Axion Haloscope Array With \mathcal{PT} Symmetry

Yifan Chen

ITP-CAS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

based on arxiv 2103.12085

Y.C., Minyuan Jiang, Yiqiu Ma, Jing Shu, Yuting Yang,

26 August 2021, SUSY 2021, Beijing

Introduction to Axion and Ultralight Dark Matter

Electromagnetic Resonant Detection of Axion Dark Matter

(ロ)、(型)、(E)、(E)、 E) の(の)

Axion Haloscope Array With \mathcal{PT} Symmetry

Motivation and Introduction to Axion

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Axion/Axion-like Particle

A hypothetical pseudoscalar originally motivated by the strong CP problem:

Neutron electric dipole $|\bar{ heta}|10^{-16}$ e.cm is smaller than 10^{-26} e.cm.

 $\bar{\theta} = \theta_{\rm QCD} + \arg \, \det M_u M_d,$ Fine tuning!

$$V\sim -m_{\Phi}^2 f_{\Phi}^2 \cos(ar{ heta}+rac{\Phi}{f_{\Phi}}).$$

- ► Extra dimension predicts a wide range of axion mass. Dimensional reduction from higher form fields: e.g. $A^{M}(5D) \rightarrow A^{\mu}(4D) + \Phi(4D)$.
- Cold dark matter candidate.
 Coherent wave dark matter, very different from WIMP.

Oscillating Ultralight Scalar Background

Non-relativistic light bosons behave as coherent wave when the occupation number is large:

$$\Phi(\vec{x},t) \simeq \Phi_0(\vec{x}) \cos \omega_{\Phi} t; \qquad \Phi_0 \sim \frac{\sqrt{
ho_{\Phi}}}{m_{\Phi}}; \qquad \omega_{\Phi} \simeq m_{\Phi}.$$

- Cold dark matter candidate, wave-like when $m_{\Phi} < 1$ eV.
- ► Oscillating field value → oscillating physical observables: Dilaton: coupling constant, mass... Axion: EDM, chiral dispersion of photon...
- ► The interactions with SM are suppressed by high scale.
- Amplifications of the signals: Tabletop experiments on earth: ρ_{DM} ~ 0.4 GeV/cm³; Astrophysical: larger ρ_Φ, e.g., galaxy center or near Kerr black hole.

Electromagnetic Resonant Detection

of Axion Dark Matter

・ロト・日本・モト・モート ヨー うへで

Axion QED: Inverse Primakoff Effect

Axion-electrodynamics modifies Maxwell equations:

$$\nabla \cdot \mathbf{E} = \rho - g_{\Phi\gamma} \mathbf{B} \cdot \nabla \Phi$$
$$\nabla \times \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J} - g_{\Phi\gamma} \left(\mathbf{E} \times \nabla \Phi - \mathbf{B} \partial_t \Phi \right)$$

 Neglecting spatial derivative, background B₀ and axion dark matter Φ leads to effective current

$$J_{\mathrm{eff}}(t) \sim g_{\Phi\gamma} B_0(t) \sqrt{
ho_{\mathrm{DM}}} \cos m_{\Phi} t.$$

 Inverse Primakoff effect: the conversion of axion to an oscillating EM field under background B₀.

$$\Phi \xrightarrow{} \gamma \qquad \gamma \qquad \gamma \qquad \varphi \xrightarrow{} virtual \gamma \qquad B_0$$

Resonant Cavity with static B_0 [P.Sikivie 83']

Cavity mode equation:

$$\sum_{n} \left(\partial_t^2 + \frac{\omega_n}{Q_n} \partial_t + \omega_n^2 \right) \mathbf{E}_n = g_{\Phi\gamma} \partial_t \left(\mathbf{B}_0 \partial_t \Phi \right)$$

Traditional setup with static B₀:

$$\partial_t \mathbf{B}_0 = 0, \quad \omega_1 = m_{\mathbf{\Phi}};$$

 Scanning the axion mass by tunning ω₁ is difficult since ω ~ V^{-1/3}, only within one order around GHz.

э.

e.g. ADMX, HAYSTACK

Resonant LC circuit [P.Sikivie et al 14']

Scanning the mass $m_{\Phi} = \omega_{\rm LC} = \frac{1}{\sqrt{LC}}$ from 100 Hz to 100 MHz by tuning the capacitor C.

e.g. DM radio, ADMX-SLIC

Resonant SRF Cavity with AC B_0 [A.Berlin, R.T. D'Agnolo, et al 19']

$$\sum_{n} \left(\partial_t^2 + \frac{\omega_n}{Q_n} \partial_t + \omega_n^2 \right) \mathbf{E}_n = g_{\Phi\gamma} \partial_t \left(\mathbf{B}_0 \partial_t \Phi \right).$$

Using an AC pump mode of B₀:

$$\partial_t \mathbf{B}_0 = i\omega_0 \mathbf{B}_0, \quad \omega_1 - \omega_0 = m_{\Phi};$$

Scanning the mass by tuning the differences between two quasi-degenerate and transverse modes.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

• High $Q_{\rm int} > 10^{10}$ due to the superconducting nature.

Quantum noise limit for resonant detection

 Standard quantum limit for power law detection: [Chaudhuri, Irwin, Graham, Mardon 18']

resonant intrinsic noise S_{int} + flat readout noise S_r .

• Sensitivity to S_{sig} and S_{int} is the same.

 $SNR^2 \propto range$ where $S_{int} \gg S_r$.

Beyond quantum limit:

Squeezing S_r, e.g., HAYSTACK.

Increasing the sensitivity to S_{sig} , e.g., white light cavity in optomechanics [Miao, Ma, Zhao, Chen 15'].

Axion Haloscope Array With \mathcal{PT} Symmetry

White Light Cavity

- **Beam-splitting**: $\hbar g(\hat{a}\hat{b}^{\dagger} + \hat{a}^{\dagger}\hat{b})$.
- ▶ Non-degenerate parametric amplifier: $\hbar G(\hat{b}\hat{c} + \hat{b}^{\dagger}\hat{c}^{\dagger})$.
- $\mathcal{PT}\text{-symmetry } (\hat{a} \leftrightarrow \hat{c}^{\dagger}) \text{ emerges when } g = G.$ $(\dot{\hat{a}} + \dot{\hat{c}}^{\dagger}) = -i(g g)\hat{b} i\alpha\Phi + \cdots;$ $\dot{\hat{b}} = -\gamma_r\hat{b} ig(\hat{a} + \hat{c}^{\dagger}) + \cdots.$
- Coherent cancellation leads to **double resonance**. S_{sig} is largely enhanced when $g \gg$ intrinsic dissipation γ : $S_{sig}^{WLC}(\Omega) = \frac{2\gamma_r \alpha^2 S_{\Phi}(\Omega)}{(\gamma + \gamma_r)^2 + \Omega^2} \left(\frac{g^2}{\gamma^2 + \Omega^2}\right).$

Resonator Chain Haloscope

Generalization to chain detector:

•
$$\mathcal{PT}$$
-invariant mode: $\hat{A}_i \equiv \hat{a}_i + \hat{c}_i^{\dagger}$
 $\dot{\hat{A}}_1 = -i\alpha\Phi + \cdots,$
 $\dot{\hat{A}}_i = -ig\hat{A}_{i-1} + \cdots,$
 $\dot{\hat{b}} = -\gamma_r\hat{b} - ig\hat{A}_n.$

n+1-times resonance!

The whole Hamiltonian is explitely *PT* broken.

► *S*_{sig} is *n*-times enhanced:

$$S_{\rm sig}^{\rm RC}(\Omega) = \frac{2\gamma_r \alpha^2 S_{\Phi}(\Omega)}{(\gamma + \gamma_r)^2 + \Omega^2} \left(\frac{g^2}{\gamma^2 + \Omega^2}\right)^n.$$

Binary Tree Haloscope

▶ Fully \mathcal{PT} -symmetric setup with $\hat{a}_{ij} \leftrightarrow \hat{c}^{\dagger}_{ij}$ as well as all the modes below.

► Signal PSD has additional coherent enhancement ∝ 2²ⁿ⁻² due to the multi probing sensors:

(日)、

$$S_{
m sig}^{
m BT}(\Omega) = rac{\gamma_r lpha^2 S_{\Phi}(\Omega)}{2((\gamma+\gamma_r)^2 + \Omega^2)} igg(rac{4g^2}{\gamma^2 + \Omega^2}igg)^r$$

Signal to Noise Ratio

• SNR² \propto range where $S_{int} \gg S_r$ increases with *n*:

In binary tree, SNR is additionally enhanced by ~ 2ⁿ due to the uncorrelation of the noise modes:

$$\mathrm{SNR} \simeq 2^{n-1} \left(\frac{g}{\gamma n_{\mathrm{occ}}}\right)^{\frac{n}{2n+1}} \frac{\rho_{\mathrm{DM}} \alpha^2}{m_{\Phi}^3} \sqrt{\frac{Q_{\Phi} t_e}{\gamma n_{\mathrm{occ}}}}.$$

• g/γ can be as large as Q_{int} .

Robustness Analysis

• \mathcal{PT} -breakings when $g \neq G$ or $\gamma_a \neq \gamma_c$:

- Binary tree is more robust than the resonator chain due to the approximate *PT* symmetry.
- Larger n increases the robustness due to the enhanced general PT group.

- The large thermal noise at low frequency for LC circuit makes the enhancement ineffective.
- Due to the high quality factor, BT based on SRF can cover most of the QCD axion dark matter phase space potentially.

Multi modes of resonator can go far beyond the quantum limit from the readout noise.

The SRF haloscope, with a high quality factor, can probe most of the QCD axion mass window.

Quantum metrology can play huge rules in fundamental physics!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank you

Appendix

<□ > < @ > < E > < E > E のQ @

Axion Coupling to the Standard Model

• Axion Fermion coupling: $\partial_{\mu} \Phi \bar{\psi} \gamma^{\mu} \gamma_5 \psi / f_{\Phi}$, non-linearization of a chiral global symmetry $\sim \partial_\mu \Phi J^\mu_5/f_{\Phi}.$ Stellar cooling, DM wind/gradient.

• Axion Gluon coupling: $\Phi \operatorname{Tr} G_{\mu\nu} \tilde{G}^{\mu\nu} / f_{\Phi}$, generated from anomaly/triangle loop diagram. Oscillating EDM.

• Axion Photon coupling: $\Phi F_{\mu\nu} \tilde{F}^{\mu\nu} / f_{\Phi}$, from mixing with neutral π_0 . Photon conversion to axion, inverse Primakoff, birefringence.

Misalignment Production of QCD Axion

- For QCD axion, m_Φ f_Φ ~ Λ²_{QCD} predicts a thin line in the parameter space.
- Cosmological parameter: initial misalignment angle $\theta_i \equiv \Phi_i / f_{\Phi}$.

- Assuming $\theta_i \sim 1$ leads to the most natural region of QCD axion dark matter $m_{\Phi} \sim 10^{-6} \text{eV} \sim \text{GHz}$.
- Different cosmological evolutions can still provide a viable dark matter candidate in other region, e.g., PQ symmetry broken before inflation.

Property of Axion Dark Matter

Galaxy formation: virialization gave $\sim 10^{-3}c$ velocity fluctuation, thus kinetic energy $\sim 10^{-6}m_{\Phi}c^2$ currently. Effectively coherent wave:

$$\Phi(ec{x},t) = rac{\sqrt{2
ho_{\Phi}}}{m_{\Phi}} \cos\left(\omega_{\Phi}t - ec{k}_{\Phi}\cdotec{x} + \delta_0
ight).$$

• Bandwidth:
$$\delta \omega_{\Phi} \simeq m_{\Phi} \left\langle v_{\mathrm{DM}}^2 \right\rangle \simeq 10^{-6} m_{\Phi}$$
, $Q_{\Phi} \simeq 10^6$.

- Correlation time: τ_Φ ≃ ms 10⁻⁶eV/m_Φ.
 Power law detection is used to make integration time longer than τ_Φ.
- ► Correlation length: $\lambda_d \simeq 200 \text{ m} \frac{10^{-6} \text{eV}}{m_{\Phi}} \gg \lambda_c = 1/m_{\Phi}$. Sensor array can be used within λ_d .

Higher Frequency Electromagnetic Resonant Detection

Difficult to detect $m_{\Phi} \gg \text{GHz}$ axion dark matter due to short λ_c .

- I Dielectric Haloscope: discontinuity of E-field leads to coherent emission of photons from each surface, up to 50 GHz. [A.Caldwell et al 17']
- ► II Plasma Haloscope: using tunable cryogenic plasma to match axion mass, up to 100 GHz. [M.Lawson et al 19']
- III Topological Insulator: quasiparticle in it mixing with E field becomes polariton whose frequency can be tuned by magnetic field, up to THz. [D.J.E.Marsh et al 19']

Quantization of Cavity/Circuit Mode

In Coulomb gauge, vector potential can be quantized

$$ec{\mathcal{A}}_k(ec{r},t) = \sum_k \left(rac{1}{2\omega_k}
ight)^{1/2} \hat{a}_k u_k(ec{r}) e^{-i\omega_k t} + h.c..$$

where $u_k(\vec{r})$ form a complete orthonormal set for a given boundary condition and $[\hat{a}_k, \hat{a}_{k'}] = \delta_{kk'}$.

► The Hamiltonian for each mode reduces to harmonic oscillator $H_{\text{cavity}} = \frac{1}{2} \int \left(\vec{E}^2 + \vec{B}^2\right) d^3 \vec{x} = \sum_k \omega_k \left(\hat{a}_k^{\dagger} \hat{a}_k + \frac{1}{2}\right).$

In the interaction picture, the coupling to axion is

$$H_{\mathrm{int}} = \int g_{\Phi\gamma} \Phi \vec{E} \cdot \vec{B}_0 d^3 \vec{x} = lpha \Phi (\hat{a} + \hat{a}^{\dagger}), \quad lpha \simeq g_{\Phi\gamma} B_0 \sqrt{m_{\Phi} V}.$$

Circuit mode can be quantized in the same way

$$H_{\rm LC} = \frac{\hat{Q}^2}{2C} + \frac{\hat{\phi}^2}{2L} = \omega_{\rm LC} \left(\hat{a}^{\dagger} \hat{a} + \frac{1}{2} \right).$$

A quantum-mechanical system interacting with the environment:

System mode \hat{a} couples to infinite degrees of freedom \hat{w}_{ω} :

$$i\hbar\sqrt{2\gamma_r}\int_{-\infty}^{+\infty}rac{d\omega}{2\pi}[\hat{a}^{\dagger}\hat{w}_{\omega}-\hat{a}\hat{w}_{\omega}^{\dagger}]+\int_{-\infty}^{+\infty}rac{d\omega}{2\pi}\hbar\omega\hat{w}_{\omega}^{\dagger}\hat{w}_{\omega}.$$

a-

Fourier transformation: 0-dim localized mode â couples to an 1-dim bulk w_ξ (transmission line):

$$i\hbar\sqrt{2\gamma_r}\hat{a}^{\dagger}\hat{w}_{\xi=0}+\mathrm{h.c.}+i\hbar\int_{-\infty}^{+\infty}d\xi\hat{w}_{\xi}^{\dagger}\partial_{\xi}\hat{w}_{\xi}.$$

• Equations of motion for \hat{a} and outgoing mode \hat{w}_{0_+} :

$$\dot{\hat{a}} = -\gamma_r \hat{a} + \sqrt{2\gamma_r} \hat{w}_{0_-}; \qquad \hat{w}_{0_+} = \hat{w}_{0_-} - \sqrt{2\gamma_r} \hat{a}$$

Single Mode Resonator as Quantum Sensor

- For a resonator \hat{a} probing weak signal Φ : $\alpha \left(\hat{a} + \hat{a}^{\dagger} \right) \Phi$
- Readout for outgoing mode $\hat{v}_r \equiv \hat{w}_{0_+}$:

$$\hat{v}_r = \frac{\Omega - i\gamma_r}{\Omega + i\gamma_r}\hat{u}_r + \frac{\sqrt{2\gamma_r}\alpha}{\Omega + i\gamma_r}\Phi.$$
 γ_r

Ur

- Vacuum fluctuation in incoming mode û_r ≡ ŵ₀, with white noise power spectral density S_r = 1.
- Resonant signal spectrum $S_{sig} = \frac{2\gamma_r \alpha^2}{\gamma_r^2 + \Omega^2} S_{\Phi}(\Omega).$

Scan rate:
$$\int_{-\infty}^{+\infty} \frac{2\gamma_r \alpha^2}{\gamma_r^2 + \Omega^2} d\Omega = \frac{\alpha^2}{2\pi}$$

Trade-off between peak sensitivity and bandwidth by tuning γ_r.

Intrinsic loss and fluctuation

However, intrinsic loss proportional to γ exists, characterized by the quality factor Q_{int} ≡ ω/γ.

• According to the **fluctuation-dissipation theorem**, there is intrinsic noise $S_{int}(\Omega) = \frac{4\gamma\gamma_r}{(\gamma+\gamma_r)^2+\Omega^2}S_{u_a}$ whose PSD contains both vacuum and thermal fluctuations:

$$S_{u_a} = n_{\text{occ}} \equiv \left(\frac{1}{2} + \frac{1}{\exp(\omega/T) - 1}\right) \simeq \begin{cases} \frac{1}{2} & T \ll \omega; \\ \frac{T}{\omega} & T \gg \omega. \end{cases}$$

Standard quantum limit for power law detection: resonant S_{int}+ flat S_r. [Chaudhuri et al 18']

Beam splitting coupling

Use an additional capacitor to couple two LC circuits:

$$H = \frac{1}{2}C_1\dot{\phi}_1^2 + \frac{1}{2}C_2\dot{\phi}_2^2 + \frac{1}{2L_1}\phi_1^2 + \frac{1}{2L_2}\phi_2^2 + \frac{1}{2}C_0(\dot{\phi}_1 - \dot{\phi}_2)^2.$$

Conjugate momentum to \u03c6_i involves mixing. Interaction potential:

$$eta\hbar\sqrt{\omega_1\omega_2}(\hat{a}_1-\hat{a}_1^\dagger)(\hat{a}_2-\hat{a}_2^\dagger)\sim \hat{a}_1\hat{a}_2^\dagger+h.c.,$$

Non-Degenerate Parametric amplifier coupling

Use a DC voltage and a Josephson junction to couple two LC circuits:

$$V = -\frac{\hbar I_J}{2e_0} \cos(\omega_0 t + \frac{2e_0}{\hbar}(\phi_2 + \phi_3))$$

= $-\frac{\hbar I_J}{2e_0} \cos(\omega_0 t + \kappa_2(a_2 + a_2^{\dagger}) + \kappa_3(a_3 + a_3^{\dagger}))$
 $\sim \frac{\hbar I_J}{4e_0} \kappa_2 \kappa_3 [a_2 a_3 + a_2^{\dagger} a_3^{\dagger}],$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

An additional U(1) vector can have kinetic mixing with electromagnetic photon field through

 $\varepsilon F_{\mu\nu}F^{\prime\mu\nu}.$

- It appears generally in theory with extra-dimension with a broad mass window predicted.
- Cold dark matter candidate behaving like coherent wave:

From Axion QED to Kinetic Mixing Dark Photon

$$abla imes \mathbf{B} = \partial_t \mathbf{E} + \mathbf{J} - g_{\mathbf{\Phi}\gamma} \left(\mathbf{E} imes
abla \mathbf{\Phi} - \mathbf{B} \partial_t \mathbf{\Phi}
ight)$$

Axion dark matter leads to an effective current under background B₀ with |J_{eff}(t)| ~ g_{Φγ}B₀(t)√ρ_{DM} cos m_Φt.

$$-\frac{1}{4}\left(\tilde{F}_{\mu\nu}\tilde{F}^{\mu\nu}+\tilde{F}'_{\mu\nu}\tilde{F}'^{\mu\nu}\right)+\frac{1}{2}m_{\gamma'}^{2}\tilde{A}'_{\mu}\tilde{A}'^{\mu}-eJ_{\rm EM}^{\mu}\tilde{A}_{\mu}+\varepsilon m_{\gamma'}^{2}\tilde{A}_{\mu}\tilde{A}'^{\mu}.$$

• Similarly, in the interaction basis, the background dark photon behaves as an effective electromagnetic current with $J^{\mu}_{\text{eff}} = \varepsilon m^2_{\gamma'} \tilde{\mathcal{A}}^{\prime\mu}$.

Effective current induced magnetic field

- In a space screened by electromagnetic shielding, the effective current can induce a transverse magnetic field
- ► For axion:

$$\begin{array}{ll} \mathcal{B}_a &\approx & |\vec{J}_a^{\mathrm{eff}}| \ V^{1/3}, \\ &\approx & 10^{-17} \mathrm{T} \left(\frac{g_{a\gamma}}{10^{-11} \ \mathrm{GeV}^{-1}} \right) \left(\frac{\mathcal{B}_0}{1 \ \mathrm{T}} \right) \left(\frac{V^{1/3}}{1 \ \mathrm{m}} \right) \end{array}$$

For kinetic mixing dark photon (with a factor of 1/3 due to the isotropic wave-funtion):

$$\begin{array}{ll} \mathcal{B}_{dp} &\approx & |\vec{J}_{dp}^{\mathrm{eff}}| \ V^{1/3}, \\ &\approx & 10^{-16} \mathrm{T} \left(\frac{\varepsilon}{10^{-6}} \right) \left(\frac{m_{dp}}{10 \mathrm{Hz}} \right) \left(\frac{V^{1/3}}{1 \mathrm{ m}} \right) \end{array}$$

► V is the volume of the EM shielding room. Magnetic field signal is the strongest at the corner of the room.