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Motivation and Introduction to Axion



Axion /Axion-like Particle

» A hypothetical pseudoscalar originally motivated by the strong CP
problem: _
Neutron electric dipole |0]107'% e.cm is smaller than 1072° e.cm.

0 = Oqcp + arg detM, My, Fine tuning!

) A&
Why is 6 so small? Why instead of ?
Solution: introducing an dynamical field with effective potential

V ~ —mafs cos(d + E)
fo
» Extra dimension predicts a wide range of axion mass.
Dimensional reduction from higher form fields:
e.g. AM(5D) — A*(4D) + ®(4D).

» Cold dark matter candidate.
Coherent wave dark matter, very different from WIMP.



Oscillating Ultralight Scalar Background

> Non-relativistic light bosons behave as coherent wave when
the occupation number is large:

D(X, t) ~ do(X) coswat; by ~ Y—; W ~ M.
» Cold dark matter candidate, wave-like when m¢ < 1 eV.

» Oscillating field value — oscillating physical observables:
Dilaton: coupling constant, mass...
Axion: EDM, chiral dispersion of photon...

» The interactions with SM are suppressed by high scale.

» Amplifications of the signals:
Tabletop experiments on earth: ppy ~ 0.4 GeV/cm?;
Astrophysical: larger pg, e.g., galaxy center or near Kerr
black hole.



Electromagnetic Resonant Detection

of Axion Dark Matter



Axion QED: Inverse Primakoff Effect

» Axion-electrodynamics modifies Maxwell equations:

V'E:p—gq;fyB'V(D
VXB:(‘)tE—I—J—qu(ExV(D—BOt(D)

> Neglecting spatial derivative, background By and axion dark
matter ¢ leads to effective current

Jet (t) ~ go~Bo(t)\/ppM cos met.

> Inverse Primakoff effect: the conversion of axion to an
oscillating EM field under background By.
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Resonant Cavity with static By [P.Sikivie 83']

» Cavity mode equation:

Z (8? + ﬂat + W%) E, = 80,0t (Bo0:®)

» Traditional setup with static Bg:
0tBo =0, w1 = me;

» Scanning the axion mass by tunning wj is difficult since
w ~ V=13 only within one order around GHz.
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e.g. ADMX, HAYSTACK



Resonant LC circuit [P.Sikivie et al 14]

» Scanning the mass me = wy,c = \/%T from 100 Hz to 100
MHz by tuning the capacitor C.

DM Radio science: axions
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. Assumptions: T=10 mK, Q=108, 3.5 year integration time,
B j(o) B(w) quantum-limited readout

e.g. DM radio, ADMX-SLIC



Resonant SRF Cavity with AC By [A.Berlin, R.T. D'Agnolo, et al 19']

n

Z <6? + ﬂat + w%) En = ngat (Boatq)) .

n
» Using an AC pump mode of By:
0tBo = iwoBo, w1 —wo = mo;

» Scanning the mass by tuning the differences between two
guasi-degenerate and transverse modes.

frequency = m, /20

» High Qin¢ > 100 due to the superconducting nature.



Quantum noise limit for resonant detection

» Standard quantum limit for power law detection:
[Chaudhuri, lrwin, Graham, Mardon 18’

resonant intrinsic noise Si,¢ + flat readout noise S, .

Current Noise in receiver circuit
espon:

> Sensitivity to Sii, and Siy is the same.

R
SNR? x range where S;,; > S,. /\
Thermal +

» Beyond quantum limit: Freavery

Squeezing S, e.g., HAYSTACK.

Increasing the sensitivity to Sgi,, e.g., white light cavity in
optomechanics [Miao, Ma, Zhao, Chen 15'].



Axion Haloscope Array With P7 Symmetry



Light Cavity  [X.Li, M.Goryachev, Y.Ma et al 20']
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with PT symmetry

v

Beam-splitting: hg(abt + 4h).
Non-degenerate parametric amplifier: 1G(bé + bfé).

v

v

PT-symmetry (3 <> &) emerges when g = G.
(G+¢&h) = —i(g—g)b—iad+---;

b = —yb—igla+ehy+---.
Coherent cancellation leads to double resonance.
Ssig is largely enhanced when g > intrinsic dissipation :
27,0256 (Q 2
SSIV\éLC(Q): Yr&x 2¢( )2< 2g 2>'
(v+7)+ 2\ +Q

v




Resonator Chain Haloscope

» Generalization to chain detector: ab I
) b
R -'- uasv // \

» PT-invariant mode: A; = 4; + ¢;. e -
A g, a3 2 o
A]_:—IOéq>+"', v. / \
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» The whole Hamiltonian is explitly P7 broken.

» Sqig is n-times enhanced:

27roz25¢(9)< g> )".
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Binary Tree Haloscope
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> Fully PT-symmetric setup with 3;; <> éij- as well as all the
modes below.

» Signal PSD has additional coherent enhancement oc 22"~2 due
to the multi probing sensors:
256(Q 4g2 \"
SBT(Q) = Vrax 5¢2( ) 5 ( . g 2> '
® (v + )P+ )\ +Q




Signal to Noise Ratio

» SNR? x range where S;,,; > S, increases with n:

e — swe sp=28T
. — §p2C0 __ gn=3sT
10t
a — e g,
o0 108
o
104
1
1074
T 2 3 4
Log(Q/y)

> In binary tree, SNR is additionally enhanced by ~ 2" due to
the uncorrelation of the noise modes:

SNR ~ 271 < g )2"“ pome? [ Qote
YNoce mi YNoce

» g/~ can be as large as Qjn.




Robustness Analysis

» PT-breakings when g # G or v, # Yc:

— n=1 WLC

_ . —n=2RC
‘i < — n=3RC
& os \\ = TN n=2BT
z —n=1WLC Z o — n=3BT
& | —n=2rc g AN

z N

z n=3RC ; \
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—n=3BT \ AN
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Log(\ ¢ - G* 1Y) Log((VeVa)Va)

» Binary tree is more robust than the resonator chain due
to the approximate P77 symmetry.

> Larger n increases the robustness due to the enhanced
general PT group.



Physics Reach
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» The large thermal noise at low frequency for LC circuit makes
the enhancement ineffective.

» Due to the high quality factor, BT based on SRF can cover
most of the QCD axion dark matter phase space potentially.



Summary and Prospect

» Multi modes of resonator can go far beyond the quantum
limit from the readout noise.

» The SRF haloscope, with a high quality factor, can probe
most of the QCD axion mass window.

» Quantum metrology can play huge rules in fundamental
physics!



Thank you



Appendix



Axion Coupling to the Standard Model

> Axion Fermion coupling: 8, ®y~y" s /fs,
non-linearization of a chiral global symmetry ~ 9, ®JL /fo.
Stellar cooling, DM wind/gradient.

. . ¢ <my
generated from anomaly/triangle loop diagram. @

> Axion Gluon coupling: ®TrG,, G*" /fo, Q=% i
1/f

[
Oscillating EDM. g

» Axion Photon coupling: ®F,, F*" /fy,
from mixing with neutral 7.
Photon conversion to axion, inverse Primakoff, birefringence.



Misalignment Production of QCD Axion

» For QCD axion, mefe ~ /\éCD predicts a thin line in

space.

» Cosmological parameter: initial misalignment angle 0; =

Axion Coupling g,y | (GeV”
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» Assuming 0; ~ 1 leads to the most natural region of QCD axion dark
matter me ~ 107 %V ~ GHz.

» Different cosmological evolutions can still provide a viable dark matter
candidate in other region, e.g., PQ symmetry broken before inflation.



Property of Axion Dark Matter

Galaxy formation: virialization gave ~ 10~3¢ velocity fluctuation,
thus kinetic energy ~ 10~%mgc? currently.
Effectively coherent wave:

V2pa

Mo

d(X,t) = cos (wq,t — Eq; X+ 50) .

» Bandwidth: dwe ~ me <v]%M> ~ 10 %me, Qo ~ 10°.

10~ %eV

» Correlation time: 7¢ >~ ms o

Power law detection is used to make integration time
longer than 7¢.

» Correlation length: Ay ~ 200 m% > Ae =1/me.
Sensor array can be used within )\,.



Higher Frequency Electromagnetic Resonant Detection

Difficult to detect mg > GHz axion dark matter due to short A..

Tttt TTTTTT T

» | Dielectric Haloscope: discontinuity of E-field leads to
coherent emission of photons from each surface, up to 50
GHz. [A.Caldwell et al 17']

> |l Plasma Haloscope: using tunable cryogenic plasma to match
axion mass, up to 100 GHz. [M.Lawson et al 19']

> |ll Topological Insulator: quasiparticle in it mixing with E field
becomes polariton whose frequency can be tuned by magnetic field,
up to THz. [D.J.E.Marsh et al 19']



Quantization of Cavity/Circuit Mode

» In Coulomb gauge, vector potential can be quantized

. 1 \Y? .
Ak(r, t) = Z <2Wk) ékuk(r')e*’“’kt + h.c..
k

where ui(r) form a complete orthonormal set for a given
boundary condition and [&k, dx/] = Okk-

» The Hamiltonian for each mode reduces to harmonic oscillator
1 - . 1
Heavity = 5 | (B2 +B2) dP% =Y con (8fa+5 ).
cavity 5 / zk: k k9k 5
> In the interaction picture, the coupling to axion is

Hint = /gdw‘DE_" Bod®% = ad(4+3"), a =~ ge,Bov/meV.

» Circuit mode can be quantized in the same way

Q2 ¢? 1
N - )
Hpc = 72C+7_WLC aa—l—2



Open quantum system

A quantum-mechanical system interacting
. . A+
with the environment:

» System mode & couples to infinite degrees of freedom v,;:
[e'¢) d +00 d
/h\/ﬁ/ w“TA —aWT]+/ 2whw Wi,
—00

» Fourier transformation: 0-dim localized mode 3 couples to
an 1-dim bulk wg (transmission line):

Jr
ihn/27,8 We—o + h.c. +/h/ dE W] e ie.

[e.e]

» Equations of motion for & and outgoing mode Wy, :

= —vrd+/2yWo_; Wo, = Wo_ — /27,4



Single Mode Resonator as Quantum Sensor

» For a resonator 4§ probing weak signal ¢: « (é + §T) ()

» Readout for outgoing mode ¥, = vy, : Vr
L Q=i 2y my
= — 0 — .
TTQ+iy T Qi a-*“od

» Vacuum fluctuation in incoming mode i, = wy_ with white
noise power spectral density S, = 1.

. 2
» Resonant signal spectrum Sy, = % So(92).

+o00 2 2 2
Scan rate:/ %dﬂ = a—.
—o0 V7 +Q 2

» Trade-off between peak sensitivity and bandwidth by tuning
Vr-



Intrinsic loss and fluctuation
» However, intrinsic loss proportional to

exists, characterized by the quality factor &}/;
Qint = W/'Y- W

» According to the fluctuation-dissipation theorem, there is
. .. . 4y, .
intrinsic noise Syt () = WSUQ whose PSD contains

both vacuum and thermal fluctuations:

1 1 7 T <w
Sy =npee=(c4—" i3 '
us = floce <2+exp(w/T)—1) { L Ts>w

}VVI’

a__

D

» Standard quantum limit for power law detection:
resonant Si,¢+ flat S,. [Chaudhuri et al 18']



Beam splitting coupling

e
| p—

2

L C=— 1L, C,—

v v

» Use an additional capacitor to couple two LC circuits:

1l 1o 1 5 1 oo 1
H—2C1¢1+2C2¢2+2L1¢1+2L2¢2+2C0(¢1 2)”.

» Conjugate momentum to ¢; involves mixing. Interaction
potential:

Bhyfarnws (41 — a1) (42 — 8)) ~ 4180 + h.c.,



Non-Degenerate Parametric amplifier coupling

Ly Ly
Y Y —YY Y

Cy Co

1L 1L

Josephson Junction -

> Use a DC voltage and a Josephson junction to couple two LC

circuits:
hl 2
vV = _2—;) cos (wot + %@2 + ¢3))
hi
— _i cos (wot + ka(a2 + 32) +r3(as + ag))
0

hl
~ ﬁ1€253[3233 + agag],



Kinetic Mixing Dark Photon Dark Matter

> An additional U(1) vector can have kinetic mixing with electromagnetic
photon field through
eFL F™™.

> |t appears generally in theory with extra-dimension with a broad mass
window predicted.

» Cold dark matter candidate behaving like coherent wave:



From Axion QED to Kinetic Mixing Dark Photon

V x B = 8:E +J — go, (E x V& — B, D)

» Axion dark matter leads to an effective current under
background Bg with |Jeg(t)| ~ 8o Bo(t)\/PDM COS M t.

1/~ = . 1 - ~ I
~1 (F;WF’“’ + F,'WF"“’>+§m,2y,A;LA"‘—ngMAu+€m3/,AHA’“.
» Similarly, in the interaction basis, the background dark photon

behaves as an effective electromagnetic current with
no_ 2 Al
Jog = Em,Y,A :



Effective current induced magnetic field

» In a space screened by electromagnetic shielding, the effective
current can induce a transverse magnetic field

» For axion:

B, ~ || VY2,

~ 10 (8 (B (V'
1011 Gev i/ \1T/\1m

» For kinetic mixing dark photon (with a factor of 1/3 due to
the isotropic wave-funtion):

By ~ |Jgpl VI3,

1/3
~ 10716T (106—6> (1%71?2) <\1/m> .

» V is the volume of the EM shielding room. Magnetic field
signal is the strongest at the corner of the room.
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