

Searches for long-lived particles at CMS

Jingyu Luo

Brown University

On behalf of the CMS Collaboration

The XXVIII International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2021)

Aug. 24th, 2021

Why search for long-lived particles

The existence of long-lived particles (LLPs) is a common occurrence in both the standard model (SM) and beyond the SM scenarios

$$\tau_0^{-1} = \Gamma \sim \frac{1}{m} \int d\Pi_f \left| \mathcal{M}_{\text{decay}} \right|^2,$$

- * A given particle is long-lived when:
 - The relevant coupling is small;
 - The decay is suppressed by some large scale;
 - The allowed final state phase space is small (i.e. with a nearly-degenerate mass spectrum)
- Many particles in the standard model are long-lived.
- LLPs in BSM scenarios are also well-motivated.

BSM LLP signatures

•••• neutral BSM displaced HSCP charged lepton dilepton any charge quark photon anything displaced disappearing lepton track displaced displaced photon dijet Not pictured: displaced displaced out of time decays vertex conversion

Rich signatures produced by BSM LLPs

Rich theoretical motivations for BSM LLPs

- Split SUSY;
- SUSY with gauge mediation;
- SUSY with anomaly mediation;
- SUSY with R-parity violation;
- Asymmetric dark matter (DM) model;
- ► Freeze-in DM;
- Dynamical DM;
- Neutral naturalness;
- Heavy neutral leptons (HNLs);

Unique experimental challenges

- Standard techniques are usually tuned for prompt objects → inefficient for exotic LLPs;
- Calls for innovations in the multiple stages of the analyses:
 - Specialized LLP triggers;
 - Special reconstruction;
 - Dedicated offline discrimination;
 - Estimation of non-standard background.

Overall landscape of the CMS LLP program

Overview of CMS long-lived particle searches

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included). The y-axis tick labels indicate the studied long-lived particle

- CMS LLP program has a wide coverage on a large variety of models/lifetimes with different final-state topologies (hadronic, leptonic, photonic, HSCP, disappearing tracks, etc.)
- **Recent full Run-2 results (public in 2021):** CMS-EXO-20-014 (displaced dimuon with scouting)

CMS-EXO-20-003 (Z+displaced jets)

CMS-EXO-20-015 (Hadronic CSC decays)

<u>CMS-EXO-18-003</u> (inclusive displaced leptons)

CMS-EXO-20-009 (HNL with displaced leptons)

Displaced jets accompanied with a Z boson

CMS-EXO-20-003

Search for SM-like (125GeV) Higgs boson decaying to LLP with ZH production

- Triggered with prompt leptons produced by the decaying Z boson;
- Cut-based displaced-jet tagging using the properties of the tracks associated with each jet;

- Look for events with ≥ 2 displaced jets;
- Expected 3.5 ± 1.8 background events, observed 3 events;
- Complementary to the CMS inclusive displaced jets search (CMS-EXO-19-021, PRD 104 012015) for low mass ($m_{\rm S} < 20 {\rm GeV}$) heavy-flavor decays (S \rightarrow bb)

Hadronic decays in the endcap muon detector

CMS-EXO-20-015

Search for hadronic decays of neutral LLPs inside the cathode strip chambers (CSCs) located at the endcaps

- CSC acts as a sampling calorimeter!
 - Hadronic decays of neutral LLPs produce clusters of large number of hits;
 - Low background due to the large interaction lengths before the muon endcaps
- Triggered with $p_{\rm T}^{\rm miss}$
 - Produced by ISR and LLPs decaying outside of the tracker and calorimeters.

Dedicated cluster reconstruction using CSC hits

- The LLPs are neutral→ veto clusters matched with jets or muons;
- Number of hits in the cluster N_{hits} serves as the main discriminating variable.

Interpreted with $pp \rightarrow H \rightarrow SS$, $S \rightarrow dd/bb/\tau\tau$

CMS sensitivities to $\mathrm{H} \rightarrow \text{LLPs}$ with hadronic decays

 $\textbf{125 GeV} \ H \rightarrow SS \rightarrow bbbb$

Previous results obtained with the CMS inclusive displaced-jets search (PRD 104, 012015)

 Dedicated displaced-jets triggers allow sensitivities to ggH production with LLPs decaying in the tracker.

The three searches/approaches are complementary to each other, together they provide an excellent coverage over a large range of LLP lifetime (span ~7 orders of magnitude!)

Inclusive displaced-leptons search

CMS-EXO-18-003

Inclusive search for displaced leptons ($e\mu$, $\mu\mu$, ee) with large impact parameters

- As model-independent as possible
 - No common-vertex requirement on the displacedlepton pair → the two displaced leptons can originate from two separate displaced vertices;
 - No requirements on additional objects (jets, MET, lepton charge, etc.).

The search is sensitive to any model with displaced, isolated electrons or muons

- \bullet Transverse impact parameter d_0 serves as the main discriminating variable
 - ► Signal region: at least 2 leptons with
 - $100\mu m < |d_0| < 10cm$

- Displaced muons triggered with special displaced-muon reconstruction (no PV constraint) at HLT.
- Displaced electrons triggered using photon reconstruction at HLT.

Offline lepton p_T thresholds are 35-75 GeV depending on the channel (constrained by HLT thresholds)

Inclusive displaced-leptons search

CMS-EXO-18-003

Placed limits on different models with displaced leptons

RPV SUSY ($\tilde{t} \rightarrow q\ell$)

GMSB ($\tilde{\ell} \to \ell \tilde{G}$)

Competitive limits on SUSY models, especially for small lifetime ($c\tau_0 < 1 \text{ mm}$), due to looser selection on the lower bound of $|d_0|$ (100 μ m)

exotic Higgs decays

Currently most stringent limits for $c\tau_0 < 50 \text{ cm}$

Displaced dimuon with scouting

<u>CMS-EXO-20-014</u>

Search for LLP decaying into displaced dimuon using data collected with high rate triggers ("scouting")

- Data scouting
 - Bypass the high-level trigger (HLT) thresholds by directly sending HLT objects to disk instead of saving raw data;
 - Reduced information compared to offline reconstructed objects;
 - Allow sensitivities to otherwise unaccessible lowmass events.
- Search for a narrow displaced dimuon resonance
 - Look for 2 opposite sign (OS) displaced muons

 $(p_T^{\mu} > 3 \text{ GeV})$ originating from a common displaced vertex;

 DV/dimuon kinematics & displacement requirements, material veto to reduce background yields.

Displaced dimuon with scouting

CMS-EXO-20-014

• Search for a narrow displaced dimuon resonance

- Categorized in bins of L_{xy} , $p_T^{\mu\mu}$, and isolation
- Simultaneous fit of the dimuon mass spectrum in all categories to extract the signal

Interpreted with dark photon Z_D decaying into displaced dimuon (as well as exotic B-meson decay)

Jingyu Luo (jingyu.luo@cern.ch)

HNL search with displaced leptons

<u>CMS-EXO-20-009</u>

Search for Heavy neutral leptons (HNLs) with displaced leptonic decays

- HNL is long-lived when the mass or the mixing angle is small;
 - When long-lived HNL decays leptonically, the final state consists of one prompt lepton and two displaced leptons
- Search for two opposite-sign displaced leptons accompanied with on prompt lepton
 - Events triggerd with the prompt lepton;
 - Reconstruct secondary vertex using the two displaced leptons;
 - Secondary vertex (SV) invariant mass and displacement serve as the main discriminating variables;
 - Other requirements on the SV quality, dilepton kinematics and trilepton kinematics to reduce the background.

HNL search with displaced leptons

CMS-EXO-20-009

Observations consistent with background predictions Placed limits on HNL mass and mixing angles

Greatly extended excluded phase space on top of previous searches.

Summary and outlook

- CMS LLP program provides a wide coverage on a vast variety of BSM LLP signatures/models;
 - Many more Run-2 searches in the pipeline \rightarrow stay tuned!
- At the same time, Run 3 will also be a great opportunity to further boost the capability of CMS to probe more challenging LLP signatures
 - Novel level-1 and high level triggers dedicated to LLP signatures;
 - Improved reconstruction techniques utilizing and combining different information from different subdetectors (tracking, vertexing, timing, clusters in MS, etc.)
 - Advanced machine learning tools to help tackle some challenging and important LLP signatures (e.g. low-mass LLPs with hadronic decays)

Exciting times ahead!