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Strong CP problem

In QCD, the 6-term

gs
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violates CP and induces a neutron electric dipole moment _
0 =6 + arg(det(M))

d, ~5%x107°fe-cm M: quark mass matrix

However, experimental constraints show d,, < fewx107%%e - cm,
which suggests
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One good solution to the strong CP problem is the QCD axion:
gs
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* a: axion field, Nambu-Goldstone boson for spontaneously broken U(1),q, acquires

small mass because U(1),q is explicitly broken by chiral anomaly
* fq:scale for spontaneous breaking of U(1)pq
* the potential of a is minimized by

C G, GO

_bfa
thus, the effective 8 angle is dynamically driven to zero
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Apart from solving the strong CP problem, the QCD axion is also a good dark-matter
candidate, typically produced via three different mechanisms:

 Thermal production
 Misalignment production
e Decay of Axionic strings
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Apart from solving the strong CP problem, the QCD axion is also a good dark-matter
candidate, typically produced via three different mechanisms:

* Thermal production
e | Misalignment production
e Decay of Axionic strings

For misalignment production, the axion energy density can be obtained by solving its
equation of motion
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Misalignment production

General behavior:
* H > mg,,aisoverdamped, p, = —F,; = Vpq ~m?2, scales like vacuum energy
« H < mg,arapidly oscillating, virial theorem = (P,) = 0, scales like pressureless matter
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Misalignment production

General behavior:

e H>m,,aisoverdamped, ~ —P. ~ V,, ~m?, scales like vacuum ener
a a a PQ a

« H < mg,arapidly oscillating, virial theorem = (P,) = 0, scales like pressureless matter
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Misalignment production

General behavior:
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Relic abundance

D. Marsh, Phys.Rept. 643 (2016)

QCD axion relic abundance: /
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Relic abundance

D. Marsh, Phys.Rept. 643 (2016)
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relic abundance.
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Relic abundance
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Mass evolution

Take a closer look at m,(T)
( mefi T' > Aocp

mczl (T)faz ~ 9 AQCD

n
\myzrfnz( 7 ) : I'<AMAgecp 4mm n~6.68

m,(T) evolution would be modified if Aycp is different from its SM value in the early
universe.
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Mass evolution

Take a closer look at m,(T) QCD confine/deconfine
.

mif,z, T'> Agcp  at different times!

2 2
ma(T)fa ~ < Aocp\"
\myzrfnz (—31 ) : I'<MAgecp 4mm 1 ~6.68

m,(T) evolution would be modified if Aycp is different from its SM value in the early

universe. In fact
3
A
QCD
mnfn = mnOan ( > (A )
QCD

Obviously, the axion mass could receive large enhancement from having a larger Ay¢p.

How to modify Agcp?



Dynamacal QCD scale

Promote the strong coupling to a dynamical quantity S. Ipek, T. Tait,
1/ 1 ¢ PRL 122, 112001 (2019)
—_|—=—+—|G VGMV D. Croon, J. Howard, S. Ipek, T. Tait
4 ( 92, M*> H PRD 101, 055042 (2020)

* ¢:scalar, SM singlet
e M,:UV scale
 Strong coupling larger if (¢) < 0; restores to SM value g, if (¢p) = 0

With this setup, the strong coupling runs as AQ¢p: SM confinement scale
1 33 —2n ns : # of massless flavors at p
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Mass evolution

Take a closer look at m,(T) QCD confine/deconfine

mif,z, T'> Agcp  at different times!

Agcp\"
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m,(T) evolution would be modified if Aycp is different from its SM value in the early

universe. In fact
3
A
QCD
mnfn = mnOan ( ) (A )
QCD

Obviously, the axion mass could receive large enhancement from having a larger Ay¢p.

.
mczl (T)faz ~ 4

How to modify Agcp?

How about the Higgs VEV?



Huiggs VEV

The evolution of Higgs potential will also be affected

( 4
T
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During early confinement, Higgs VEV is shifted from zero, causing EWSB. (prepare explanations)
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Mass evolution

Take a closer look at m,(T) QCD confine/deconfine

mif,z, T'> Agcp  at different times!

Agcp\"
\myzrfnz (—31 ) : I'<MAgecp 4mm 1 ~6.68

m,(T) evolution would be modified if Aycp is different from its SM value in the early

universe. In fact
3
A
QCD
mnfn = mnOan ( ) (A )
QCD

Obviously, the axion mass could receive large enhancement from having a larger Ay¢p.

.
mczl (T)faz ~ 9

How to modify Aocp? Enhancement from having both

a larger Agcp and a larger v,!
How about the Higgs VEV?



General setup

A‘ T>Td A‘ T:Td

\4

$1 <0 o =0
¢

* At earlier times, ¢ in true vacuum with (¢) < 0, both Aycp, v, and thus m, enhanced

 Later, V(¢) evolves and ¢ = 0 becomes the true vacuum. ¢ transitions to the true
vacuum, m, decreases and its evolution back to normal
* The transition must occur before BBN

10



Cosmological evolution of the axion field

Standard picture

a frozen oscillation
—Iﬁ t

osc

Dynamical QCD

a frozen oscillation damping re-oscillation
T T T, > t

T \) T

/ /

* Could be triggered by When de-confinement

early confinement if occurs ~ Ty .
Agep large enough relic abundance suppressed by

* If Agcp relatively small, ¢ — ﬁ _ 9 (TGSt (Tpse) TrTose
could also be between ta 9+(T1) s (TTI) TTTTI

TE(')W and AQCD
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Cosmological evolution of the axion field

Standard picture

a frozen oscillation
—Iﬁ t

osc

Dynamical QCD

a frozen oscillation
—I—Ié t

TT Td
Still oscillating even after /

the early confinement ends

relic abundance suppressed by

S — Qg ~ \/gft(’rosc) Tosc
0y g-(T1) Ty
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Evolution of energy density: Example 1

T, T /

Axion mass suddenly

Vacuum decay occurs and QCD de-confines.

Axion mass falls below H and axion field becomes
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evolution and crosses H later,
field oscillation starts again
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Evolution of energy density: Example 2

Axion mass suddenly

increases due to early \

confinement and
oscillation starts

GeV*

During early confinement,
d.o.f in strong sector are
bound state hadrons
instead of free quarks and
gluons, thus H is modified
since

> QCD 108
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Vacuum decay occurs
and QCD de-confines.
However, axion mass
still above H, axion field
keeps oscillating

Suppression relatively
strong due to long period of
early oscillation
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Evolution of energy density: Example 3

Axion mass suddenly

increases due to early ™ ATy TiTw
confinement and 102_\ 1\_ /
oscillation starts /
10+
\'\.,..
-+ VT
<+
5 /
During early confinement, ~ 1071 .
d.o.f in strong sector are Zt
bound state hadrons (U Pa
instead of free quarks and o3 x S
gluons, thus H is modified 10‘16103-- L e

since
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¥ 73 Pr
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Vacuum decay occurs before SM EWPT, axion mass
falls below H. EWPT occurs twice in this case
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Suppression relatively weak
due to short period of early
oscillation
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Evolution of energy density: Example 4

Axion mass jumps above H after SM EWPT but
before early confinement due to large Ay¢p

During early confinement,
d.o.f in strong sector are
bound state hadrons
instead of free quarks and
gluons, thus H is modified
since
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Early confinement occurs after SM EWPT
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Parameter scan

damping + re-oscillation
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Parameter scan

damping + re-oscillation

fa =10 GeV

102 101 100 101 102 103 10%
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Enlarged parameter space
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Larger values of f, (or smaller axion mass) accessible if suppression of relic

abundance is realized by having a dynamical QCD scale. 19



Conclusion and outlook

* QCD scale can be made dynamical by coupling the gluon field strength term to
a scalar field.

* The dynamical QCD scale modifies the evolution of the temperature-
dependent axion mass which makes it possible for the axion field to start

oscillating earlier than in the standard scenario.
e Axion relic abundance suppressed since axion field spend more time being

matter-like.
* With the suppression factor, the correct DM relic abundance can be obtained
for larger PQ scale without fine-tuning the initial misalighment angle.

» |If sufficiently large mass and long period of early oscillation, axions may create
an early epoch of matter domination

» Early confinement (and de-confinement if it exists), together with the early
EWPT may lead to interesting GW signals

20



