Searches for dark matter with the ATLAS detector

Jay Chan (University of Wisconsin-Madison)

For the ATLAS collaboration

SUSY 2021, Online

August 24, 2021

IceCube

MAGIC

HESS

n Z-

SUSY2021

August 24; 2021

Jay

nsin

SC

S

202

LUX

Indirect detection

IceCube

MAGIC

HESS

XENON

LUX

Panda-X

Picasso

Direct detection

Collider CMS

Jay Chan (Wisconsin)

DM can escape detectors ⇒Measure the ISR or associated production

August 24, 2021

SUSY2021

Dark Matter searches with ATLAS

SUSY2021

August 24, 2021

Dark Matter searches with ATLAS

SUSY2021

Simplified models

Mono-jet, 13TeV, 139fb⁻¹

- The "golden" channel for WIMP searches
- Signal region requires:
 - MET > 200 GeV
 - A leading jet with $p_T > 150$ GeV, $|\eta| < 2.4$
 - Δφ(jet,MET) cuts to suppress multijet

Phys. Rev. D 103 (2021) 112006

Background modeling:

- V+jets, $t\overline{t}$, single-t modeled with 5 control regions
- Multijet modeled with jet smearing method
- Main uncertainties:
 - Pile-up jets, MET, lepton in low MET region
 - Modeling of single-t and V+jets in high MET region
- Fit to the MET (or $p_T(recoil)$) spectrum in SR+CR

Jay Chan (Wisconsin)

August 24, 2021

Phys. Rev. D 103 (2021) 112006 Mono-jet search, 13TeV, 139fb⁻¹ Axial-vector mediator 1500 300 m_{χ} [GeV] m_x [GeV] ATLAS ATLAS Expected limit $\pm 2 \sigma_{a}$ Expected limit ± 2 σ_{ever} Expected limit $\pm 1\sigma_{exp}$ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ √s = 13 TeV, 139 fb⁻¹ Expected limit $\pm 1 \sigma_{exp}$ Axial-vector mediator Pseudo-scalar mediator bserved limit (± 1σ^{PDF⊕scale} coected limit $g_q = 0.25$ Dirac fermion DM Dirac fermion DM Observed limit (± 1σ^{PDF⊕ scale} elic density. $\Omega_{c}h^{2} > 0.12$ $g_{g} = 0.25, g_{g} = 1.0$ g_a = 1.0, g_b = 1.0 Perturbativity limit Z_A Relic density, $\Omega_c h^2 > 0.12$ 1000-95% CL limits 200-95% CL limits ATLAS √s = 13 TeV. 36.1 fb Axial-vector Pseudoscalar χ Pseudoscalar mediator 500 100 X $g_q = 1$ 1000 2000 200 400 600 Z_P $m_{Z_{D}}$ [GeV] $m_{Z_{\star}}$ [GeV]

No significant deviation from SM observed

- Simplified model with an axial vector mediator excluded up to $m_{ZA} = 2.1 \text{ TeV}$
- First time having sensitivity to exclude simplified model with a pseudoscalar mediator (up to $m_{ZP} = 376 \text{ GeV}$)

Jay Chan (Wisconsin)

 χ

SUSY2021

MET+t \overline{t} , 13TeV, 139fb⁻¹

- Sensitive to the associated scalar/pseudoscalar production with a pair of t-quarks
- tt decay fully- or semi-leptonically (fully-leptonic presented)
- Signal region requires:
 - 2 leptons, pT_{I1(I2)}>25(20), m_{II}>20
 - ≥1 b-jets
 - MET significance > 12
 - Further cuts to suppress $t\overline{t}$ and DY

 $\begin{array}{c} b \\ & \psi \\ & \psi \\ & g_q \\ & g_q \\ & \phi/a \\ & g_\chi \\ & g_\chi \\ & \phi/a \\ & \chi \\ & \psi \\ & \psi \\ & \psi \\ \end{array}$

 A sophisticated variable m_{T2} used as final fit discriminant (definition in backup)

JHEP 04 (2021) 174 JHEP 04 (2021) 165

- Main backgrounds tt and ttZ modeled by control regions
- Main uncertainties include tt, ttZ modeling and jet energy resolution and scale
- No significant deviation found

MET significance = MET / resolution

<u>JHEP 04 (2021) 174</u> <u>JHEP 04 (2021) 165</u>

MET+t \overline{t} , 13TeV, 139fb⁻¹

- Exclusion limits set on simplified models with a scalar or a pseudoscalar mediator
- Excluded for scalar (pseudoscalar) mediator masses up to 250 (300) GeV assuming $g_q = g_{\chi} = 1$

SUSY2021

Summary of simplified models

- Spin-1 mediator excluded for masses up to ~3.6 TeV mainly by <u>di-jet</u> search (for the given benchmark coupling strength)
- Mono-jet and MET+tt provide strongest limits on spin-0 mediator, excluding for masses up to \sim 376 GeV

SUSY2021

Higgs portal (H→invisible)

Mono-Z (MET+Z), 13TeV, 139fb⁻¹

- Sensitive to Higgs invisible decay with ZH production and the extended Higgs sector (see slide 13)
- Focus on leptonic decay of Z
- Signal region requires:
 - 2 electrons or muons with opposite charges
 - $pT_{|1(|2)} > 30(20) \text{ GeV}, 76 < m_{\parallel} < 106 \text{ GeV}, \Delta R_{\parallel} < 1.8$
 - MET > 90 GeV, MET significance > 9
 - No b-jet
 - BDT trained with 8 variables for the Higgs invisible signal and used as the fit discriminant

ATLAS-CONF-2021-029

- Dominant backgrounds include ZZ, WZ, Z+jets and non-resonant **processes** (WW + $t\bar{t}$ + single-t + $Z \rightarrow TT$)
 - Modeled with 3 control regions and 2 free normalization factors
 - Main uncertainties include ZZ modeling and jet reconstruction
 - <u>Upper limits on $Br(H \rightarrow inv) = 18\%$ </u>

Other channels

Phys. Rev. D 103 (2021) 112006

- Mono-jet (13TeV, 139fb⁻¹) can also be interpreted as H→invisible
 - Dominated by ggF (73%)
 - <u>Upper limits on $Br(H \rightarrow inv) = 34\%$ </u>

ATLAS-CONF-2021-004

- **VBF+MET+photon (13TeV, 139fb⁻¹)** targets the $H \rightarrow invisible$ signal with the VBF production + photon
 - Significantly suppress the V+jet background by requiring an additional photon
 - Upper limits on $Br(H \rightarrow inv) = 37\%$

$H \rightarrow invisible$ combination, 13TeV, 139fb⁻¹

- Statistical combination of run-1 and run-2 results
 - Run-2 includes <u>VBF</u> and <u>ttH</u> channels (<u>other channels yet to be combined</u>)
 - <u>Run-1</u> includes VBF and VH

- Upper limit on $Br(H \rightarrow inv) = 11\%$
- Compared with constraints from direct search assuming H decays to a pair of DM particles that are either scalars or Majorana fermions

Extended Higgs sector

Mono-Z (MET+Z), 13TeV, 139fb⁻¹

- The mono-Z search can also be interpreted as the 2HDM+a signal
- $m_T(Z, MET)$ used as the fit discriminant (instead of BDT)
- Limits set on 2HDM+a in various parameter spaces (m_A, m_a, tan\beta, sin θ)
- Large improvements compared to previous results!

Mono-h (MET+h), 13TeV, 139fb⁻¹

- Sensitive to the Z'2HDM and 2HDM+a
- <u>**h**</u> \rightarrow **bb** and **h** \rightarrow $\gamma\gamma$ channels (**<u>h</u>\rightarrowbb** presented)
- Select events with MET > 150 GeV, no lepton, and an $h \rightarrow bb$ candidate reconstructed with 2 methods:
 - **Resolved regime** (MET < 500 GeV): 2 b-tagged small-R jets (R=0.4)
 - **Boosted regime** (MET > 500 GeV): 1 large-R jet with 2 associated b-tagged variable-R track-jets

- Dominant backgrounds (Z/W+jets, $t\bar{t}$) modeled with control regions
- Fit to SR+CR in m_{bb} , MET and number of b-jets (2b and \geq 3b); the additional \geq 3b regions target the bbA production

Mono-h (MET+h), 13TeV, 139fb⁻¹

- Sensitive to the Z'2HDM and 2HDM+a
- <u>**h**</u> \rightarrow **bb** and **h** \rightarrow $\gamma\gamma$ channels (**<u>h</u>\rightarrowbb** presented)
- Select events with MET > 150 GeV, no lepton, and an $h \rightarrow bb$ candidate reconstructed with 2 methods:
 - **Resolved regime** (MET < 500 GeV): 2 b-tagged small-R jets (R=0.4)
 - **Boosted regime** (MET > 500 GeV): 1 large-R jet with 2 associated b-tagged variable-R track-jets

 $t\bar{t}$) modeled with control regions

Fit to SR+CR in m_{bb} , MET and number of b-jets (2b and \geq 3b); the additional \geq 3b regions target the bbA production

Mono-h (MET+h), 13TeV, 139fb⁻¹

- Sensitive to the Z'2HDM and 2HDM+a
- <u>**h**</u> \rightarrow **bb** and **h** \rightarrow $\gamma\gamma$ channels (**<u>h</u>\rightarrowbb** presented)
- Select events with MET > 150 GeV, no lepton, and an $h \rightarrow bb$ candidate reconstructed with 2 methods:
 - **Resolved regime** (MET < 500 GeV): 2 b-tagged small-R jets (R=0.4)
 - **Boosted regime** (MET > 500 GeV): 1 large-R jet with 2 associated b-tagged variable-R track-jets

- Dominant backgrounds (Z/W+jets, $t\bar{t}$) modeled with control regions
- Fit to SR+CR in m_{bb} , MET and number of b-jets (2b and \geq 3b); the additional \geq 3b regions target the bbA production

Mono-h (MET+h), 13TeV, 139fb⁻¹

- Limits set on Z'2HDM and 2HDM+a with ggF or bbA production
- Large improvements compared to previous result!
- First time reaching sensitivity to 2HDM+a bbA!

August 24, 2021

2HDM+a combination & summary σ/σ_{theory}

- Updated with full run-2 (139 fb^{-1}) results:
 - First statistical combination: mono-h(bb) + mono-Z
 - Include <u>MET+Wt</u> channel and reinterpretation of $H^{\pm}tb$
 - Include bb-initiated production of the 2HDM+a signal (in addition to gg-initiated)
 - Perform additional parameter scans (m_A , m_a , tan β , $\sin\theta$, m_{γ}) wrt previous results (<u>JHEP 05 (2019) 142</u>)

 0^3

Thermal Relic Ω h² = 0.12 \equiv 10

Limits at 95% CL

Observed

-- Expected

E^{miss}+bb, 36.1 fb⁻¹

E^{miss}_T+Z(qq), 36.1 fb⁻¹

E^{miss}_T+h(γγ), 139 fb⁻¹

JHEP 10 (2018) 180

arXiv: 2104.13240

E^{miss}_T+Z(II), 139 fb⁻¹

JHEP 06 (2021) 145

E^{miss}_T+h(bb), 139 fb⁻¹

 E_{T}^{miss} +h(bb), E_{T}^{miss} +Z(II)

ATLAS-CONF-2021-006

-H[±]tb, 139 fb⁻¹

—Combination

—relic density

ATLAS-CONF-2021-029

EPJC 78 (2018) 18

ATLAS Preliminary

10⁷

10⁵

10⁴

10³

10²

10

 10^{-}

√s = 13 TeV, 36.1 - 139 fb

 $m_{A} = m_{H} = m_{H^{\pm}} = 600$ GeV

100 150 200 250 300 350 400 450

2HDM+a, Dirac DM

 $\sin\theta = 0.35, g_{1} = 1$

m_a = 250 GeV

Summary

- Dark Matter searches with colliders are well physics-motivated and provide great complementarity to the direct/indirect searches
- Consider a wide variety of motivated simplified and more complete models
 - Simplified models with spin-0 or spin-1 mediators, Higgs portal, extended Higgs sector, etc.
 - Provide rich phenomenology and motivate a broad range of experimental techniques
- No deviation from SM has been found so far, yet...
 - More searches are ongoing with full run-2 data (stay tuned!)
 - Look forward to big surprise in the future!! (HL-LHC Projections: <u>ATL-PHYS-PUB-2018-043</u>, <u>ATL-PHYS-PUB-2018-036</u>, <u>ATL-PHYS-PUB-2015-004</u>, <u>ATL-PHYS-PUB-2018-038</u>, <u>ATL-PHYS-PUB-2018-048</u>)

Backup slides

Mono-jet search, 13TeV, 139fb⁻¹

Phys. Rev. D 103 (2021) 112006

Source of uncertainty and effect on the total SR background estimate [%]					
Flavor tagging	0.1 - 0.9	τ -lepton identification efficiency	0.1 - 0.07		
Jet energy scale	0.17 - 1.0	Luminosity	0.01 - 0.05		
Jet energy resolution	0.15 – 1.3	Noncollision background	0.2 - 0.0		
Jet JVT efficiency	0.01 - 0.03	Multijet background	1.0 - 0.0		
Pileup reweighting	0.4 - 0.24	Diboson theory	0.01 - 0.22		
$E_{\rm T}^{\rm miss}$ resolution	0.34 - 0.04	Single-top theory	0.13 - 0.28		
$E_{\rm T}^{\rm miss}$ scale	0.5 - 0.25	$t\bar{t}$ theory	0.06 - 0.7		
Electron and photon energy resolution	0.01 - 0.08	V+jets τ -lepton definition	0.04 - 0.16		
Electron and photon energy scale	0.3 - 0.7	V+jets pure QCD corrections	0.24 – 1.1		
Electron identification efficiency	0.5 - 1.0	V+jets pure EW corrections	0.17 – 2.2		
Electron reconstruction efficiency	0.15 - 0.2	V+jets mixed QCD–EW corrections	0.02 - 0.7		
Electron isolation efficiency	0.04 - 0.19	V+jets PDF	0.01 - 0.7		
Muon identification efficiency	0.03 - 0.9	VBF EW V+jets backgrounds	0.02 - 1.1		
Muon reconstruction efficiency	0.4 - 1.5	Limited MC statistics	0.05 - 1.9		
Muon momentum scale	0.1 - 0.7				

Total background uncertainty in the Signal Region: 1.5%-4.2%

Requirement	SR	$W \rightarrow \mu \nu$	$Z \rightarrow \mu \mu$	$W \rightarrow e v$	$Z \rightarrow ee$	Тор	
Primary vertex		at least one with ≥ 2 associated tracks with $p_{\rm T} > 500 {\rm MeV}$					
Trigger		$E_{ m T}^{ m miss}$			single-electron		
$p_{\rm T}^{ m recoil}$ cut	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(\mu) > 200 \mathrm{GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(\mu\mu) > 200 \mathrm{GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(e) > 200 \mathrm{GeV}$	$ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \mathbf{p}_{\mathrm{T}}(ee) > 200 \mathrm{GeV}$	$\begin{aligned} \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \\ \mathbf{p}_{\mathrm{T}}(\mu) > \\ 200 \mathrm{GeV} \mathrm{or} \\ \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} + \\ \mathbf{p}_{\mathrm{T}}(e) > \\ 200 \mathrm{GeV} \end{aligned}$	
Jets		uŗ	to 4 with $p_{\rm T}$ >	$30 \text{GeV}, \eta < 2$	2.8		
$ \Delta \phi(\text{jets}, \mathbf{p}_{\text{T}}^{\text{recoil}}) $		$> 0.4 (> 0.6 \text{ if } 200 \text{ GeV} < E_{\text{T}}^{\text{miss}} \le 250 \text{ GeV})$					
Leading jet		$p_{\rm T} > 150 {\rm GeV}, \eta < 2.4, f_{\rm ch}/f_{\rm max} > 0.1$					
<i>b</i> -jets	any	none	any	none	any	at least one	
Electrons or muons	none	exactly one muon, with $p_{\rm T} >$ 10 GeV, 30 < $m_{\rm T} <$ 100 GeV; no electron	exactly two muons, with $p_T >$ 10 GeV, 66 < $m_{\mu\mu} <$ 116 GeV; no electron	exactly one electron, tight, with $p_T >$ 30 GeV, $ \eta \notin$ (1.37, 1.52), tight isolation, 30 < $m_T <$ 100 GeV; no muon	exactly two electrons, with $p_T >$ 30 GeV, $66 < m_{ee} <$ 116 GeV; no muon	same as for $W \rightarrow \mu v$ or same as for $W \rightarrow ev$	
τ -leptons			nc	ne	1		
Photons			nc	one			

- Main uncertainties:
 - Pile-up jets, MET, lepton in low MET
 - single-t and V+jets modeling in high MET

MET+t \overline{t} , 13TeV, 139fb⁻¹

$$m_{\mathrm{T2}}^{\ell\ell} = \min_{q_{\mathrm{T},1}+q_{\mathrm{T},2}=p_{\mathrm{T}}^{\mathrm{miss}}} \{\max[m_{\mathrm{T}}(p_{\mathrm{T},\ell_{1}},q_{\mathrm{T},1}),m_{\mathrm{T}}(p_{\mathrm{T},\ell_{2}},q_{\mathrm{T},2})]\}$$

represent the W mass from the t decays in the $t\overline{t}$ process. The value is expected to be higher in presence of additional invisible particles apart from the neutrinos from the W decays.

		$\mathrm{SR}^{\mathrm{2-body}}$
Leptons flav	our	DF SF
$p_{\mathrm{T}}(\ell_1)$ [GeV	1	> 25
$p_{\rm T}(\ell_{\rm S})$ [GeV	.]	> 20
$m_{\ell\ell}$ [GeV]]	> 20
		/ 10
$ m_{\ell\ell} - m_Z $	[GeV]	- > 20
n_{b-iets}		≥ 1
$\Delta \phi_{\text{boost}}$ [rad	1]	< 1.5
$E_{\rm T}^{\rm miss}$ signifi	cance	> 12
$m_{\scriptscriptstyle \mathrm{T2}}^{\ell\ell}$ [GeV]		> 110
	$ \operatorname{CR}_{t\bar{t}}^{2-\mathrm{body}} $	$CR_{t\bar{t}Z}$
Lepton multiplicity	2	3
Lepton flavour	DF	at least one SFOS pair
$p_{\rm T}(\ell_1) \; [{\rm GeV}]$	> 25	> 25
$p_{\rm T}(\ell_2) \; [{\rm GeV}]$	> 20	> 20
$p_{\rm T}(\ell_3) [{\rm GeV}]$	_	> 20
$p_{\rm T}(\ell_4) [{ m GeV}]$		_
$m_{\ell\ell}$	> 20	_
$ m_{\ell\ell} - m_Z $ [GeV]	-	<20 for at least one SFOS pair
n_{b-jets}	≥ 1	≥ 2 with $n_{\rm jets} \geq 3$
$\Delta \phi_{\text{boost}}$ [rad]	≥ 1.5	—
$E_{\rm T}$ significance	> 8	-
E _{T,corr} [GeV]	-	> 140
$m_{{\scriptscriptstyle \mathrm{T2}}}^{\ell\ell}$ [GeV]	[100, 120]	_
$m_{\rm T2}^{4\ell}$ [GeV]	_	_

SUSY2021

<u>JHEP 04 (2021) 174</u> <u>JHEP 04 (2021) 165</u>

MET+t \overline{t} , 13TeV, 139fb⁻¹

Signal Region	$SR-SF_{[110,120)}^{2-body}$	$\text{SR-SF}_{[120,140)}^{2-\text{body}}$	$\text{SR-SF}_{[140,160)}^{2-\text{body}}$	$\text{SR-SF}_{[160,180)}^{2-\text{body}}$	$\text{SR-SF}_{[180,220)}^{2-\text{body}}$	$\operatorname{SR-SF}_{[220,\infty)}^{2-\operatorname{body}}$
Total SM background uncertainty	19%	20%	17%	15%	15%	20%
VV theoretical uncertainties		2.4%	3.5%	4.9%	4.4%	7.1%
$t\bar{t}$ theoretical uncertainties	10%	11%	6.2%	_	1.7%	2.7%
$t\bar{t}Z$ theoretical uncertainties	1.0%	2.2%	4.2%	5.2%	5.0%	11%
$t\bar{t}-Wt$ interference	_	_	_	_	1.0%	5.7%
Other theoretical uncertainties	1.0%	1.4%	2.7%	2.5%	2.6%	1.9%
MC statistical uncertainty	5.1%	5.4%	7.0%	7.7%	9.9%	8.7%
$t\bar{t}$ normalisation	7.6%	4.8%	1.0%	_	_	_
$t\bar{t}Z$ normalisation	1.1%	3.2%	5.6%	7.2%	6.4%	4.8%
Jet energy scale	11%	6.7%	9.6%	2.0%	3.4%	2.0%
Jet energy resolution	3.6%	13%	7.0%	6.1%	3.6%	7.7%
$E_{\rm T}^{\rm miss}$ modelling	2.9%	3.6%	1.0%	4.1%	2.7%	1.2%
Lepton modelling	3.6%	1.8%	1.8%	3.8%	3.7%	6.4%
Flavour tagging	1.0%	1.0%	1.0%	2.6%	3.0%	2.4%
Pile-up reweighting and JVT		1.4%	1.0%	1.0%	1.7%	
Fake and non-prompt leptons	_	_	1.1%	_	2.8%	4.3%
Signal Region	SR-DF ^{2-body} _{[110,120)}	$SR-DF^{2-body}_{[120,140)}$	$\text{SR-DF}_{[140,160)}^{2-\text{body}}$	$SR-DF_{[160,180]}^{2-body}$	$SR-DF_{[180,220]}^{2-body}$) SR-DF ^{2-bod} _{[220,\propto}
Total SM background uncertainty	20%	20%	15%	16%	14%	21%
VV theoretical uncertainties						
$t\bar{t}$ theoretical uncertainties	1.0%	1.3%	2.6%	1.0%	2.0%	1.8%
	1.0% 9.6%	1.3% 12%	$2.6\% \\ 7.6\%$	1.0%	$2.0\% \\ 3.1\%$	1.8%
ttZ theoretical uncertainties	$ \begin{array}{c} 1.0\% \\ 9.6\% \\ 1.2\% \end{array} $	1.3% 12% 2.0%	2.6% 7.6% 5.3%	1.0% - 6.6%	2.0% 3.1% 5.7%	1.8% - 16%
$t\bar{t}Z$ theoretical uncertainties $t\bar{t}-Wt$ interference Other theoretical uncertainties	$ \begin{array}{c c} 1.0\% \\ 9.6\% \\ 1.2\% \\ - \\ 1.0\% \end{array} $	1.3% 12% 2.0% - 1.2%	2.6% 7.6% 5.3% - 2.8%	1.0% - 6.6% - 3.2%	2.0% 3.1% 5.7% - 2.7%	1.8% - 16% - 3.3%
$t\bar{t}Z$ theoretical uncertainties $t\bar{t}-Wt$ interference Other theoretical uncertainties MC statistical uncertainty	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1.3\% \\ 12\% \\ 2.0\% \\ - \\ 1.2\% \\ 5.0\%$	$\begin{array}{c} 2.6\% \\ 7.6\% \\ 5.3\% \\ - \\ 2.8\% \end{array}$	$ \begin{array}{r} 1.0\% \\ - \\ 6.6\% \\ - \\ 3.2\% \\ \hline 8.2\% \end{array} $	2.0% 3.1% 5.7% - 2.7% 7.7%	$\begin{array}{r} 1.8\% \\ - \\ 16\% \\ - \\ 3.3\% \\ \hline 6.6\% \end{array}$
$t\bar{t}$ theoretical uncertainties $t\bar{t}$ - Wt interference Other theoretical uncertainties MC statistical uncertainty $t\bar{t}$ normalisation	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 1.3\% \\ 12\% \\ 2.0\% \\ - \\ 1.2\% \\ \hline 5.0\% \\ \hline 5.6\% \end{array}$	$\begin{array}{c} 2.6\% \\ 7.6\% \\ 5.3\% \\ - \\ 2.8\% \\ \hline 6.9\% \\ \hline 1.2\% \end{array}$	1.0% 	2.0% 3.1% 5.7% 	$\begin{array}{c} 1.8\% \\ - \\ 16\% \\ - \\ 3.3\% \\ \hline 6.6\% \\ - \end{array}$
$t\bar{t}Z$ theoretical uncertainties $t\bar{t}$ - Wt interference Other theoretical uncertainties MC statistical uncertainty $t\bar{t}$ normalisation $t\bar{t}Z$ normalisation	$\begin{array}{c c} 1.0\% \\ 9.6\% \\ 1.2\% \\ - \\ 1.0\% \\ \hline \\ 4.7\% \\ \hline \\ 7.2\% \\ 1.4\% \end{array}$	$\begin{array}{c} 1.3\% \\ 12\% \\ 2.0\% \\ - \\ 1.2\% \\ \hline 5.0\% \\ \hline 5.6\% \\ 2.8\% \end{array}$	$\begin{array}{c} 2.6\% \\ 7.6\% \\ 5.3\% \\ - \\ 2.8\% \\ \hline \\ 6.9\% \\ \hline \\ 1.2\% \\ 6.9\% \end{array}$	$ \begin{array}{r} 1.0\% \\ - \\ 6.6\% \\ - \\ 3.2\% \\ \hline 8.2\% \\ \hline - \\ 9.1\% \\ \end{array} $	2.0% 3.1% 5.7% - 2.7% 7.7% - 7.3%	$ \begin{array}{r} 1.8\% \\ - \\ 16\% \\ - \\ 3.3\% \\ \hline 6.6\% \\ - \\ 7.2\% \\ \end{array} $
$t\bar{t}Z$ theoretical uncertainties $t\bar{t}-Wt$ interference Other theoretical uncertainties MC statistical uncertainty $t\bar{t}$ normalisation $t\bar{t}Z$ normalisation Jet energy scale	$\begin{array}{c c} 1.0\% \\ 9.6\% \\ 1.2\% \\ - \\ 1.0\% \\ \hline \\ 4.7\% \\ \hline \\ 7.2\% \\ 1.4\% \\ \hline \\ 8.5\% \\ \hline \end{array}$	$ \begin{array}{c} 1.3\% \\ 12\% \\ 2.0\% \\ - \\ 1.2\% \\ \hline 5.0\% \\ \hline 5.6\% \\ 2.8\% \\ \hline 10\% \\ \hline $	$\begin{array}{c} 2.6\% \\ 7.6\% \\ 5.3\% \\ - \\ 2.8\% \\ \hline 6.9\% \\ \hline 1.2\% \\ 6.9\% \\ \hline 2.5\% \end{array}$	$ \begin{array}{r} 1.0\% \\ - \\ 6.6\% \\ - \\ 3.2\% \\ \hline 8.2\% \\ \hline 9.1\% \\ \hline 6.1\% \\ \hline $	$\begin{array}{c} 2.0\% \\ 3.1\% \\ 5.7\% \\ - \\ 2.7\% \\ \hline 7.7\% \\ \hline - \\ 7.3\% \\ \hline 1.0\% \\ \end{array}$	$ \begin{array}{r} 1.8\% \\ - \\ 16\% \\ - \\ 3.3\% \\ \hline 6.6\% \\ \hline - \\ 7.2\% \\ \hline 2.6\% \\ \hline $
$t\bar{t}Z$ theoretical uncertainties $t\bar{t}-Wt$ interference Other theoretical uncertainties MC statistical uncertainty $t\bar{t}$ normalisation $t\bar{t}Z$ normalisation Jet energy scale Jet energy resolution	$\begin{array}{c c} 1.0\% \\ 9.6\% \\ 1.2\% \\ - \\ 1.0\% \\ \hline \\ 4.7\% \\ \hline \\ 7.2\% \\ 1.4\% \\ \hline \\ 8.5\% \\ 13\% \\ \end{array}$	$\begin{array}{c} 1.3\% \\ 12\% \\ 2.0\% \\ - \\ 1.2\% \\ \hline 5.0\% \\ \hline 5.6\% \\ 2.8\% \\ \hline 10\% \\ 6.6\% \end{array}$	$\begin{array}{c} 2.6\% \\ 7.6\% \\ 5.3\% \\ - \\ 2.8\% \\ \hline 6.9\% \\ \hline 1.2\% \\ 6.9\% \\ \hline 2.5\% \\ 6.2\% \end{array}$	$ \begin{array}{r} 1.0\% \\ - \\ 6.6\% \\ - \\ 3.2\% \\ \hline 8.2\% \\ \hline 9.1\% \\ \hline 6.1\% \\ 4.3\% \\ \end{array} $	$\begin{array}{c} 2.0\% \\ 3.1\% \\ 5.7\% \\ - \\ 2.7\% \\ \hline 7.7\% \\ \hline 7.3\% \\ \hline 1.0\% \\ 5.3\% \end{array}$	$\begin{array}{c} 1.8\% \\ - \\ 16\% \\ - \\ 3.3\% \\ \hline \\ 6.6\% \\ \hline \\ - \\ 7.2\% \\ \hline \\ 2.6\% \\ 2.0\% \end{array}$
$\begin{array}{l} tt \overline{z} \text{ theoretical uncertainties} \\ t \overline{t} - Wt \text{ interference} \\ \text{Other theoretical uncertainties} \\ \hline \text{MC statistical uncertainty} \\ t \overline{t} \text{ normalisation} \\ t \overline{t} Z \text{ normalisation} \\ \hline \text{Jet energy scale} \\ \text{Jet energy resolution} \\ E_{\mathrm{T}}^{\mathrm{miss}} \text{ modelling} \end{array}$	$\begin{array}{c c} 1.0\% \\ 9.6\% \\ 1.2\% \\ - \\ 1.0\% \\ \hline \\ 4.7\% \\ \hline \\ 4.7\% \\ \hline \\ 8.5\% \\ 13\% \\ 3.5\% \\ \hline \end{array}$	$\begin{array}{c} 1.3\% \\ 12\% \\ 2.0\% \\ - \\ 1.2\% \\ \hline 5.0\% \\ \hline 5.6\% \\ 2.8\% \\ \hline 10\% \\ 6.6\% \\ 6.1\% \end{array}$	$\begin{array}{c} 2.6\% \\ 7.6\% \\ 5.3\% \\ - \\ 2.8\% \\ \hline \\ 6.9\% \\ \hline \\ 1.2\% \\ 6.9\% \\ \hline \\ 2.5\% \\ 6.2\% \\ 1.0\% \\ \end{array}$	$ \begin{array}{r} 1.0\% \\ - \\ 6.6\% \\ - \\ 3.2\% \\ \hline 8.2\% \\ \hline 9.1\% \\ \hline 6.1\% \\ 4.3\% \\ 2.2\% \\ \end{array} $	$\begin{array}{c} 2.0\% \\ 3.1\% \\ 5.7\% \\ - \\ 2.7\% \\ \hline 7.7\% \\ \hline 7.3\% \\ \hline 1.0\% \\ 5.3\% \\ 2.2\% \end{array}$	$\begin{array}{c} 1.8\% \\ - \\ 16\% \\ - \\ 3.3\% \\ \hline \\ 6.6\% \\ \hline \\ - \\ 7.2\% \\ \hline \\ 2.6\% \\ 2.0\% \\ 1.0\% \\ \end{array}$
$\begin{array}{l} tt \overline{z} \text{ theoretical uncertainties} \\ t \overline{t} - Wt \text{ interference} \\ \hline \\ Other theoretical uncertainties \\ \hline \\ MC \text{ statistical uncertainty} \\ \hline \\ t \overline{t} \text{ normalisation} \\ t \overline{t} \overline{Z} \text{ normalisation} \\ \hline \\ Jet \text{ energy scale} \\ Jet \text{ energy resolution} \\ E_{\mathrm{T}}^{\mathrm{miss}} \text{ modelling} \\ Lepton \text{ modelling} \\ \end{array}$	$\begin{array}{c c} 1.0\% \\ 9.6\% \\ 1.2\% \\ - \\ 1.0\% \\ \hline \\ 4.7\% \\ \hline \\ 8.5\% \\ 1.4\% \\ \hline \\ 8.5\% \\ 13\% \\ 3.5\% \\ 1.5\% \\ \hline \end{array}$	$\begin{array}{c} 1.3\% \\ 12\% \\ 2.0\% \\ - \\ 1.2\% \\ \hline 5.0\% \\ \hline 5.6\% \\ 2.8\% \\ \hline 10\% \\ 6.6\% \\ 6.1\% \\ 1.1\% \\ \end{array}$	$\begin{array}{c} 2.6\% \\ 7.6\% \\ 5.3\% \\ - \\ 2.8\% \\ \hline \\ 6.9\% \\ \hline \\ 1.2\% \\ 6.9\% \\ \hline \\ 2.5\% \\ 6.2\% \\ 1.0\% \\ 1.6\% \\ \end{array}$	$ \begin{array}{r} 1.0\% \\ - \\ 6.6\% \\ - \\ 3.2\% \\ \hline 8.2\% \\ \hline 9.1\% \\ \hline 6.1\% \\ 4.3\% \\ 2.2\% \\ 1.3\% \\ \end{array} $	$\begin{array}{c} 2.0\% \\ 3.1\% \\ 5.7\% \\ - \\ 2.7\% \\ \hline 7.7\% \\ \hline 7.3\% \\ \hline 1.0\% \\ 5.3\% \\ 2.2\% \\ 1.3\% \\ \end{array}$	$\begin{array}{c} 1.8\% \\ - \\ 16\% \\ - \\ 3.3\% \\ \hline \\ 6.6\% \\ \hline \\ - \\ 7.2\% \\ \hline \\ 2.6\% \\ 2.0\% \\ 1.0\% \\ 1.0\% \\ \hline \end{array}$
$\begin{array}{l} tt \overline{z} \text{ theoretical uncertainties} \\ t \overline{t} - Wt \text{ interference} \\ \hline \\ Other theoretical uncertainties \\ \hline \\ MC \text{ statistical uncertainty} \\ \hline \\ t \overline{t} \text{ normalisation} \\ t \overline{t} \overline{Z} \text{ normalisation} \\ \hline \\ Jet \text{ energy scale} \\ Jet \text{ energy resolution} \\ \hline \\ E_{\mathrm{T}}^{\mathrm{miss}} \text{ modelling} \\ Lepton \text{ modelling} \\ Flavour tagging \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 1.3\% \\ 12\% \\ 2.0\% \\ - \\ 1.2\% \\ \hline 5.0\% \\ \hline 5.6\% \\ 2.8\% \\ \hline 10\% \\ 6.6\% \\ 6.1\% \\ 1.1\% \\ 1.0\% \\ \hline \end{array}$	$\begin{array}{c} 2.6\% \\ 7.6\% \\ 5.3\% \\ - \\ 2.8\% \\ \hline \\ 6.9\% \\ \hline \\ 1.2\% \\ 6.9\% \\ \hline \\ 2.5\% \\ 6.2\% \\ 1.0\% \\ 1.6\% \\ 1.3\% \\ \end{array}$	$ \begin{array}{r} 1.0\% \\ - \\ 6.6\% \\ - \\ 3.2\% \\ \hline 8.2\% \\ \hline 9.1\% \\ \hline 6.1\% \\ 4.3\% \\ 2.2\% \\ 1.3\% \\ 2.0\% \\ \end{array} $	$\begin{array}{c} 2.0\% \\ 3.1\% \\ 5.7\% \\ - \\ 2.7\% \\ \hline \\ \hline \\ 7.7\% \\ \hline \\ \hline \\ 7.3\% \\ \hline \\ 1.0\% \\ 5.3\% \\ 2.2\% \\ 1.3\% \\ 1.0\% \\ \hline \end{array}$	$\begin{array}{c} 1.8\% \\ - \\ 16\% \\ - \\ 3.3\% \\ \hline \\ 6.6\% \\ \hline \\ 7.2\% \\ \hline \\ 2.6\% \\ 2.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ \hline \end{array}$
$\begin{array}{c} tt \overline{z} \text{ theoretical uncertainties} \\ t \overline{t} - Wt \text{ interference} \\ \hline \\ Other theoretical uncertainties \\ \hline \\ MC \text{ statistical uncertainty} \\ \hline \\ t \overline{t} \text{ normalisation} \\ t \overline{t} \overline{Z} \text{ normalisation} \\ \hline \\ J et \text{ energy scale} \\ J et \text{ energy resolution} \\ \hline \\ E_{\mathrm{T}}^{\mathrm{miss}} \text{ modelling} \\ Lepton \text{ modelling} \\ Flavour tagging \\ \hline \\ Pile-up \text{ reweighting and JVT} \\ \end{array}$	$ \begin{vmatrix} 1.0\% \\ 9.6\% \\ 1.2\% \\ - \\ 1.0\% \\ \end{vmatrix} $ $ \begin{vmatrix} 4.7\% \\ 1.4\% \\ 1.4\% \\ 1.3\% \\ 3.5\% \\ 1.5\% \\ 1.0\% \\ - \end{vmatrix} $	$\begin{array}{c} 1.3\% \\ 12\% \\ 2.0\% \\ - \\ 1.2\% \\ \hline 5.0\% \\ \hline 5.6\% \\ 2.8\% \\ \hline 10\% \\ 6.6\% \\ 6.1\% \\ 1.1\% \\ 1.0\% \\ 1.6\% \\ \hline \end{array}$	$\begin{array}{c} 2.6\% \\ 7.6\% \\ 5.3\% \\ - \\ 2.8\% \\ \hline \\ \hline \\ 0.9\% \\ \hline \\ 1.2\% \\ 6.9\% \\ \hline \\ 2.5\% \\ 6.2\% \\ 1.0\% \\ 1.6\% \\ 1.3\% \\ 1.0\% \\ \hline \end{array}$	$ \begin{array}{c} 1.0\% \\ - \\ 6.6\% \\ - \\ 3.2\% \\ \hline 8.2\% \\ \hline 9.1\% \\ \hline 6.1\% \\ 4.3\% \\ 2.2\% \\ 1.3\% \\ 2.0\% \\ - \\ \hline - \\ \hline - \\ - \\ - \\ \hline - \\ - \\ - \\ \hline - \\ - \\ \hline - \\ - \\ - \\ \hline - \\ - \\ \hline - \\ - \\ \hline - \\ - \\ - \\ - \\ - \\ \hline - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	$\begin{array}{c} 2.0\% \\ 3.1\% \\ 5.7\% \\ - \\ 2.7\% \\ \hline \\ \hline \\ 7.7\% \\ \hline \\ \hline \\ 7.3\% \\ \hline \\ 1.0\% \\ 5.3\% \\ 2.2\% \\ 1.3\% \\ 1.0\% \\ 1.0\% \\ \hline \end{array}$	$\begin{array}{c} 1.8\% \\ - \\ 16\% \\ - \\ 3.3\% \\ \hline \\ 6.6\% \\ \hline \\ 7.2\% \\ \hline \\ 2.6\% \\ 2.0\% \\ 1.0\% \\ 1.0\% \\ 1.0\% \\ - \\ \end{array}$

Main uncertainties include tt, ttZ modeling and jet energy resolution and scale

Jay Chan (Wisconsin)

August 24, 2021

Summary of simplified models

ATL-PHYS-PUB-2021-006

Summary of simplified models

23

SUSY2021

Mono-Z (MET+Z), 13TeV, 139fb⁻¹

	SR	$e\mu$ CR	3ℓ CR	4ℓ CR
Observed events	6382	891	11415	314
Expected yields after fit	6385 ± 80	894 ± 29	11410 ± 110	295 ± 11
$\overline{ZH \to \ell\ell + \mathrm{inv}}$	-4 ± 110	-	-	-
$ZZ ightarrow \ell \ell u u$	2669 ± 110	-	443.4 ± 7.5	-
WZ	1624 ± 28	11.59 ± 0.23	10646 ± 110	-
Z + jets	1110 ± 100	0.802 ± 0.018	237.6 ± 4.0	-
Non-resonant	876 ± 39	878 ± 29	-	-
$ZZ \to \ell\ell\ell\ell$	85.2 ± 5.5	-	-	295 ± 11
ttV	12.5 ± 1.1	1.769 ± 0.036	48.98 ± 0.82	-
Triboson	12.2 ± 1.4	2.886 ± 0.076	35.65 ± 0.60	

Uncertainty source	$\Delta \mathcal{B}$ [%]
Statistical uncertainty	5.1
Systematic uncertainties	7.1
Theory uncertainties	4.9
Signal modelling	0.4
ZZ modelling	4.4
Non- ZZ background modelling	2.0
Experimental uncertainties (excl. MC stat.)	4.2
Luminosity, pile-up	1.5
Jets, $E_{\rm T}^{\rm miss}$	3.5
Flavour tagging	0.4
Electrons, muons	1.2
MC statistical uncertainty	1.7
Total uncertainty	8.8

• Main uncertainties include ZZ modeling and jet reconstruction

ATLAS-CONF-2021-029

Variable	SR	$W^{\gamma}_{\mu\nu}$ CR	$W^{\gamma}_{e\nu}$ CR	$Z^{\gamma}_{ m Rev.Cen.}$ CR	Fake $-e$ CR				
(j_1) [GeV]		> 60							
(j_2) [GeV]	> 50								
		2,3							
$N_{\rm b-iet}$		< 2							
$\Delta \phi_{ii}$		< 2.5 [2.0]							
$ \Delta \eta_{ii} $			> 3	3.0					
$\eta(j_1) \times \eta(j_2)$			<	0					
C_3			< (0.7					
<i>m</i> _{ii} []			> 0	.25					
[GeV]	> 150	_	> 80	> 150	< 80				
$E_{\rm T}^{\rm miss, lep-rm}$ [GeV]	_	> 150	> 150	_	> 150				
$E_{\rm T}^{\rm jets, no-jvt}$ [GeV]			> 1	30					
$\Delta \phi(j_i, E_{\rm T}^{\rm miss, lep-rm})$			>]	1.0					
N_{γ}			1	-					
(γ) [GeV]		> 15, < 110	0 > 15, < r	$\max(110, 0.733 \times$	$(m_{\mathrm{T}})]$				
C_{γ}	> 0.4	> 0.4	> 0.4	< 0.4	> 0.4				
$\Delta \phi(\gamma, E_{\rm T}^{\rm miss, lep-rm})$	> 1.8 [-]								
N_{ℓ}	0	$1 \ \mu$	$1 \ e$	0	1 e				
(ℓ) [GeV]		•	>	30					

Source	1σ Uncertainty on \mathcal{B}_{inv}
Data stats.	0.106
$V\gamma$ + jets theory	0.056
MC stats.	0.045
Jet Scale and Resolution	0.045
Photon	0.032
$e \rightarrow \gamma$, jet $\rightarrow e, \gamma$ Bkg.	0.026
Pileup	0.025
$W\gamma + \text{jets}/Z\gamma + \text{jets Norm.}$	0.021
	0.012
Signal theory	0.004
Lepton	0.002
Total	0.148

Region definition and categorization

- Signal region (SR)
 - $n_{jet} = 2 \text{ or } 3$
 - Δη_{jj} > 3
 - m_{jj} > 250 GeV
 - $n_{\gamma} = 1$
 - MET > 150 GeV
 - Lepton veto
 - Detailed selections in backups

- Control regions (included in the statistical fitting)
 - $W(\rightarrow e\nu)\gamma$ +jets (require 1e)
 - W($\rightarrow \mu \nu$) γ +jets (require 1 μ)
- Validation regions (not included in the statistical fitting)
 - $Z(\rightarrow ll)\gamma$ +jets (require 2*l*)
 - Fake-e (require 1 loose-e)

VBF

+MET

+photon

VBF+MET+photon region definition

Signal region

Lepton selections for signal region and control regions

		•		
Cut	inv.	$W(\rightarrow ev)\gamma$ + jets	$W(\rightarrow \mu \nu)\gamma$ + jets	$Z(\rightarrow \ell\ell)\gamma$ + jets
Lepton Flavours	0	e^-/e^+	μ^-/μ^+	$e^{-}, e^{+}/\mu^{-}, \mu^{+}$
"Veto" muons and electrons	0	1	1	2
"Signal" muons and electrons	0	1	1	2
$p_{\mathrm{T}}(\ell_1)$	-	>30 GeV	>30 GeV	>30 GeV
$p_{\mathrm{T}}(\ell_2)$	_		-	>4.5 GeV
$ M(\ell\ell) - M_Z $	_	—	-	<25 GeV
$E_{\rm T}^{\rm miss}$ (with leptons)	> 80 GeV		_	< 70 GeV

VBF+MET+photon background estimation

- Main backgrounds V+jets+photon modeled with MC
- V+jets (jet faking photon) estimated with ABCD method
- Electron faking photon (Wev) estimated through Zee process in data
- Photon+jets estimated by jet smearing to increase statistics

Fake photons from electrons

- Estimating $e \rightarrow \gamma$ fake rate $(F_{e \rightarrow \gamma})$ in $Z \rightarrow ee$ events as function of $|\eta|$ and p_{τ}
- Using $\mathsf{F}_{\mathsf{e} \to \gamma}$ to rescale yields in a control sample of probe electrons
- Systematic uncertainties e.g. from:
 - background subtraction
 - energy scale of fake photon

VBF +MET +photon

Fake photons from jets

 Estimated with ABCD method with inverted photon ID and isolation requirements

$$N^A_{sig} = N^A - N^A_{bkg} = N^A - N^B \frac{M^A}{M^B}$$

- Dominant systematic uncertainties:
 - Photon ID
 - CR statistics

Ref: Andrea's slides

VBF+MET+photon DNN

Alternative approach to the Cutbased analysis (m_{jj} fit)

Training sample pre-selections (looser than SR/VR):

Ref: Luigi's <u>slides</u>

VBF

+MET

+photon

VBF+MET+photon DNN

Feature chosen via a backward elimination process:

- Each feature is varied up and down by 10% and the average variation of DNN output interpreted as feature importance
- The least important feature is removed and the model retrained with the new set of features

November 18, 2020

arXiv:2104.13240 ATLAS-CONF-2021-006

Mono-h (MET+h), 13TeV, 139fb⁻¹

Resolved	solved Merged			
Pri	imary $E_{\rm T}^{\rm miss}$ trigger			
Dat	a quality selections			
	$E_{\rm T}^{\rm miss}$ > 150 GeV			
Lepton vet	o & extended τ -lepton veto			
$\Delta \phi($	$jet_{1,2,3}, E_{\rm T}^{\rm miss}) > 20^{\circ}$			
$E_{\rm T}^{\rm miss}$ < 500 GeV	$E_{\rm T}^{\rm miss}$ > 500 GeV			
At least 2 small- <i>R</i> jets	At least 1 large-R jet			
At least 2 <i>b</i> -tagged small- <i>R</i> jets	At least 2 <i>b</i> -tagged associated variable- <i>R</i> track jets			
$p_{\mathrm{T}h} > 100 \mathrm{GeV}$ if $E_{\mathrm{T}}^{\mathrm{miss}} < 350 \mathrm{GeV}$				
$p_{\mathrm{T}h} > 300 \mathrm{GeV}$ if $E_{\mathrm{T}}^{\mathrm{miss}} > 350 \mathrm{GeV}$				
$m_{\rm T}^{b,{\rm min}} > 170{\rm GeV}$	_			
$m_{\rm T}^{b,{\rm max}} > 200{\rm GeV}$				
<i>S</i> > 12				
$N_{\text{small-}R \text{ jets}} \le 4 \text{ if } 2 b \text{-tag}$				
$N_{\text{small-}R \text{ jets}} \leq 5 \text{ if } \geq 3 b \text{-tag}$				
$50 \mathrm{GeV} < m_h < 280 \mathrm{GeV}$	$50 {\rm GeV} < m_h < 270 {\rm GeV}$			

	0 lepton	1 muon	2 leptons		
Aim	Signal regions	$t\bar{t}$ and W+HF control region	Z+HF control region		
Fitted observable	m_h distribution	Muon charge (2 <i>b</i> -tag) Yields (\geq 3 <i>b</i> -tag)	Yields		
<i>b</i> -tag multiplicities	resolved (small- <i>R</i> jets): $2, \ge 3$ merged (variable- <i>R</i> track jets):				
	2 (inside Higgs candidate), \geq 3 (2 inside Higgs candidate)				
$E_{\rm T}^{\rm miss}$ proxy	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T, \ lep. \ invis.}^{\rm miss}$	E ^{miss} T, lep. invis.		
	resolved: [150, 200], [200, 350] and [350, 500] GeV				
Bins in $E_{\rm T}^{\rm miss}$ proxy	2 <i>b</i> -tag merged signal regions (0 lepton): [500, 750] and [750, ∞) GeV Other merged regions: [500, ∞) GeV				

	Fractional squared uncertainty on μ			
Source of uncertainty	Z'-2HDN	A signals, (m'_Z, m'_Z)	(m_A) [GeV]	
	(800, 500)	(1400, 1000)	(2800, 300)	
Z+HF normalisation	0.11	0.03	< 0.01	
W+HF normalisation	0.02	0.01	< 0.01	
$t\bar{t}$ normalisation	0.16	0.04	< 0.01	
Z modelling uncertainties	0.02	0.07	< 0.01	
W modelling uncertainties	< 0.01	0.01	< 0.01	
$t\bar{t}$ modelling uncertainties	0.13	0.05	< 0.01	
Single <i>t</i> modelling uncertainties	0.18	0.02	< 0.01	
Other modelling uncertainties	0.05	0.01	< 0.01	
Jets	0.20	0.06	0.01	
<i>b</i> -tagging	0.01	0.01	0.04	
$E_{\rm T}^{\rm miss}$ soft term and pile-up	< 0.01	< 0.01	< 0.01	
Other experimental systematic uncertainties	0.01	< 0.01	< 0.01	
Signal systematic uncertainties	< 0.01	< 0.01	< 0.01	
MC sample statistics	0.08	0.07	0.11	
Statistical uncertainty	0.27	0.61	0.79	
Total systematic uncertainties	0.73	0.39	0.21	

 Main uncertainties include modeling of Z+jets and jet energy resolution

2HDM+a combination & summary

- Target the DM model: <u>2HDM+a</u> (<u>arXiv:1701.07427</u>)
 - Based on the type-II Two-Higgs-Doublet Model with an additional pseudoscalar mediating the interaction between SM and fermionic DM
 - The simplest gauge-invariant and UV-complete extension to the simplified model with a pseudoscalar mediator
 - Considered as a benchmark by LHC DM Working Group (arXiv:1810.09420)
 - Rich in phenomenology and offers various signatures and complementary exclusion from different experiments
- Previous results summarized in the 36 fb⁻¹ DM summary paper
- New results with 139 fb⁻¹:
 - First **statistical combination**: MET+h(bb) + MET+Z(II)
 - Include MET+Wt channel and reinterpretation of H[±]tb
 - Include **bb-initiated** production of the 2HDM+a signal (apart from gg-initiated)
 - Perform 4 additional parameter scans

SUSY2021

2HDM+a combination & summary

Parameters	Description
m _h , m _H , m _{H±} , m _A , m _a	Masses of the Higgs bosons h, H, H [±] , A, and the additional pseudoscalar mediator a
m _x	Mass of the Dark Matter particle $\boldsymbol{\chi}$
g _x	Yukawa coupling constant between a and $\boldsymbol{\chi}$
ν	Electroweak VEV
tanβ	Ratio of the VEVs of the two Higgs doublets
α, θ	Mixing angles between CP-even and CP-odd eigenstates
$\lambda_{p1}, \lambda_{p1}, \lambda_{3}$	Three quartic couplings between the scalar doublets and the mediator

ATLAS-CONF-2021-036

- The 2HDM+a is fully defined by 14 parameters
- Reduced to 5 free parameters with experimental constraints and phenomenological considerations: \underline{mA} , \underline{m}_{a} , \underline{m}_{x} , θ , $\underline{tan\beta}$

2HDM+a combination & summary

Index	Description
Scan 1	2D scan in $(m_a - m_A)$ with $\tan\beta = 1$, $m_\chi = 10$ GeV and (a.) $\sin\theta = 0.35$ (b.) $\sin\theta = 0.7$
Scan 2	2D scan in (m _a -tan β) with m _A =0.6 TeV, m _x =10 GeV and (a.) sin θ =0.35 (b.) sin θ =0.7
Scan 3	1D scan in sin0 with tan β =1 and (a.) m _A =0.6 TeV, m _a =200 GeV (low-mass scan) (b.) m _A =1 TeV, m _a =350 GeV (high-mass scan)
Scan 4	1D scan in m_{χ} with m_A =0.6 TeV, m_a =250 GeV, tan β =1, sin θ =0.35
Scan 5	2D scan in (m _A -tanβ) with m _a =250 GeV, m _x =10 GeV and (a.) sinθ=0.35 (b.) sinθ=0.7

• 5 parameter scans recommended by LHC DM WG + 4 additional scans July 21, 2021

Α

(b)

a

(d)

a

(f)

Z

H

Z

2HDM+a combination & summary

2HDM+a combination & summary

30

2HDM+a combination & summary

Mono-jet projection

MET+heavy-flavor projection

August 24, 2021

Di-jet projection

 The projection is performed on the excited quarks model instead of simplified models

ATL-PHYS-PUB-2015-004