The XXVIII International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2021)

Contribution ID: 23

Type: not specified

Possible indications for new Higgs bosons in the reach of the LHC: N2HDM and NMSSM interpretations

Monday 23 August 2021 13:30 (20 minutes)

In several searches for additional Higgs bosons at the LHC, in particular the CMS search in the $pp \rightarrow \phi \rightarrow t\bar{t}$ channel and the ATLAS search in the $pp \rightarrow \phi \rightarrow \tau^+ \tau^$ channel, a local excess at the level of 3σ or above has been observed. at a mass scale of $m_{\phi} \approx 400 \text{GeV.}$ We investigate to what extent a possible signal in those channels could be accommodated in the Next-to-Two-Higgs-Doublet Model (N2HDM) or the Next-to Minimal Supersymmetric Standard Model (NMSSM). In a second step we furthermore analyse whether such a model could be compatible with both a signal at- $\approx 400 {\rm GeV}$ and at $\approx 96 {\rm GeV},$ where the latter possibility is motivated by observed excesses in searches for the $b\bar{b}$ final state at LEP and the di-photon final state at CMS. The analysis for the N2HDM reveals that the observed excesses at $\approx 400 {\rm GeV}$ in the $pp \rightarrow \phi \rightarrow t\bar{t}$ and $pp \rightarrow \phi \rightarrow \tau^+ \tau^-$ channels point towards different regions of the parameter space, while one such excess and an additional Higgs boson at ≈ 96 GeV could simultaneously be accommodated. In the context of the NMSSM· an experimental confirmation of a signal in the $t\bar{t}$ final state would favour \cdot the alignment-without-decoupling limit of the model, where the Higgs boson at ≈ 125 GeV could be essentially indistinguishable from the Higgs boson of the SM.. In contrast, a signal in the $\tau^+\tau^-$ channel would be correlated with significant deviations of the properties of the Higgs boson at $\approx 125 {\rm GeV}^{.}$ from the ones of a SM Higgs boson that could be detected with high-precision coupling measurements.

Authors: GROHSJEAN, Alexander Josef (Deutsches Elektronen-Synchrotron (DE)); BIEKOETTER, Thomas

(Deutsches Elektronen-Synchrotron DESY); SCHWANENBERGER, Christian (Deutsches Elektronen-Synchrotron (DE)); WEIGLEIN, Georg Ralf (Deutsches Elektronen-Synchrotron (DE)); HEINEMEYER, Sven (CSIC (Madrid, ES))

Presenter: BIEKOETTER, Thomas (Deutsches Elektronen-Synchrotron DESY)

Session Classification: Searches for the BSM Physics at the LHC and Future Hadronic Colliders

Track Classification: Searches for the BSM Physics at the LHC and Future Hadronic Colliders