# Searches for vector-like quarks at CMS



**Francesco Carnevali** INFN & Università degli Studi di Napoli Federico II

On behalf of the CMS Collaboration

SUSY 2021

23-28 August 2021



#### Outline

• Recent results on the searches for vector-like quarks (VLQ) at the CMS detector at LHC

- LHC Run II collision data, 13 TeV
- First results on full Run II dataset:
  - Bottom-type VLQ pair production in fully hadronic final state. <u>B2G-19-005</u>
  - Single production of VLQ T decaying to a top quark and Z boson, with the Z boson decaying to neutrinos. <u>B2G-19-004</u>

•W' boson decaying to a VLQ and a top or a bottom quark in all hadronic final state. <u>B2G-20-002</u>

•https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

# Vector-like quarks (VLQs)

Several extensions of the Standard Model (SM) predict the existence of VLQs

- Spin 1/2 fermions
- Left-handed and right-handed components behave in the same way under the SM symmetry group
- Vector current couplings to the weak gauge bosons
- Non-Yukawa coupling mass-terms for VLQs are allowed.

| Туре | Charge |
|------|--------|
| Х    | +5/3   |
| Т    | +2/3   |
| В    | -1/3   |
| Y    | -4/3   |

| SU(2) Multiplets |                   |  |  |
|------------------|-------------------|--|--|
| Singlets T,B     |                   |  |  |
| Doublets         | (T,B),(X,T),(B,Y) |  |  |
| Triplets         | (X,T,B),(T,B,Y)   |  |  |

## VLQ production and decay

Both the pair and the single production of VLQs is considered :

- Pair production
  - Strong interaction processes
  - •Model independent cross section, suppressed for large VLQ mass
- Single production
  - Electroweak processes
  - Cross section depending on VLQ mass and coupling to SM particles
  - •Models foresee preferential mixing with 3<sup>rd</sup> generation SM quarks

| Туре | Decay channel |
|------|---------------|
| Х    | tW            |
| Т    | tZ,tH,bW      |
| В    | bZ,bH,tW      |
| Y    | bW            |



.0000000

**BR depending on VLQ mass and model** 

## Search for BB in full hadronic

First Full Run2 result for pair production, 137 fb<sup>-1</sup>, considering 3 different decays of the BB pair

Masses above 1 TeV are investigated

• jets, products of B decay, may overlap in one wide jet or in two resolved jets

Signal selection:

• 4, 5 or 6 high  $p_T$  jets in the final state

of jets 9 event categories are defined

•H<sub>T</sub> > 1350 GeV

• jets b-tagging



### Search for BB in full hadronic

 $\chi^2$ -like metrics for the reconstruction of the decay channel and category assignment:

• invariant mass of the dijet or wide jet compatible with the boson mass and equal invariant mass of the reconstructed B candidates

The main background is QCD multijet production, it has been determined from data:

•Exponential fit to the B mass distribution before b-tagging

•Estimation from low  $m_{VLQ}$  sideband region of the background rate jets passing the tagging

•Background tagged fraction propagated to high mass using a high  $\chi^2$  control region



#### Search for BB in full hadronic

No significant excess of data with respect to the expected background

95% CL upper limits on cross section as a function of B mass and BR of bZ and bH decay channels have been obtained





# Single T->tZ(vv)

First Full Run2 result for single production, 136 fb<sup>-1</sup>, considering Tbq production channel

The mass range investigated is m<sub>T</sub> [600,1800] GeV

Products of top quark decay:
3 narrow jets
1 large jet (W) and 1 narrow jet(b)
1 large jet (t)

Signal selection: • MET > 200 GeV

•Lepton veto

- jet b-tagged from top decay
- min  $\Delta \Phi$ (MET,Jets)>0.6



According to the type of reconstructed top and the presence of a forward jet 6 event categories are defined

#### Single T->tZ(vv)

For the signal extraction it was fitted simultaneously the transverse mass of the top and MET in each category:

$$M_T = \sqrt{2p_T^t p_T^{miss} (1 - \cos \Delta \phi_{t, p_T^{miss}})}$$





The main backgrounds in the signal region are ttbar, W+jets, and Z+jets events:

- Data-driven correction to background  $\mathbf{M}_{\mathrm{T}}$  distribution extracted from control regions

Single T->tZ(vv)

#### Signal Resonance width: $[0.01, 0.3] \text{ m}_{T}$

#### Limit as a function of mass

 $\rm m_T\!<\!0.98$  TeV excluded for  $\Gamma/~\rm m_T^{}=0.05$ 

Excess in data observed in resolved category, 2.4  $\sigma$  for m<sub>T</sub> = 1.4 TeV



#### Limit as a function of mass and resonance width

 $\rm m_T^{\,<}1.4~TeV$  excluded for  $\Gamma/\rm ~m_T^{\,=}$  0.3



# Search for W'->tB/Tb full hadronic

Full Run2 result for single production, 137 fb<sup>-1</sup>, considering different decay of of the W' boson to VLQ, depending on the ratio  $m_{W'}/m_{VLQ}$ 

Signal selection:

- + 2 high  $\boldsymbol{p}_{T}$  wide jets in the final state for Z/H and top tagging
- $\cdot H_{T} > 1000 \text{ GeV}$
- High  $p_T$  narrow jet is b-tagging

•No overlap between the final state jets (t,b,H/Z)



 $\Delta R(H/Z/t,b)>1.2$ 



## Search for W'->tB/Tb full hadronic

Signal jets tagging to distinguish from the SM multijet background:

- Top: m<sub>SD</sub> under the top peak, <u>ImageTop</u><sub>MD</sub>
- •Higgs:  $m_{SD}$  under the Higgs peak, double b-tag substructure

•Z:  $m_{_{SD}}$  under the Z peak, 2-prong  $\tau_{_{21}}$ 

#### Selection regions:

| Label  | Tag | Discriminator                             | Mass                                        |
|--------|-----|-------------------------------------------|---------------------------------------------|
| Tight  | H   | 0.6 < Dbtag                               | $105 < m_{\rm SD}({\rm H}) < 140 {\rm GeV}$ |
|        | Z   | $	au_{21} < 0.45$                         | $65 < m_{\rm SD}(Z) < 105 {\rm GeV}$        |
|        | t   | 0.9 < imageTop <sub>MD</sub>              | $140 < m_{\rm SD}(t) < 220 { m GeV}$        |
| Medium | Η   | 0.0 < Dbtag < 0.6                         | $105 < m_{\rm SD}({\rm H}) < 140{\rm GeV}$  |
|        | Z   | $0.45 < 	au_{21} < 0.6$                   | $65 < m_{\rm SD}(Z) < 105 {\rm GeV}$        |
|        | t   | $0.3 < imageTop_{MD} < 0.9$               | $140 < m_{\rm SD}(t) < 220 {\rm GeV}$       |
| Loose  | Η   | -1.0 < Dbtag < 0.0                        | $5 < m_{\rm SD}({\rm H}) < 30 {\rm GeV}$    |
|        | Z   | $0.6 < \tau_{21} < 1.0$                   | $5 < m_{\rm SD}(Z) < 30 {\rm GeV}$          |
|        | t   | $0.0 < \text{imageTop}_{\text{MD}} < 0.3$ | $30 < m_{\rm SD}(t) < 65 { m GeV}$          |





# Search for W'->tB/Tb full hadronic

The main SM backgrounds are ttbar and QCD multijet:

- •ttbar: template from MC simulation
- $\bullet$  QCD multijet: data-driven method Transfer function TF(p\_T,\eta) derived in top-antitag region





Extraction of QCD component in the signal region **C**:

 $TF(p_T,\eta) = (B_{Data}-B_{tt})/(A_{Data}-A_{tt})$ 

 $C_{QCD} \simeq (D_{Data} - D_{tt}) \times TF(p_T, \eta)$ 

#### Search for W'->tB/Tb full hadronic

#### Limit as a function of W' mass

m<sub>w'</sub> >3.2 TeV with m<sub>VLQ</sub>  $\approx 2/3$  m<sub>W'</sub>







#### Conclusions

• Presented recent results on the searches for vector-like quarks (VLQ) at the CMS detector at LHC

- LHC Run II collision data, 13 TeV
- No evidence of VLQs
  - Stringent exclusion limits on VLQ mass provided by pair production searches.
  - First result single production of VLQ T decaying to a top quark and Z boson, with the Z boson decaying to neutrinos, providing stringent mass exclusion.
  - •Limit on the VLQ mass depending on BR, considering W' boson decaying to a VLQ in all hadronic final state.

#### **THANK YOU!**

### BACKUP

CMS

5-jet channel

10

20

30

0.2

0.15

0.1

0.05

00

Normalized Events / 1.0 units

#### Search for BB in full hadronic

 $\chi^2$ -like metrics for the reconstruction of the decay channel and category assignment:

• invariant mass of the dijet or wide jet compatible with the boson mass and equal invariant mass of the reconstructed B candidates

5-jet events:

$$\chi^{2}_{\text{mod}} = \frac{(m_{dijet} - \overline{m}_{dijet})^{2}}{\sigma^{2}_{m_{dijet}}} + \frac{(m_{merged} - \overline{m}_{merged})^{2}}{\sigma^{2}_{merged}} + \frac{(m_{\Delta VLQ} - \overline{m}_{\Delta VLQ})^{2}}{\sigma^{2}_{\Delta VLQ}}$$

50

 $\chi^2_{mod}$ /ndf

40

137 fb<sup>-1</sup> (13 TeV)

 $m_{\rm B} = 1200 \, {\rm GeV}$ 

Data

#### Search for BB in full hadronic

#### Systematics uncertainties

|           | Туре                   | Signal/Background | Uncertainty |
|-----------|------------------------|-------------------|-------------|
|           | Integrated luminosity  | Signal            | 1.8%        |
| In common | Trigger efficiency     | Signal            | 0.02%       |
|           | Choice of fit function | Background        | 4.9%        |

|           | Туре                      | Signal/Background | Rate/Shape | 4 jets | 5 jets | 6 jets |
|-----------|---------------------------|-------------------|------------|--------|--------|--------|
| l. TTL TT | bHbH event mode           |                   |            |        |        |        |
| DHDH mode | Background fit $p_0$      | Background        | Shape      | 59%    | 14%    | 13%    |
|           | Background fit $p_1$      | Background        | Shape      | 78%    | 18%    | 16%    |
|           | BJTF $m$ dependence $p_0$ | Background        | Shape      | 1.3%   | 5.9%   | 4.5%   |
|           | BJTF $m$ dependence $p_1$ | Background        | Shape      | 19%    | 25%    | 17%    |
|           | Low-mass BJTF             | Background        | Rate       | 34%    | 9.7%   | 11%    |
|           | Jet tag scale factors     | Signal            | Shape      | 16%    | 15%    | 17%    |
|           | Jet energy scale          | Signal            | Shape      | 4.0%   | 5.3%   | 6.4%   |
|           | Jet energy resolution     | Signal            | Shape      | 2.4%   | 1.5%   | 1.6%   |
|           | Pileup                    | Signal            | Shape      | 28%    | 28%    | 27%    |
|           | PDF                       | Signal            | Rate       | 1.5%   | 1.5%   | 1.5%   |

#### Search for BB in full hadronic



Single T->tZ(vv)

#### Systematics uncertainties

| Source                       | Effect   | Correlation  | Type         |
|------------------------------|----------|--------------|--------------|
| Luminosity                   | 2.3-2.5% | Uncorrelated | yield        |
| Pileup                       | 0.2-3%   | Correlated   | yield        |
| b tagging                    | 0.5-1.2% | Correlated   | yield        |
| top tagging                  | 9-10%    | Correlated   | yield, shape |
| W tagging                    | 7-8%     | Correlated   | yield, shape |
| Trigger efficiency           | 1-3%     | Correlated   | yield, shape |
| ECAL L1 trigger inefficiency | 0.2-3%   | Uncorrelated | yield, shape |
| Jet energy scale             | 2-18%    | Correlated   | yield, shape |
| Jet energy resolution        | 2-5%     | Correlated   | yield, shape |
| PDF                          | 1-5%     | Correlated   | yield        |
| $\mu_{\rm R}, \mu_{\rm F}$   | 10-30%   | Correlated   | yield, shape |
| Background scale factors     | 5-50%    | Uncorrelated | yield, shape |

Single T->tZ(vv)

**M**<sub>T</sub> distribution in the signal region:

- 1 fwd jet
- 1 jet merged, partially merged or resolved



#### Single T->tZ(vv)







<u>E.....</u>

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

m<sub>⊤</sub> [TeV]

23

#### Search for W'->tB/Tb full hadronic

| Label  | Tag | Discriminator                             | Mass                                        |
|--------|-----|-------------------------------------------|---------------------------------------------|
| Tight  | Η   | 0.6 < Dbtag                               | $105 < m_{\rm SD}({\rm H}) < 140{\rm GeV}$  |
| G.8    | Z   | $	au_{21} < 0.45$                         | $65 < m_{\rm SD}(Z) < 105 {\rm GeV}$        |
|        | t   | 0.9 < imageTop <sub>MD</sub>              | $140 < m_{\rm SD}(t) < 220 { m GeV}$        |
| Medium | Η   | 0.0 < Dbtag < 0.6                         | $105 < m_{\rm SD}({\rm H}) < 140 {\rm GeV}$ |
|        | Z   | $0.45 < 	au_{21} < 0.6$                   | $65 < m_{\rm SD}(Z) < 105 {\rm GeV}$        |
| 26     | t   | $0.3 < \text{imageTop}_{\text{MD}} < 0.9$ | $140 < m_{\rm SD}(t) < 220{ m GeV}$         |
| Loose  | Η   | -1.0 < Dbtag < 0.0                        | $5 < m_{\rm SD}({\rm H}) < 30 {\rm GeV}$    |
|        | Z   | $0.6 < \tau_{21} < 1.0$                   | $5 < m_{\rm SD}(Z) < 30 {\rm GeV}$          |
|        | t   | $0.0 < \text{imageTop}_{\text{MD}} < 0.3$ | $30 < m_{\rm SD}(t) < 65 { m GeV}$          |



#### Search for W'->tB/Tb full hadronic

$$\begin{split} TF(p_{\mathrm{T}},\eta) &\equiv (\mathrm{B}_{\mathrm{data}} - \mathrm{B}_{\mathrm{t}\overline{\mathrm{t}}})/(\mathrm{A}_{\mathrm{data}} - \mathrm{A}_{\mathrm{t}\overline{\mathrm{t}}}),\\ TF_{\mathrm{v}}(p_{\mathrm{T}},\eta) &\equiv (\mathrm{E}_{\mathrm{data}} - \mathrm{E}_{\mathrm{t}\overline{\mathrm{t}}})/(\mathrm{A}_{\mathrm{data}} - \mathrm{A}_{\mathrm{t}\overline{\mathrm{t}}}),\\ \mathrm{C}_{\mathrm{qcd}} &\simeq (\mathrm{D}_{\mathrm{data}} - \mathrm{D}_{\mathrm{t}\overline{\mathrm{t}}}) \times TF(p_{\mathrm{T}},\eta),\\ \mathrm{H}_{\mathrm{qcd}} &\simeq (\mathrm{G}_{\mathrm{data}} - \mathrm{G}_{\mathrm{t}\overline{\mathrm{t}}}) \times TF(p_{\mathrm{T}},\eta),\\ \mathrm{K}_{\mathrm{qcd}} &\simeq (\mathrm{D}_{\mathrm{data}} - \mathrm{D}_{\mathrm{t}\overline{\mathrm{t}}}) \times TF_{\mathrm{v}}(p_{\mathrm{T}},\eta),\\ \mathrm{F}_{\mathrm{qcd}} &\simeq (\mathrm{G}_{\mathrm{data}} - \mathrm{G}_{\mathrm{t}\overline{\mathrm{t}}}) \times TF_{\mathrm{v}}(p_{\mathrm{T}},\eta), \end{split}$$

**Signal region: C** 



#### Search for W'->tB/Tb full hadronic

#### **Systematics uncertainties**

| Source                | Variation                       | Process                         |
|-----------------------|---------------------------------|---------------------------------|
| Integrated luminosity | $\pm 2.3 - 2.5\%$               | signal, tt, single top          |
| Top jet tagging       | $\pm 1\sigma(p_{\rm T})$        | signal, tt, single top          |
| Jet energy scale      | $\pm 1\sigma(p_{\rm T},\eta)$   | signal, tt, single top          |
| Jet energy resolution | $\pm 1\sigma(p_{\rm T},\eta)$   | signal, tt, single top          |
| Jet mass scale        | $\pm 1\sigma(m_{\rm SD})$       | signal, tt, single top          |
| Jet mass resolution   | $\pm 1\sigma(m_{\rm SD})$       | signal, tt, single top          |
| B tagging             | $\pm 1\sigma(p_{\rm T})$        | signal, tt, single top          |
| <b>B</b> mistagging   | $\pm 1\sigma(p_{\rm T})$        | signal, tt, single top          |
| Dbtag                 | $\pm 1\sigma(p_{\rm T})$        | signal                          |
| Dbtag mistagging      | $\pm 1\sigma(p_{\rm T})$        | signal, tt, single top          |
| W tagging             | $\pm 1\sigma(p_{\rm T})$        | signal                          |
| Pileup                | $\pm 1\sigma (\sigma_{\rm mb})$ | signal,tt, single top           |
| $PDF, \alpha_s$       | $\pm 1\sigma$                   | signal, single top              |
| $Q^2$                 | $\pm 1\sigma$                   | signal, single top              |
| ISR/FSR               | $\pm 1\sigma$                   | single top                      |
| tt normalization      | $\pm 1\sigma(H_{\rm T})$        | tī                              |
| trigger               | $\pm 1\sigma(H_{\rm T})$        | signal, $t\bar{t}$ , single top |
| $TF(p_{\rm T},\eta)$  | $\pm 1\sigma(p_{\rm T},\eta)$   | QCD                             |
| tt contamination      | $\pm 1\sigma(p_{\rm T},\eta)$   | QCD                             |

#### **VLQ Pair Production Summary**

#### Vector-like quark pair production



# **VLQ Single Production Summary**

#### Vector-like quark single production

