Dark matter phenomenology in two higgs doublet model with complex scalar singlet

Juhi Dutta,

work in progress with Gudrid Moortgat-Pick and Merle Schreiber

SUSY 2021

II. Institute of Theoretical Physics, University of Hamburg, Quantum Universe

DER FORSCHUNG | DER ELEHRE | DER BILDUNG

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

August 23, 2021

1/17

August 23, 2021

Juhi Dutta, work in progress with Gudrid Mo Dark matter phenomenology in two higgs do

Motivation

• Extensions of the two higgs doublet model (THDM) with scalar singlets under SM accomodates a dark matter (DM) candidate, baryogenesis and gravitational waves.

Dorsch et.al JCAP05 (2017) 052, Drozd et.al JHEP11 (2014) 105, Dey et.al JHEP 09 (2019) 004

• We study the prospects of dark matter in the context of THDM+complex singlet.

The Model

- Consider a softly broken Z₂ symmetric THDM and conserved Z₂ symmetric singlet potential.
- The quantum numbers of the fields are

Particles	Z_2	Z'_2
Φ1	+1	+1
Φ2	-1	+1
S	+1	-1

Table: The quantum numbers of the Higgs doublets Φ_1, Φ_2 and complex singlet *S* under $Z_2 \times Z'_2$.

The Scalar Potential

 $V_{THDMCS} = V_{THDM} + V_S + V_{HS}$

$$V_{THDM} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + h.c) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + (\frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + h.c.)$$

$$V_{S} = m_{S}^{2}S^{\dagger}S + (\frac{m_{S'}^{2}}{2}S^{2} + h.c) + (\frac{\lambda_{1}''}{24}S^{4} + h.c) + \frac{\lambda_{1}''}{6}(S^{2}(S^{\dagger}S) + h.c) + \frac{\lambda_{3}''}{4}(S^{\dagger}S)^{2}$$

 $V_{HS} = [S^{\dagger}S(\lambda_{1}'\Phi_{1}^{\dagger}\Phi_{1} + \lambda_{2}'\Phi_{2}^{\dagger}\Phi_{2})] + [S^{2}(\lambda_{4}'\Phi_{1}^{\dagger}\Phi_{1} + \lambda_{5}'\Phi_{2}^{\dagger}\Phi_{2}) + h.c]$ Baum,Shah JHEP 12 (044) 2018

Juhi Dutta, work in progress with Gudrid Mo Dark matter phenomenology in two higgs do

gs dc August 23, 2021

•

4/17

• Free parameters of the model are

$$\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, m_{12}^2, \alpha, \tan\beta, \lambda_1', \lambda_2', \lambda_4', \lambda_5', \lambda_1'', \lambda_3'', m_S^2, m_{S'}^2$$

• The Higgs sector same as in the THDM, i.e., h, H, A, H^{\pm} where h, H are the two CP-even scalars, A, the pseudoscalar and charged Higgs H^{\pm} .

Higgs(es) as portal to dark matter

- The CP-even higgses couple to the DM at tree-level.
- Relevant couplings of the higgses to the DM,

$$\lambda_{hSS^*} \propto i \frac{1}{\sqrt{1 + \tan^2 \beta}} (\lambda'_1 \sin \alpha - \lambda'_2 \cos \alpha \tan \beta)$$

$$\lambda_{HSS^*} \propto -i \frac{1}{\sqrt{1 + \tan^2 \beta}} (\lambda'_1 \cos \alpha + \lambda'_2 \sin \alpha \tan \beta)$$

Here, v is the vacuum expectation value (vev) such that $v^2 = v_1^2 + v_2^2$ where v_i (i = 1, 2) refers to the vev's of the Higgs doublets Φ_i .

Phenomenological constraints

- Relic density, $\Omega h^2 \leq 0.12$.
- Spin independent (SI) DM-nucleon direct detection cross section from XENON-1T.
- Lightest CP-even Higgs mass $\simeq 125$ GeV.
- Collider limits on heavy higgses from LHC and LEP.
- Flavour physics constraints: BR(B $\rightarrow s\gamma$), BR(B $\rightarrow \mu^+\mu^-$).

Model implementation/adoption in the following codes:

- Model building: SARAH
- Spectrum Generator: SARAH-SPheno
- DM constraints: micrOMEGAs
- Higgs constraints: HiggsBounds and HiggsSignals
- Flavour constraints and tree-level unitarity constraints: SPheno

Benchmark scenario

Parameters	BP1	
m_{12}^2	-1.014×10 ⁵	
λ_1	0.233	
λ_2	0.249	
λ_3	0.389	
λ_4	-0.167	
λ_5	0.001	
$\lambda_1^{\prime\prime}$	0.1	
$\lambda_3^{\tilde{l}'}$	0.1	
λ_1^{\vee}	0.04	
$\lambda_2^{\tilde{l}}$	0.04	
$\lambda_{4}^{\overline{\prime}}$	0.1	
λ'_5	0.1	
m _h	125.07	
m_H	724.4	
m_A	724.4	
$m_{H^{\pm}}$	728.3	
aneta	5	
m_{χ}	338.9	
Ωh^2	0.059	
$\sigma_{DD}^{n} \times 10^{11} \text{ (pb)}$	7.55	

Juhi Dutta, work in progress with Gudrid Mo Dark matter phenomenology in two higgs do

August 23, 2021 9/17

Constraints from relic density

Figure: Variation of the relic density with the mass of the DM candidate, m_{χ} . Here, the mass parameter m_5^2 is varied.

Juhi Dutta, work in progress with Gudrid Mo Dark matter phenomenology in two higgs de

10 / 17

Constraints from spin independent direct detection cross-section

Figure: Variation of the direct detection cross section with the m_{χ} and compared to the limits from XENON-1T. Here, the mass parameter m_5^2 is varied.

August 23, 2021 11/17

Variation of other parameters

- Recall, the higgs couples to the DM via the portal couplings $\lambda'_1, \lambda'_2, \lambda'_4, \lambda'_5$ and tan β .
- We vary each of these parameters to determine the allowed region of parameter space.

Strongest effect on the direct-detection cross section of λ'_2 and $\tan \beta$.

Variation of direct detection cross-section with λ_2'

Figure: Variation of the direct detection cross section with m_{χ} for varying λ'_2 for two values of tan $\beta = 5,20$ (left,right).

$$\implies$$
 low λ'_2 satisfies σ^{SI} easily.

Juhi Dutta, work in progress with Gudrid Mo Dark matter phenomenology in two higgs dc m August~23,~2021 13/17

Variation of relic density with tan β

Figure: Variation of relic density with tan β (left) and m_{χ} (right) for $\lambda'_2 = 0.001$.

 \implies light DM candidate with $m_{\chi} \simeq$ 77 GeV fits both thermal relic density and σ^{SI} with varying tan β .

Juhi Dutta, work in progress with Gudrid Mo Dark matter phenomenology in two higgs d August 23, 2021 14/17

- Extensions of THDM with complex scalar singlet provides a potential dark matter candidate.
- The higgs sector consists of two CP-even scalar h,H, a pseudoscalar A, and a pair of charged higgses as in the THDM.The DM candidate interacts with the SM via the CP-even scalar higgses at tree-level.
- Stringent constraints on the parameter space from direct detection cross-section. Low λ_2' and slightly large $\tan\beta$ favoured from current data.
- Possible to obtain suitable parameter points allowed by DM constraints, with representative benchmark points in light and heavy mass regions.

- Collider phenomenology at present and future colliders.
- Model determination and distinction with other extensions.

Juhi Dutta, work in progress with Gudrid Mo Dark matter phenomenology in two higgs d August 23, 2021 16/17

Thank you!