Earth Signal

Analysis of SuperMAG Data

The Earth as a transducer for dark-photon dark-matter detection

Saarik Kalia

based on arXiv:2106.00022 and arXiv:2108.08852

with Michael A. Fedderke, Peter W. Graham, Derek F. Jackson Kimball

SUSY 2021

August 27, 2021

Earth Signal 00 Analysis of SuperMAG Data

Introduction

• Need big apparatus to detect ultralight dark photons

• Current constraints below 10⁻¹⁴ eV (sub-Hz) all astrophysical

• We use the Earth as our apparatus/transducer!

• Dark photons \longrightarrow magnetic field at Earth's surface

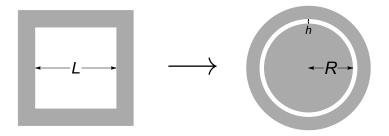
Earth Signal

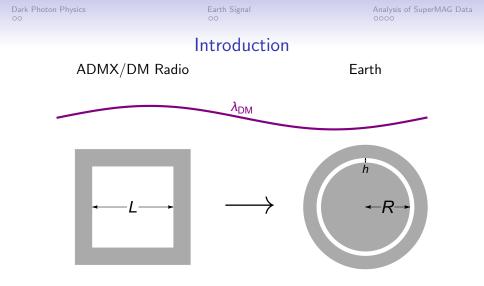
Analysis of SuperMAG Data

Introduction

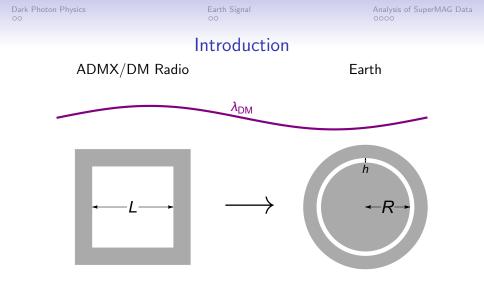
ADMX/DM Radio

Earth





B suppressed by $rac{L}{\lambda_{
m DM}} \sim m_{
m DM} L$



B suppressed by $\frac{L}{\lambda_{\rm DM}} \sim m_{\rm DM} L$

B suppressed by $m_{\text{DM}}R!$

Earth Signal 00 Analysis of SuperMAG Data

Outline

1. Dark Photon Physics

2. Earth Signal

3. Analysis of SuperMAG Data

Analysis of SuperMAG Data 0000

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'_\mu \mathcal{A}'^\mu + arepsilon m_{\mathcal{A}'}^2 \mathcal{A}'^\mu \mathcal{A}_\mu - J^\mu_{\mathsf{EM}} \mathcal{A}_\mu$$

Analysis of SuperMAG Data

Coupled Photon–Dark-Photon System

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{A'}^2 A'_\mu A'^\mu + arepsilon m_{A'}^2 A'^\mu A_\mu - J^\mu_{\mathsf{EM}} A_\mu$$

• Two modes: "interacting" A, "sterile" A'

$$\mathcal{L} \supset -rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} - rac{1}{4} \mathcal{F}'_{\mu
u} \mathcal{F}'^{\mu
u} + rac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'_\mu \mathcal{A}'^\mu + arepsilon m_{\mathcal{A}'}^2 \mathcal{A}'^\mu \mathcal{A}_\mu - \mathcal{J}^\mu_{\mathsf{EM}} \mathcal{A}_\mu$$

- Two modes: "interacting" A, "sterile" A'
- Only A couples to charges
 - Only A is affected (at leading order) by conductors
 - The observable fields are E and B (no contribution from E' and B')

$$\mathcal{L} \supset -rac{1}{4} \mathcal{F}_{\mu
u} \mathcal{F}^{\mu
u} - rac{1}{4} \mathcal{F}'_{\mu
u} \mathcal{F}'^{\mu
u} + rac{1}{2} m_{\mathcal{A}'}^2 \mathcal{A}'_\mu \mathcal{A}'^\mu + arepsilon m_{\mathcal{A}'}^2 \mathcal{A}'^\mu \mathcal{A}_\mu - J^\mu_{\mathsf{EM}} \mathcal{A}_\mu$$

- Two modes: "interacting" A, "sterile" A'
- Only A couples to charges
 - Only A is affected (at leading order) by conductors
 - The observable fields are E and B (no contribution from E' and B')
- One massless and one massive (mass $m_{A'}$) propagation state

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u}F^{\mu
u} - rac{1}{4} F_{\mu
u}^{\prime}F^{\prime\mu
u} + rac{1}{2} m_{\mathcal{A}^{\prime}}^2 \mathcal{A}_{\mu}^{\prime}\mathcal{A}^{\prime\mu} + arepsilon rac{m_{\mathcal{A}^{\prime}}^2 \mathcal{A}^{\prime\mu} \mathcal{A}_{\mu}}{2} - J_{\mathsf{EM}}^\mu \mathcal{A}_{\mu}$$

- Two modes: "interacting" A, "sterile" A'
- Only A couples to charges
 - Only A is affected (at leading order) by conductors
 - The observable fields are E and B (no contribution from E' and B')
- One massless and one massive (mass $m_{A'}$) propagation state
- A and A' are not propagation states in vacuum!
 - Mixing (and all observable effects) are proportional to $m_{A'}$
 - A and A' are propagation states in conductor \rightarrow mixing at boundary

Analysis of SuperMAG Data

Effective Current Approach

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{A'}^2 A'_\mu A'^\mu + arepsilon m_{A'}^2 A'^\mu A_\mu - J^\mu_{\mathsf{EM}} A_\mu$$

• When A' is DM and $\varepsilon \ll 1$ (no backreaction), then $J^{\mu}_{eff} = -\varepsilon m_{A'}^2 A'^{\mu}$.

Analysis of SuperMAG Data 0000

Effective Current Approach

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F_{\mu
u}^{\prime} F^{\prime\mu
u} + rac{1}{2} m_{A^{\prime}}^2 A_{\mu}^{\prime} A^{\prime\mu} + arepsilon m_{A^{\prime}}^2 A^{\prime\mu} A_{\mu} - J^{\mu}_{\mathsf{EM}} A_{\mu}$$

- When A' is DM and $\varepsilon \ll 1$ (no backreaction), then $J^{\mu}_{eff} = -\varepsilon m_{A'}^2 A'^{\mu}$.
- Non-relativistic (v = 0)
 - $J_{\rm eff}^0 = 0$
 - **J**_{eff} constant in space
 - Oscillates with frequency $\omega = m_{A'}$

Analysis of SuperMAG Data 0000

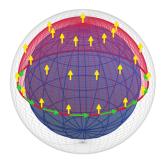
Effective Current Approach

$$\mathcal{L} \supset -rac{1}{4} F_{\mu
u} F^{\mu
u} - rac{1}{4} F'_{\mu
u} F'^{\mu
u} + rac{1}{2} m_{A'}^2 A'_\mu A'^\mu + arepsilon m_{A'}^2 A'^\mu A_\mu - J^\mu_{\mathsf{EM}} A_\mu$$

- When A' is DM and $\varepsilon \ll 1$ (no backreaction), then $J^{\mu}_{eff} = -\varepsilon m_{A'}^2 A'^{\mu}$.
- Non-relativistic (v = 0)
 - $J_{\rm eff}^0 = 0$
 - **J**_{eff} constant in space
 - Oscillates with frequency $\omega = m_{A'}$
- Just a single-photon EM problem with a background current!

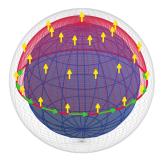
Earth Signal ●○ Analysis of SuperMAG Data

Ampère's Law Argument



Earth Signal ●○ Analysis of SuperMAG Data

Ampère's Law Argument

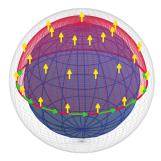


$$BR \sim \oint \boldsymbol{B} \cdot d\ell = \iint \boldsymbol{J}_{\text{eff}} \cdot d\boldsymbol{A} \sim \varepsilon m_{A'}^2 R^2 A'$$

Earth Signal ●○

Analysis of SuperMAG Data

Ampère's Law Argument



$$BR \sim \oint \boldsymbol{B} \cdot d\ell = \iint \boldsymbol{J}_{\text{eff}} \cdot d\boldsymbol{A} \sim \varepsilon m_{A'}^2 R^2 A'$$

 $B\sim \varepsilon m_{A'}^2 RA'\sim \varepsilon m_{A'} R\sqrt{
ho_{\rm DM}}$

Analysis of SuperMAG Data

Signal Properties

• Observable magnetic field at Earth's surface

• Large: suppressed by $m_{A'}R$ not $m_{A'}h$

• Spatially coherent: global spatial pattern (along latitudes)

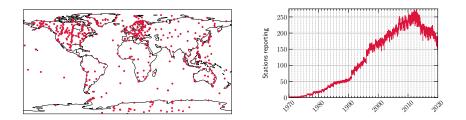
• Temporally coherent: sharply peaked in frequency with $Q\sim 10^6$

 Robust: relevant component of signal is unaffected to leading order by boundary conditions!

Earth Signal

Analysis of SuperMAG Data •000

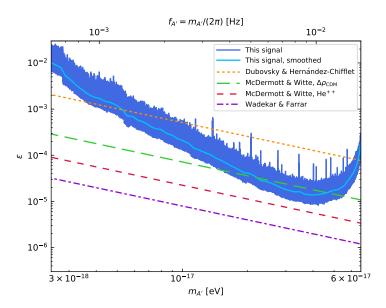
SuperMAG



- Collaboration of over 500 ground-based magnetometers
- Data collected over 50 years
- 1-minute time resolution

Analysis of SuperMAG Data

Results



Analysis of SuperMAG Data 0000

Future Prospects

- SuperMAG is also releasing 1-second resolution data, which would probe higher masses.
- If 1/f noise continues, then our bound scales better than others at higher masses.
- Other possible ways to improve:
 - Noise modeling
 - Better statistical analysis
 - Better magnetometers
 - More and/or higher frequency data
- Similar signal for axions?

Analysis of SuperMAG Data 000 \bullet

Summary

- We demonstrated a novel mechanism to probe ultralight dark photons using the Earth as a transducer.
- It utilizes the natural conductivity environment near the Earth.
- Our signal is not suppressed by the height of the atmosphere!
- It is highly spatially and temporally coherent, and robust to environmental details.
- We set complementary bounds on dark photon parameter space.
- With further research, our results will become even better!

Mixing in Medium

• Consider (transverse) modes of frequency ω

	In vacuum		In good conductor ($\sigma \gg m_{A'}^2/\omega$)		
State	$A - \varepsilon A'$	$A' + \varepsilon A$	A	A'	
Propagation	Massless	Mass $m_{A'}$	Damped	Mass $m_{A'}$	

Mixing in Medium

• Consider (transverse) modes of frequency ω

	In vacuum		In good conductor ($\sigma \gg m_{{\cal A}'}^2/\omega$)		
State	$A - \varepsilon A'$	$A' + \varepsilon A$	A	A'	
Propagation	Massless	Mass $m_{A'}$	Damped	Mass $m_{A'}$	

$$\sigma \gg m_A^2/\omega$$

$$A \neq 0 \longrightarrow A = 0$$

$$A' \neq 0 \longrightarrow A' \neq 0$$

$$A' \neq 0$$

$$A \approx \varepsilon$$

$$A' \neq 0$$

Solving the wave equation with a current

$$(
abla^2 - \partial_t^2) \boldsymbol{E} = \partial_t \boldsymbol{J}_{\text{eff}}$$

$$\mathbf{\textit{E}} = \mathbf{\textit{E}}_{\mathsf{DM}} + \mathbf{\textit{E}}_{\mathsf{response}}$$

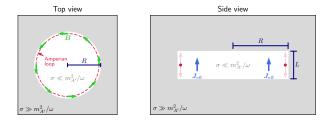
Solving the wave equation with a current

$$(
abla^2 - \partial_t^2) \boldsymbol{E} = \partial_t \boldsymbol{J}_{ ext{eff}}$$

 $\textbf{\textit{E}} = \textbf{\textit{E}}_{\text{DM}} + \textbf{\textit{E}}_{\text{response}}$

E _{DM} (specific)	E _{response} (homogeneous)		
$(abla^2 - \partial_t^2) oldsymbol{\mathcal{E}}_{DM} = \partial_t oldsymbol{J}_{eff}$	$(abla^2 - \partial_t^2) oldsymbol{\mathcal{E}}_{response} = 0$		
Field "sourced by" DM	Cavity response to cancel $m{ extsf{E}}_{\parallel}$ at boundary		
Constant in space	(Slowly) varying with $k=m_{A'}$		
$oldsymbol{B}_{DM}=0$	$oldsymbol{B}_{response} eq 0$		

ADMX/DM Radio Ampère's Law Argument

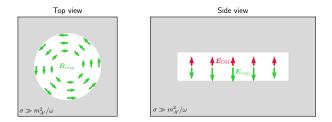


$$BR \sim \oint \boldsymbol{B} \cdot d\boldsymbol{\ell} = \iint \boldsymbol{J}_{\text{eff}} \cdot d\boldsymbol{A} \sim \varepsilon m_{A'}^2 R^2 A'$$

$$B\sim arepsilon m_{A'}^2 RA'\sim arepsilon m_{A'} R\sqrt{
ho_{\mathsf{DM}}}$$

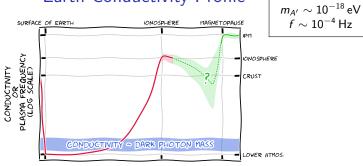
Backup Slides

ADMX/DM Radio Solution



$$m{E}=m{E}_{
m DM}+m{E}_{
m response}\propto m_{A'}^2(R^2-r^2)$$

$$m{B}=-rac{i}{m_{A'}}
abla imes m{E} \propto m_{A'}m{r}$$



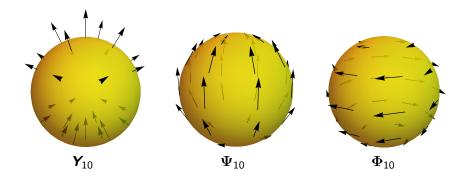
DISTANCE FROM CENTER OF EARTH

	Core	Lower	lonosphere		IPM
		Atmosphere	σ_{\shortparallel}	σ_{\perp}	
$\sigma (\omega_p) [eV]$	100	10^{-18}	10^{-2}	10^{-8}	10^{-10}
<i>h</i> [km]	3000	5	100		3×10^5
δ [km]	0.03	10 ⁸	2	1000	2
Shield?	Yes	No	???		Yes

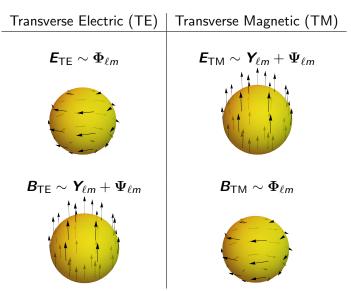
Backup Slides

Vector Spherical Harmonics

- Three types of vector spherical harmonics: $m{Y}_{\ell m}, \ m{\Psi}_{\ell m}, \ m{\Phi}_{\ell m}$
- Only $\ell = 1$ relevant for us
- Real and imaginary parts of $m = \pm 1$ oriented along x- and y-axes



Spherical Modes



Backup Slides

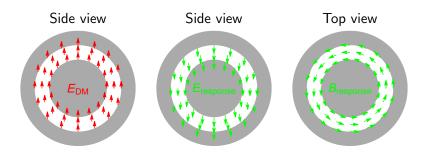
Full TM Modes

$$\boldsymbol{E}_{\mathsf{TM}} = \sum_{\ell m} \left(-\frac{\ell(\ell+1)g_{\ell m}(m_{A'}r)}{m_{A'}r} \boldsymbol{Y}_{\ell m} - \left(g_{\ell m}'(m_{A'}r) + \frac{g_{\ell m}(m_{A'}r)}{m_{A'}r} \right) \boldsymbol{\Psi}_{\ell m} \right) e^{-im_{A'}t}$$

$$m{B}_{\mathsf{TM}} = -i\sum_{\ell m} g_{\ell m}(m_{A'}r) \Phi_{\ell m} e^{-im_{A'}t}$$

Backup Slides

Earth Signal

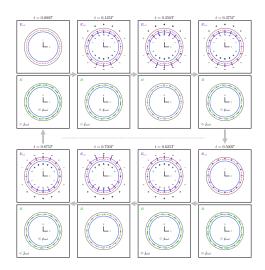


• Only TM modes necessary!

$$B\propto \sum_{m=-1}^{1}(arepsilon m_{A'}^2 RA_m')\Phi_{1m}$$

• Has particular Φ_{1m} spatial pattern that we can search for!

Earth Field Oscillations



Earth Signal with Rotation

• Earth signal without rotation:

$$B = \sqrt{\frac{\pi}{3}} \varepsilon m_{A'}^2 R \sum_{m=-1}^{1} A'_m \Phi_{1m} e^{-im_{A'}t}$$

• Since $\Phi_{1m} \propto e^{im\phi}$, can account for rotation of earth as

$$B = \sqrt{\frac{\pi}{3}} \varepsilon m_{A'}^2 R \sum_{m=-1}^{1} A'_m \Phi_{1m} e^{-i(m_{A'} - 2\pi f_d m)t},$$

where $f_d = 1/(\text{sidereal day})$.

Robustness to Boundary Conditions

• As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E response, TE	E _{response,TM}	B _{TE}	B_{TM}
LO	X	\sim		
NLO	X	X		
NNLO	?	?		
NNNLO	?	?		

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E response, TE	E _{response,TM}	B _{TE}	B_{TM}
LO	X	\sim		
NLO	X	×		
NNLO	?	?		
NNNLO	?	?		

• B_{TM} higher order than E_{TM} , but B_{TE} lower order than E_{TE}

- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E _{response,TE}	E _{response,TM}	B_{TE}	B _{TM}
LO	X	$\overline{\checkmark}$	X	X
NLO	X	X	?	\checkmark
NNLO	?	?	?	X
NNNLO	?	?	?	?

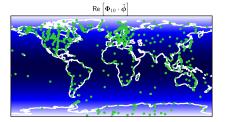
• B_{TM} higher order than E_{TM} , but B_{TE} lower order than E_{TE}

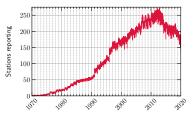
- As long as geometry is sub-wavelength, our solution is the correct leading-order TM magnetic field, regardless of boundary conditions!
- To LO (and NLO), $\textit{\textbf{E}}_{response} = -\textit{\textbf{E}}_{DM}$ regardless of boundaries

	E _{response,TE}	E _{response,TM}	B_{TE}	B _{TM}
LO	X	$\overline{\checkmark}$	X	X
NLO	X	X	?	\checkmark
NNLO	?	?	?	X
NNNLO	?	?	?	?

- **B**_{TM} higher order than **E**_{TM}, but **B**_{TE} lower order than **E**_{TE}
- As long as our search projects onto Φ_{1m} , we can just look for $m{B}_{\mathsf{TM}}!$

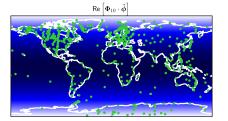
Analysis Difficulties

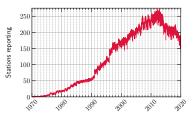




- What we'd like to do:
 - Project onto Φ_{1m} modes
 - Fourier transform
 - Look for single-frequency peak

Analysis Difficulties





- What we'd like to do:
 - Project onto Φ_{1m} modes •
 - Fourier transform
 - Look for single-frequency peak Total time > coherence time

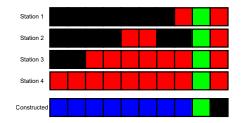
Noise variations/correlations Active stations highly variable

- · Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

- · Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series



- · Combine data from active stations into new time series
- Weight by inverse noise and Φ_{1m} (different *m*'s will be correlated)
- Do same for signal and just work with time series

Time Series Partitioning

- Split time series into chunks of length $T_{\rm coh}$
- Find single-frequency signal size z_k in each chunk k separately
- Combine results incoherently, i.e. $\sum_{k} |z_k|^2$
- Utilize Bayesian framework to derive posterior for ε

Time Series Partitioning

- Split time series into chunks of length $T_{\rm coh}$
- Find single-frequency signal size z_k in each chunk k separately
- Combine results incoherently, i.e. $\sum_{k} |z_k|^2$
- Utilize Bayesian framework to derive posterior for ε

Bayesian Analysis

• Analysis variables:

$$z_{ik} \sim rac{\mathsf{Data}}{\sqrt{\mathsf{Noise}}} \qquad s_{ik} \sim rac{\mathsf{Signal}}{\sqrt{\mathsf{Noise}}}$$

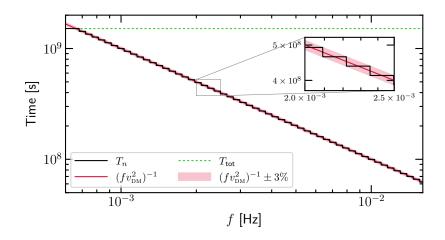
• Likelihood of data z_{ik} given coupling ε

$$\mathcal{L}(\{z_{ik}\}|arepsilon) \propto \prod_{i,k} rac{1}{3 + arepsilon^2 s_{ik}^2} \exp\left(-rac{3|z_{ik}|^2}{3 + arepsilon^2 s_{ik}^2}
ight)$$

• Definition of bound $\hat{\varepsilon}$ (using Jeffreys prior $p(\varepsilon)$)

$$\int_0^{\hat{\varepsilon}} d\varepsilon \ \mathcal{L}(\{z_{ik}\}|\varepsilon) \cdot p(\varepsilon) = 0.95$$

Coherence Time Approximation



Candidate Rejection

- Identified 30 signal candidates by comparing $\sum_{i,k} |z_{ik}|^2$ to $\chi^2\text{-distribution}$
- Tested candidates with resampling analysis
 - Reran analysis with 4 subsets of time and saw if z_{ik} consist with signal
 - Also with 4 subsets of stations
- All failed one, the other, or joint resampling (except two near Nyquist frequency f = 1/(2 min))