Segregating BSM models at Present and Future Colliders based on Spin and Isospin

Saunak Dutta

SUSY 2021

August 25, 2021

ヘロト 人間 とうほう 人口 とう

1/23

Shortcomings of SM and Proposition of Different BSM Scenarios

- SM fails to Explain: Neutrino Mass, Dark Matter, Baryon-Antibaryon ratio, Anomalies in rare decays
- Many BSM scanarios so far proposed to explain one or more such observations
- They often predict particles with different spins in similar Mass range
- Some of these particles may belong to different representations of Gauge Groups
- Biggest Challenge: HOW TO DISTINGUISH THEM?

• This work principally focuses on different strategies to address this challenge, mainly the Angular Distribution

• For most of our studies, we consider the BSM scenarios of the Leptoquarks

• However, the techniques are applicable to other BSM models as well

The Leptoquarks

- Particles with color charge, possesses lepton and baryon numbers simultaneously
- May belong to spin-0 or 1 representations
- Accommodated in *SO*(10) models and other GUT models with higher symmetry groups
- Scalar leptoquark enhances the vacuum stability
- May address some of the anomalies associated with rare decays

Their Isospin Representations

$$\begin{array}{c} S_{1} & (\bar{\mathbf{3}}, \mathbf{1}, \frac{2}{3}) \\ \widetilde{S}_{1} & (\bar{\mathbf{3}}, \mathbf{1}, \frac{8}{3}) \end{array} & SU(2) \text{ singlet } \begin{cases} U_{1\mu} & (\mathbf{3}, \mathbf{1}, \frac{4}{3}) \\ \widetilde{U}_{1\mu} & (\mathbf{3}, \mathbf{1}, \frac{10}{3}) \end{cases} \\ R_{2} & (\mathbf{3}, \mathbf{2}, \frac{7}{3}) \\ \widetilde{R}_{2} & (\mathbf{3}, \mathbf{2}, \frac{1}{3}) \end{array} & SU(2) \text{ doublet } \begin{cases} V_{2\mu} & (\bar{\mathbf{3}}, \mathbf{2}, \frac{5}{3}) \\ \widetilde{V}_{2\mu} & (\bar{\mathbf{3}}, \mathbf{2}, -\frac{1}{3}) \end{cases} \\ S_{3} & (\bar{\mathbf{3}}, \mathbf{3}, \frac{2}{3}) \end{aligned} & SU(2) \text{ triplet } \begin{cases} U_{3\mu} & (\mathbf{3}, \mathbf{3}, \frac{4}{3}) \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Leptoquark Probes at Particle Colliders

Light Leptoquarks

• Leptoquarks with mass \sim 70 GeV, with branching \sim 25% to first two generations of $\ell~q$ allowed

Heavy Leptoquark Probes at Particle Colliders

- Scalar Leptoquarks:
 - For a 1^{st} generation leptoquark, $M_{\phi} > 1290$ GeV $(\phi_{S}
 ightarrow e \; u/d)$
 - For a 2^{nd} generation leptoquark, $M_{\phi} > 1230$ GeV $(\phi_S
 ightarrow \mu \; c/s)$
 - For a 3rd generation leptoquark, $M_{\phi}>$ 800 GeV $(\phi_S
 ightarrow au/
 u_{ au} \ b/t)$
- Vector Leptoquarks:
 - For a 1^{st} generation leptoquark, $M_{\phi} > 1270$ GeV $(\phi_V o
 u_e \ u/d)$
 - For a 2nd generation leptoquark, $M_{\phi} > 1285~{
 m GeV}~(\phi_V o
 u_{\mu}~c/s)$
 - For a 3rd generation leptoquark, $M_{\phi} > 1115$ GeV $(\phi_V o
 u_{ au} t)$

Probes of Leptoquark Spins at LHC [arXiv:2007.12997 [hep-ph]]

(Bandyopadhyay, Karan, Jakkapu, SD)

- Our analysis centres around the spin determination of BSM particles
- Consider Drell-Yan process, $e^+e^-
 ightarrow \mu^+\mu^-$

$$\left. rac{d\sigma}{d\cos heta}
ight|_{CM} \sim (1+\cos^2 heta) \qquad ({\sf pair \ production \ of \ spin} rac{1}{2} \ {\sf fermions})$$

• Our focus, signatures of Leptoquarks $\begin{cases} Spin-0 \text{ scalars} \\ Spin-1 \text{ vectors} \end{cases}$

Pair-Productions

•
$$\frac{d\sigma}{d\cos\theta}\Big|_{CM}^{\phi_{S}} \sim \begin{cases} \beta^{3}\sin^{2}\theta & (qq) \\ \frac{(1-\beta^{2})^{2}}{1-\beta^{2}\cos^{2}\theta} - \frac{25-34\beta^{2}+9\beta^{4}}{16(1-\beta^{2}\cos^{2}\theta)} + \frac{25+9\beta^{2}\cos^{2}\theta-18\beta^{2}}{32} & (gg) \end{cases}$$

• $\frac{d\sigma}{d\cos\theta}\Big|_{CM}^{\phi_{V}} \sim \begin{cases} (1+\sin^{2}\theta) + 3(1-\beta^{2}\sin^{2}\theta) & (qq) \\ \frac{1}{(1-\beta^{2}\cos^{2}\theta)^{2}} & (gg) & (approx) \end{cases}$
• $\beta = \sqrt{1-4M_{\phi}^{2}/s} \end{cases}$

Z. Phys. C 76 (1997), 137-153

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Parton-level Distributions

 ϕ_{S}

$$gg \rightarrow \phi_S \bar{\phi}_S$$

 $\rm gg \rightarrow \phi_V \bar{\phi}_V$

Hard Scattering Cross-Sections

• ϕ_V s have higher pair-production cross-section: 3 polarisation Degrees of Freedom

[arXiv:2007.12997 [hep-ph]]

Leptoquark Reaches at LHC/FCC

[arXiv:2007.12997 [hep-ph]]

Distinguishing Spins from Angular Distributions

Figure: Distribution for 1.5 TeV Leptoquarks at different collision energies in CM frame

- Spins bear unique imprint on Angular distribution
- Angular distribution differs with collision energy and leptoquark mass
- The parton distribution function plays the key role

4 A 1

Another Example: Spin-1/2 Type-III Fermions

Figure: Distribution for 1.5 TeV Seesaw fermions at different collision energies in CM frame

Distinguishing Leptoquarks from Jet Charge

1

E /2

• Leptoquark decay to quarks of different electromagnetic charges of the same generation

•
$$\begin{cases} R_2^{-5/3} \to \bar{c} \ \mu^- \\ R_2^{-2/3} \to \bar{s} \ \mu^- \end{cases}$$

•
$$Q_J = \sum_{i \in J} \left(\frac{E_i}{E_J}\right)^{0.2} Q_i \begin{cases} Q_J, E_J : \text{ jet charge(energy)} \\ Q_i, E_i : \text{ charge(energy) of } i^{th} \text{ constituent} \end{cases}$$

•
$$\int_{\substack{0.06 \\ 0.05 \\ 0.04 \\ 1 = z}}^{0.06 \\ 0.06$$

Radiation Amplitude Zeros

Scattering amplitude for n-particles, with charge Q_i and 4-momenta p_i, involving a photon, of 4-momentum k vanishes at certain kinematical zones, characterised by identical Q_i/p_{i:k} ratios

Our Focus: $2 \rightarrow 2$ scattering producing a massive particle with

• γ in the initial state

16 / 23

・ロト ・回ト ・ヨト ・ヨト

• γ in the final state

⁽See Anirban Karan's Talk)

Leptoquark Probes at ep Collider (Eur. Phys. J. C 81 (2021) no.4, 315)

(Bandyopadhyay, Karan, SD)

- θ : Angle between e^- and γ
- $\frac{d\sigma}{d\cos\theta}\Big|_{CM} \sim 0$ at $\cos\theta \equiv \cos\theta^{\star} = 1 + \frac{2}{Q_{\phi}}$
- $\cos \theta^{\star}$ independant of leptoquark mass and interaction energy
- Signals obtained in the visible region, $|\cos \theta^{\star}| \le 1$ for $\widetilde{S}_1^{-4/3}, R_2^{-5/3}, S_3^{-4/3}$ and $\widetilde{U}_{1\mu}^{-5/3}, V_{2\mu}^{-4/3}, U_{3\mu}^{-5/3}$ with $|Q_{\phi}| > 1$

Scalar and Vector Leptoquarks with $|\cos heta^{\star}| \leq 1$

ϕ_{S}	Representation	$\cos\theta^\star$	ϕ_V	Representation	$\cos\theta^\star$
$\widetilde{S}_1^{4/3}$	$\left(\mathbf{\overline{3}}, \ 1, \ \frac{8}{3}\right)$	-0.5	$\widetilde{U}_{1\mu}^{5/3}$	$\left(3,\ 1,\ \frac{10}{3}\right)$	-0.2
$R_2^{5/3}$	$(3, 2, \frac{7}{3})$	-0.2	$V_{2\mu}^{4/3}$	$\left(\mathbf{\overline{3}}, \ 2, \ \mathbf{\frac{5}{3}}\right)$	-0.5
<i>S</i> ₃ ^{4/3}	$(\bar{3}, 3, \frac{2}{3})$	-0.5	$\widetilde{U}_{3\mu}^{5/3}$	$\left(3, \ 1, \ \frac{4}{3}\right)$	-0.2

Benchmark Points and Collision Energies

M_{ϕ}	E _e	Ep	
70 GeV	27.5 GeV	920 GeV	
900 GeV	50 GeV	7 TeV	
1500 GeV	60 GeV	20 TeV	
2000 GeV	60 GeV	50 TeV	

Decay to only 2nd generation fermions eliminates SM Backround
Model Background persists

Amplitude Zero in ep Collision

Eur. Phys. J. C 81 (2021) no.4, 315

20 / 23

Conclusion

- Angular Distributions are instrumental in determining spins and gauge representations
- Strategies prescribed in our work are generic and applicable in other scenarios
- Reconstruction of CM frame at *pp* collisions can determine spins
- For 5σ significance in 100 TeV collisions
 - 1.5 TeV Leptoquark probes require $\sim 10~{\rm fb^{-1}}$
 - $\bullet~1.5~\text{TeV}$ Type-III Seesaw probes requires $\sim 370~\text{fb}^{-1}$

• Studies at ep and $e\gamma$ collisions are complementary

- At ep collisions
 - Signal significance for $V_{2\mu}$ is greater than that for $U_{3\mu}$
 - Signal significance for S_3 is greater than that for R_2

 $\bullet\,$ At FCC-II all the candidates can be determined with $>5\sigma$

