Search for a light Z' at LHC in a neutrinophilic U(1) model

Anjan Kumar Barik

SUSY 2021

25.08.2021

1

¹Search for a light Z' at LHC in a neutrinophilic U(1) model,W. Abdallah,A.K.Barik, S.K.Rai and T.Samui, arXiv:2106:01362

Anjan Kumar Barik

ght Z′ in a neutrinophilic U(1) model

The Model

• Extra U(1) Gauge Boson Added

Fields	<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	$U(1)_X$	Spin
H_1	1	2	-1/2	0	0
H ₂	1	2	-1/2	$-q_{x}$	0
S	1	1	0	$2q_{x}$	0
NĽ	1	1	0	q_{x}	1/2
N_R^i	1	1	0	q_{x}	1/2

•

Lagrangian

$$\mathcal{L} \supset (D_{\mu}H_{1})^{\dagger} D_{\mu}H_{1} + (D_{\mu}H_{2})^{\dagger} D_{\mu}H_{2} + (D_{\mu}S)^{\dagger} D_{\mu}S - \mu_{1}H_{1}^{\dagger}H_{1} - \mu_{2}H_{2}^{\dagger}H_{2} - \mu_{s}S^{\dagger}S + i \overline{N}_{L}\gamma^{\mu}D_{\mu}N_{L} + i \overline{N}_{R}\gamma^{\mu}D_{\mu}N_{R} - \hat{M}_{N} \left(\overline{N}_{L}N_{R} + \overline{N}_{R}N_{L}\right) - \left\{Y_{\nu}\overline{I}_{L}H_{2}N_{R} + h.c.\right\} - \lambda_{1} \left(H_{1}^{\dagger}H_{1}\right)^{2} - \lambda_{2} \left(H_{2}^{\dagger}H_{2}\right)^{2} - \lambda_{12}H_{1}^{\dagger}H_{1}H_{2}^{\dagger}H_{2} - \lambda_{12}' \left|H_{1}^{\dagger}H_{2}\right|^{2} - \lambda_{s} \left(S^{\dagger}S\right)^{2} - \lambda_{1s}H_{1}^{\dagger}H_{1}S^{\dagger}S - \lambda_{2s}H_{2}^{\dagger}H_{2}S^{\dagger}S - \left\{Y_{R}S\overline{N}_{R}N_{R}^{C} + Y_{L}S\overline{N}_{L}N_{L}^{C} + h.c.\right\} + \left\{\mu_{12}H_{1}^{\dagger}H_{2} + h.c.\right\}$$

The last term in the Lagrangian breaks the $U(1)_X$ symmetry explicitly. This soft-breaking term is needed to give mass to the pseudo-scalar after the symmetry breaking. VEV VEVs

$$H_{1} = \begin{pmatrix} \frac{v_{1} + \rho_{1} + i\eta_{1}}{\sqrt{2}} \\ \phi_{1}^{-} \end{pmatrix}, H_{2} = \begin{pmatrix} \frac{v_{2} + \rho_{2} + i\eta_{2}}{\sqrt{2}} \\ \phi_{2}^{-} \end{pmatrix}, S = \frac{v_{s} + \rho_{s} + i\eta_{s}}{\sqrt{2}}$$

$$v^2 = v_1^2 + v_2^2$$
, $\tan \beta = \frac{v_2}{v_1}$

Tadpole Equations.

$$\begin{split} \mu_1 &- \mu_{12} \frac{v_2}{v_1} + \lambda_1 v_1^2 + \frac{\lambda_{12} + \lambda'_{12}}{2} v_2^2 + \frac{\lambda_{1s}}{2} v_s^2 = 0 \,, \\ \mu_2 &- \mu_{12} \frac{v_1}{v_2} + \lambda_2 v_2^2 + \frac{\lambda_{12} + \lambda'_{12}}{2} v_1^2 + \frac{\lambda_{2s}}{2} v_s^2 = 0 \,, \\ \mu_s &+ \frac{\lambda_{1s}}{2} v_1^2 + \frac{\lambda_{2s}}{2} v_2^2 + \lambda_s v_s^2 = 0 \,. \end{split}$$

Light Z′ in a neutrinophilic U(1) model

Scalar Masses

• Pseudo-scalar mass
$$m_A = \sqrt{\frac{\mu_{12}}{v_1 v_2} v^2}$$

• Charged scalar mass $m_{H^{\pm}} = \sqrt{\left(\frac{\mu_{12}}{v_1 v_2} - \frac{\lambda'_{12}}{2}\right) v^2}$

The CP-even scalar mass matrix in the $(\rho_1 \ \rho_2 \ \rho_s)^T$ basis is given by

$$M_{H}^{2} = \begin{pmatrix} 2\lambda_{1}v_{1}^{2} + \mu_{12}\frac{v_{2}}{v_{1}} & (\lambda_{12} + \lambda_{12}')v_{1}v_{2} - \mu_{12} & \lambda_{1s}v_{1}v_{s} \\ (\lambda_{12} + \lambda_{12}')v_{1}v_{2} - \mu_{12} & 2\lambda_{2}v_{2}^{2} + \mu_{12}\frac{v_{1}}{v_{2}} & \lambda_{2s}v_{2}v_{s} \\ \lambda_{1s}v_{1}v_{s} & \lambda_{2s}v_{2}v_{s} & 2\lambda_{s}v_{s}^{2} \end{pmatrix}$$

Gauge Boson Masses

$$\mathcal{L} \supset -\frac{1}{4} G^{a,\mu\nu} G^{a}_{\mu\nu} - \frac{1}{4} W^{b,\mu\nu} W^{b}_{\mu\nu} - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} - \frac{1}{4} C^{\mu\nu} C_{\mu\nu} + \frac{1}{2} \tilde{g} B^{\mu\nu} C_{\mu\nu}$$

 ${ ilde g}$ is the kinetic mixing parameter. The mixing angle of Z and Z'

$$\tan 2\theta' = \frac{2g_z v^2 \left(g'_x + 2g_x \sin^2 \beta\right)}{{g'_x}^2 v^2 + 4g_x g'_x v_2^2 + 4g_x^2 (v_2^2 + 4v_s^2) - g_z^2 v^2}$$

The mass of the physical gauge bosons are

$$\begin{split} M_{Z',Z}^2 &= \frac{1}{8} \Big[g_z^2 v^2 + g_x'^2 v^2 + 4 g_x g_x' v_2^2 + 4 g_x^2 (v_2^2 + 4 v_s^2) \Big] \\ &\pm \frac{1}{8} \sqrt{ \left(g_x'^2 v^2 + 4 g_x g_x' v_2^2 + 4 g_x^2 (v_2^2 + 4 v_s^2) - g_z^2 v^2 \right)^2 + 4 g_z^2 \left(g_x' v^2 + 2 g_x v_2^2 \right)^2} \end{split}$$

Redefined Parameters

$$g_{
m x}^{\,\prime} = rac{g_1 ilde{g}}{\sqrt{1- ilde{g}^2}}\,, \qquad g_{
m x} o g_{
m x} \sqrt{1- ilde{g}^2}\,.$$

Anjan Kumar Barik

ight Z′ in a neutrinophilic U(1) mode_

Fermion Masses

The Lagrangian responsible for the masses and the mixing of leptons and quarks is essentially the Yukawa terms.

$$\mathcal{L} \supset -Y_l^{ij} \bar{l}_{Li} H_1^{\mathcal{C}} e_{Rj} - Y_d^{ij} \bar{q}_{Li} H_1^{\mathcal{C}} d_{Rj} - Y_u^{ij} \bar{q}_{Li} H_1 u_{Rj} + \mathrm{h.c.}$$

Couplings for	$h_i - f - \overline{f}$	$A-f-\overline{f}$	$H^{\pm} - f - \overline{f'}$
<i>g</i> f	$Y_f^{\rm SM} rac{Z_{i1}^h}{\coseta}$	$Y_f^{ m SM}$ tan eta	$Y_f^{ m SM}$ tan eta

In this model, neutrinos get masses via inverse sea-saw mechanism.

$$\mathcal{L} \supset -Y_{\nu} \overline{I_{L}} H_{2} N_{R} - Y_{R} S \overline{N}_{R} N_{R}^{C} - Y_{L} S \overline{N}_{L} N_{L}^{C} - \hat{M}_{N} \overline{N}_{L} N_{R} + \text{h.c.}$$

The mass matrix in $\left(\nu_L \; \textit{N}_R^C \; \textit{N}_L \right)^T$ basis is given by

$$\mathcal{M}_{
u} = \left(egin{array}{ccc} 0 & m_D^T & 0 \ m_D & m_R & \hat{M}_N \ 0 & \hat{M}_N^T & m_L \end{array}
ight),$$

where $m_D = v_2 Y_{\nu}/\sqrt{2}$, $m_R = \sqrt{2} v_s Y_R$ and $m_L = \sqrt{2} v_s Y_L$.

$$egin{array}{rcl} m_{
u_\ell} &\simeq& rac{m_D^2 \, m_L}{\hat{M}_N^2 + m_D^2}, \ m_{
u_{H,H'}} &\simeq& rac{1}{2} \left(rac{\hat{M}_N^2 \, m_L}{\hat{M}_N^2 + m_D^2} + m_R
ight) \mp \sqrt{\hat{M}_N^2 + m_D^2} \,. \end{array}$$

Z' Couplings

$$i\left(\frac{e\,s_{\theta'}}{s_Wc_W}\left(T^3-Q_fs_W^2\right)+g_x'c_{\theta'}\left(T^3-Q_f\right)\right)\gamma^{\mu}P_L-i\left(\frac{e\,s_{\theta'}}{s_Wc_W}Q_fs_W^2+g_x'c_{\theta'}Q_f\right)\gamma^{\mu}P_R$$

$$\frac{i}{2}\left(\left(\frac{e\,s_{\theta'}}{2\,s_W\,c_W}+\frac{g_x'}{2}\,c_{\theta'}\right)\sum_{k=1}^3\mathcal{N}_{ik}\mathcal{N}_{jk}^*+2g_x\,c_{\theta'}\left(-\sum_{k=7}^9\mathcal{N}_{ik}\mathcal{N}_{jk}^*+\sum_{k=4}^6\mathcal{N}_{ik}\mathcal{N}_{jk}^*\right)\right)\gamma^{\mu}P_L$$

Light Z′ in a neutrinophilic U(1) mode

Experimental Constraints

- LEP constraint on Z-Z' mixing, $\theta' < 10^{-3}$
- From higgs signals and production of unobserved scalars at colliders.
- From Searches for new Z' gauge boson .

λ_1	λ_2	λ_3	λ_4	λ_{1s}	λ_{2s}	$\mu_{12} \; ({\rm GeV^2})$	aneta
0.1289	1.0	0.005	0.005	0.0	-0.5	10 ⁴	0.01

• Masses of the scalars except SM like scalar are kept of order 1TeV.

Collider Analysis

	BP1	BP2	BP3
$M_{Z'}$ (GeV)	300	400	500
$M_N=\hat{M}_{N_{11}}~({ m GeV})$	120	150	200
g _x	0.149	0.191	0.246
$g_x' imes 10^3$	7.02	9.52	9.52
$ an heta' imes 10^4$	9.87	7.20	4.52
$\sigma(p p ightarrow Z')$ (fb)	215.5	148.2	67.7
$BR\;(Z'\to NN)$	0.987	0.985	0.990
$BR(N \to \ell^{\pm} W^{\mp}(\nu Z))$	0.75 (0.25)	0.67 (0.29)	0.60 (0.29)

$4\ell + MET$

The major SM background for the $4\ell+\textit{MET}$ final state comes from the following

$$pp
ightarrow VZ, \qquad pp
ightarrow t ar{t} Z, \qquad pp
ightarrow VVV \ (V \equiv W^{\pm}, Z).$$

Signal	Cross-section (fb)	SM Background	Cross-section (fb)
BP1	0.688	ZZ	9.088
BP2	0.476	VVV	0.111
BP3	0.204	$W^{\pm}Z$	0.081
		tŦ Z	0.014

$\mathcal{L}=100~{ m fb}^{-1}$		SM-bao	ckground	Signal			
Cuts	ZZ	VVV	tīΖ	W±Z	BP1	BP2	BP3
$N_{\mu} \leq 2$	566.5	5.69	0.53	4.52	64.5	43.7	18.7
(15 < MET < 200) GeV	107.3	4.8	0.47	3.97	60.07	41.66	18.04
$(20 < p_{{\mathcal T}_{\ell_1}} < 200) \; { m GeV}$	103.7	4.19	0.38	3.97	60.01	41.66	18.02
$M_{\mu^+\mu^-} < 80 { m GeV}$ or $M_{\mu^+\mu^-} > 95 { m GeV}$	35.35	2.74	0.25	3.6	56.17	38.5	16.6
Total Events after cuts	41.94			56.17	38.5	16.6	
	Significance (S)				7.38	5.67	2.42

$3\ell + 2j + MET$

Signal	Cross-section (fb)	SM Background	Cross-section (fb)
BP1	1.723	ZZ	1.528
BP2	1.526	VVV	0.266
BP3	0.717	$W^{\pm}Z$	37.23
		$t\overline{t}+t\overline{t}Z$	1.745

The main SM background comes from the following subprocesses

$$pp o VZ, \qquad pp o t\overline{t} + t\overline{t} Z, \qquad pp o VVV \ (V \equiv W^{\pm}, Z).$$

$\mathcal{L}=100~{ m fb}^{-1}$		SM-bac	kground	Signal			
Cuts	$W^{\pm}Z$	tī	ZZ	VVV	BP1	BP2	BP3
$N_{\mu} \leq 1$	2246.0	147.2	86.5	26.0	170.4	150.6	70.7
$(15 < MET < 200) { m GeV}$	2022.0	146.2	39.0	22.1	155.0	139.4	66.1
$p_T^{j_1} < 200 { m GeV}$	1686.0	119.3	35.7	18.8	152.1	135.8	64.0
$(20 < p_{T_{\ell_1}} < 200) { m GeV}$	1608.0	118.7	34.6	17.2	151.4	135.7	63.7
$M_{e^+e^-} < 85 { m GeV}$ or $M_{e^+e^-} > 95 { m GeV}$	228.0	97.3	4.9	2.2	124.9	96.0	49.0
Total Events after cuts	332.4				124.9	96.0	49.0
	Significance (S)				6.48	5.04	2.63

Conclusion

- We consider a neutrinophilic model as an extension of the SM by introducing a U(1) group which couples directly to only heavy neutral fermions, singlet under the SM.
- The neutrinos in the model get their mass from a standard inverse-seesaw mechanism .
- We study the phenomenology of having such a light Z' in the context of neutrinophilic interactions as well as the role of allowing kinetic mixing between the new U(1) group with the SM hypercharge group.
- We find that although the di-lepton Drell-Yan channel is much suppressed here, the discovery prospects of observing a neutrinophilic Z' is significantly high in the 4ℓ + MET and 3ℓ + 2j + MET channels.

Thank You