Enhanced Long-Lived Dark Photon signal @ LHC

Mingxuan Du

Nanjing University

In collaboration with Zuowei Liu, Van Que Tran, Rundong Fang arXiv: 1912.00422 2108.XXXXX SUSY21 2021.08.25

Outline

- Motivation
- •Our long-lived dark photon model (LLDP)
- Experimental constraints
- Enhanced LLDP signal @ timing detectors
- •Enhanced LLDP signal @ LHCb
- •Far detectors
- Conclusion

Motivation

Long-lived particles (LLP) present in a lot of BSM models

 $A' \quad g \swarrow e^+$ Dark photon (DP) w/ coupling g to e

distance travelled by long-lived dark photon (LLDP)

$$d = \gamma v \tau \simeq 1 \text{ meter} \left[\frac{10^{-6}}{g}\right]^2 \left[\frac{E_{A'}}{100 \text{ GeV}}\right] \left[\frac{\text{GeV}}{M_{A'}}\right]^2$$

Collider Suppressed ? Boosted

To enhance LLDP signals@LHC

Make the LLDP production process different with its decay process

If $\epsilon_2 \gg \epsilon_1 \sim 10^{-6}$, A' is LLDP and its signal can be enhanced

Stueckelberg w/ 2 U(1) extension

 SM extended by a hidden sector (HS) with two U(1) gauge bosons X and C
 Hidden U(1)_F

$$-4\mathcal{L}_F = X_{\mu\nu}^2 + 2(\partial_\mu\sigma_1 + m_1\epsilon_1B_\mu + m_1X_\mu)^2$$

$$-4\mathcal{L}_W = C_{\mu\nu}^2 + 2(\partial_\mu\sigma_2 + m_2\epsilon_2B_\mu + m_2C_\mu)^2$$

Hidden $U(1)_W$

SM $U(1)_Y$

 Both 2 extra gauge bosons obtain mass via Stueckelberg mechanism E. C. G. Stueckelberg 1938 D. Feldman, Z. Liu, P. Nath, B.D.Nelson 2009 Kors & Nath, hep-ph/0402047 V. I. Ogievetskii & I. V. Polubarinov 1962

• Dirac fermion $\psi ~(g_F X_\mu + g_W C_\mu) \bar{\psi} \gamma^\mu \psi$

Mass matrix of neutral gauge bosons

4 by 4 mass square matrix in $V = (C, X, B, A^3)$

Mass eigenstates E = (Z', A', Z, A) via E = VO where $O^T m^2 O$ is diagonal

 ψ couples w/ A due to the neutral gauge bosons mixing; ψ is millicharged

CMB constraint

Experimental constraints

Timing Detector

CMS timing detector (phase 2)

 between the tracker and calorimeter

•
$$\delta t = 30 \text{ps}$$

1.17m ~ O(ns) away from the beam axis

hsps://cds.cern.ch/record/2296612/files/LHCC-P-009.pdf

LLDP @ LHC

	Z',ϵ_2	
Standard	Production	Hidden
Model		Sector
sector	Decay	(HS)
	A', ϵ_1	

 $m_{Z'} \sim O(1)$ TeV and $\epsilon_2 \sim 10^{-2}$ $m_{A'} \sim O(1)$ GeV and $\epsilon_1 \sim 10^{-7}$

GeV LLDP w/
$$\tau \sim 1 {
m m}$$

Lepton pT distribution

Time delay distribution

- SV: same vertex, due to time resolution: 30ps
- PU: pile-up, due to the spread of proton bunch

Timing detector sensitivity on LLDP

LHCb sensitivity on LLDP

Far forward detectors

- For the light LLDP $O(0.1 \sim 1)$ GeV with longer lifetime $O(10 \sim 100)$ m, the timing detectors do not probe them effectively
- Far detectors with distance $O(10 \sim 100)$ m from the IP can probe the LLDP with longer lifetime $O(10 \sim 100)$ m
- At hadron colliders, the light final particles are produces more forward
- Far forward detectors at LHC are ideal places to search the light LLDP with longer lifetime ${\cal O}(10\sim 100)$ m
- Negligible BG

Forward-Aperture CMS ExTension (FACET)

G. Landsberg, "Searches for new physics with FACET: Forward-Apertrue CMS ExTension". https://indico.cern.ch/event/994582/

ForwArd Search ExpeRiment (FASER)

Mingxuan Du - LLDP NJU

LLDP production @ far forward detector

Meson Decay

Proton Bremsstrahlung

The HR mode enhances the LLDP signal in the far forward detectors

Hidden Radiation

Lifetime frontier detectors

Lifetime frontier detectors

Conclusion

- "Ordinary" long-lived dark photon has a small LHC signal due to the extremely weak coupling
- We construct a BSM model in which the LLDP signal is greatly enhanced
- We analyzed various experimental constraints on the LLDP model
- Sensitivity to the LLDPs in the precision timing detector is computed
- Sensitivity to the LLDPs in the forward detector is computed... (work in progress)

Conclusion

- "Ordinary" long-lived dark photon has a small LHC signal due to the extremely weak coupling
- We construct a BSM model in which the LLDP signal is greatly enhanced
- We analyzed various experimental constraints on the LLDP model
- Sensitivity to the LLDPs in the precision timing detector is computed
 Thank you!
- Sensitivity to the LLDPs in the forward detector is computed... (work in progress)

Backups

CMB constraint

