

Based on arXiv:2009.01256 (PLB 2021)

Particles beyond the SM

- *Heavy* new particles are captured in SMEFT, no matter their quantum numbers.
- *Light* new particles φ require new EFT of SM + φ .
- Need to know the quantum numbers of φ !
 - For m_{ω} at or below GeV: ϕ is neutral under U(1)xSU(3).
 - Spin 0: light scalar or pseudoscalar (ALP EFT).
 - Spin 1/2: sterile neutrino.
 - Spin 1: dark photon or coupled to B/L_{α} currents.

Can ϕ carry global symmetries?

Global symmetries

- Simplest case: φ carries a Z_N or dark U(1) or SU(N).
 - EFT operators factorize: $|\phi|^2 x$ (SMEFT operator),...
 - Exhaustively discussed as (light) dark matter.

Global symmetries

- Simplest case: φ carries a Z_N or dark U(1) or SU(N).
 - EFT operators factorize: $|\phi|^2 x$ (SMEFT operator),...
 - Exhaustively discussed as (light) dark matter.
- ~ final possibility: φ carries baryon/lepton number:
 - Fermion N with L = 1: $\overline{L}HN$ coupling, mixing with neutrinos => sterile neutrino.

[recent collection of constraints: Bolton, Deppisch and Dev, 1912.03058]

- Fermion χ with B = 1: EFT coupling to e.g. χ udd/ Λ^2 , mixing with neutral baryons => sterile neutron.

[popular for neutron decay anomaly, e.g. Fornal & Grinstein, 2007.13931]

Sterile neutron: fermion with B=1

• Effective Lagrangian:

$$\mathcal{L}_{\chi} = \bar{\chi}(\mathrm{i}\partial \!\!\!/ - m_{\chi})\chi + \left(\frac{u_i d_j d_k \chi_L^c}{\Lambda_{ijk}^2} + \frac{Q_i Q_j d_k \chi_L^c}{\tilde{\Lambda}_{ijk}^2} + \mathrm{h.c.}\right)$$

- For $m_{\chi} \leq m_{n}$, one has search channels

 - The latter probe $\Lambda_{udd} < 10^{15} \text{ GeV}$ if $m_{\chi} \sim 0$.
 - All couplings Λ_{iik} lead to these channels at loop level!
- Notice that χ is stable here and thus (asymmetric) DM.

SUSY 2021

Julian Heeck - Light B&L Particles

Sterile neutron: fermion with B=1

- For $m_x > m_n$, no more proton/neutron decays.
- Still possible to look for rare decays in $b/c/\tau$ factories via

baryon \rightarrow meson $+ \chi$ meson \rightarrow baryon $+ \bar{\chi}$

- Requires χ coupling to 2nd/3rd gen quarks. [Nelson++, PRD '17 & '19]
- Matrix elements <baryon|qqq|meson> unknown.
- χ is unstable, but typically leaves detector; mimics baryon-number violating decays!

New signatures to look for!

Sterile neutron mass m_{χ} in GeV

Dedicated analyses required to obtain sensitivity, but

LHCb already has $10^{14} \Sigma^+$; HyperCP has $10^9 \Xi^-$. Λ_c abundantly produced at Belle II, BESIII, LHCb. Belle II will collect 5x10¹⁰ B-meson decays.

SUSY 2021

Global symmetries for scalars

- ~final possibility: scalar φ carries baryon/lepton number:
 - δ with L = 2: EFT coupling to Weinberg op. $\delta(\overline{L}H)^2/\Lambda^2$. [Berryman et al, 1802.0009; De Gouvêa et al, 1910.01132]
 - φ with B = L = 1: EFT coupling φQQQL/Λ³,
 => sterile leptoquark.
 [McKeen & Pospelov, 2003.02270]
 - ξ with B = 2: EFT coupling $\overline{\xi}(udd)^2/\Lambda^6$.
- Assume that scalars don't get VEVs.

Sterile leptoquark: scalar with B=L=1

• Effective Lagrangian for SM + ϕ :

$$\mathbf{L}_{\phi} = |\partial\phi|^2 - \mathbf{m}_{\phi}^2 |\phi|^2 + \left(\frac{\mathsf{d}_{\mathsf{i}}\mathsf{u}_{\mathsf{j}}\mathsf{u}_{\mathsf{k}}\ell_{\mathsf{l}}\phi^*}{\Lambda_{\mathsf{ij}\mathsf{k}\mathsf{l}}^3} + \frac{\mathsf{d}_{\mathsf{i}}\mathsf{u}_{\mathsf{j}}\mathbf{Q}_{\mathsf{k}}\mathsf{L}_{\mathsf{l}}\phi^*}{\tilde{\Lambda}_{\mathsf{ij}\mathsf{k}\mathsf{l}}^3} + \frac{\mathsf{Q}_{\mathsf{i}}\mathbf{Q}_{\mathsf{j}}\mathsf{u}_{\mathsf{k}}\ell_{\mathsf{l}}\phi^*}{\Lambda_{\mathsf{ij}\mathsf{k}\mathsf{l}}^{\prime3}} + \frac{\mathsf{Q}_{\mathsf{i}}\mathbf{Q}_{\mathsf{j}}\mathsf{u}_{\mathsf{k}}\ell_{\mathsf{l}}\phi^*}{\tilde{\Lambda}_{\mathsf{ij}\mathsf{k}\mathsf{l}}^{\prime3}} + \mathsf{hc}\right)$$

- Further restriction possible by assigning lepton flavor.
- Low energy: $\frac{\Lambda^3_{QCD}}{\Lambda^3_{udde}} pe\phi^* + \dots$
- Possible UV completion with leptoquarks:

Sterile leptoquark: scalar with B=L=1

- For $m_{\phi} < m_{n}$, we have $n \rightarrow \phi \ v$ for all Λ_{ijkl} indices! For lighter ϕ : $p \rightarrow \phi \ \ell^{+}$ [for $m\phi = 0$: Super-K, PRL '15]
- Can be improved with inclusive searches. [Heeck & Takhistov, 1910.07647]
- Mass close to H: hydrogen $\rightarrow \phi \gamma$. [McKeen & Pospelov, 2003.02270]
- m_o > m_n difficult to probe in rare decays, better constrained by LQ searches at LHC.

Larger B and L?

- E.g. scalar ξ with B = 2: EFT coupling $\overline{\xi}(udd)^2/\Lambda^6$.
 - Light ξ can give $nn \rightarrow \xi \pi^0$ or $(A,Z) \rightarrow (A-2,Z) + \xi$.
 - Heavier ξ difficult to probe, *unless it is dark matter!*

Larger B and L?

- E.g. scalar ξ with B = 2: EFT coupling $\overline{\xi}(udd)^2/\Lambda^6$.
 - Light ξ can give $nn \rightarrow \xi \pi^0$ or $(A,Z) \rightarrow (A-2,Z) + \xi$.
 - Heavier ξ difficult to probe, *unless it is dark matter!*
- DM with B/L could decay specific antimatter final states:
 - ϕ with B=-2 and L=-1: $\mathcal{L} = \frac{\overline{\phi}^c n \, \overline{p}^c e}{\Lambda^2} + \text{h.c.}$
 - For $m_d < m_\phi < m_n + m_p$, DM decays into anti-deuteron + e⁺, not into \overline{p} .
 - Same trick to generate anti-helium without p, might explain AMS events.

[Heeck & Rajaraman, 1906.01667]

Summary

- Light new particles becoming more popular, e.g. dark photons, sterile neutrinos, ALPs.
- Often overlooked: new particles could carry B or L.
 - Changes allowed couplings and pheno.
 - For sub-GeV masses: neutron and proton decays, can be improved in SK, HK, JUNO, DUNE.
 - Invisible n decays ($n \rightarrow \phi \nu$, $nn \rightarrow \xi$) powerful probe.
 - For m > GeV, hadron decays testable in $b/c/\tau$ factories
 - Often kinematically stable, forms (asymmetric) DM.
 - DM decays can produce odd anti-matter signals.

More baryons & leptons out there?!

Backup