Searches for new physics with leptons using the ATLAS detector

Christos Vergis (he/his), on behalf of the ATLAS Collaboration SUSY 2021, 26/08/2021

Introduction

- SM is a very successful theoretical framework
 → Still many open questions
- Answers might be in new physics related to the leptonic sector, e.g. for neutrino masses (via Type-III seesaw mechanism)
- On top of that recent hints of discrepancies with SM:
 e.g. in B-meson decays and (g-2)_µ anomaly
 or R(K*) (See Alexander Mann's talk here)
- Explanation may be found in:
 Supersymmetry, Leptoquarks, new gauge bosons, Heavy Leptons, ...
- ATLAS wide search program for such scenarios:
 - Search for charge flavour symmetry violation
 - Lepton Flavor violating Z decays
 - Searches for new heavy gauge bosons
 - Searches for Heavy Leptons

Measurement of the ratio e[†]μ⁻/e⁻μ[†]

• Novel data-driven analysis, attempts to measure the ratio [ATLAS-CONF-2021-045]:

$$\rho \equiv \frac{\sigma(pp \to e^+\mu^- + X)}{\sigma(pp \to e^-\mu^+ + X)}$$

- $\rho=1 \rightarrow Standard Model$ Taking into consideration detector and experimental effects $\rightarrow \rho < 1$
- Analysis used several Signal Regions, sensitive to:
 a) high missing E_T (SR-MET), e.g. R-parity violating SUSY

b) high jet multiplicity (SR-JET), e.g. LQ

$$H_{\rm P} \equiv |\vec{p}_{\rm T}^e| + |\vec{p}_{\rm T}^\mu| + |\vec{p}_{\rm T}^{j_1}|$$

Data were corrected for muon charge mis-reconstruction effects and sagitta bias

Measurement of the ratio e[†]μ⁻/e⁻μ[†]

Novel data-driven analysis, attempts to measure the ratio:

$$\rho \equiv \frac{\sigma(pp \to e^{+}\mu^{-} + X)}{\sigma(pp \to e^{-}\mu^{+} + X)}$$

- Data consistent with SM hypothesis
- No significant ρ>1 was observed →
 95% C.L. upper limits set (RPV SUSY and LQ models)
 from a subset of SRMET and SRJET

Lepton Flavor Violation

- Lepton symmetry is an accidental symmetry of SM
- Observation of LFV \rightarrow clear indication of new physics e.g. SM probability ~ 10^{-54} while Heavy Neutrino theories increase it to ~ 10^{-5}
- Searches for $Z \rightarrow \ell \ell'$ ($\ell = e, \mu$) and in particular:
 - $Z \rightarrow \ell \tau$ (hadronic+leptonic τ -decays) [EXOT-2020-28, EXOT-2018-36]
 - \circ Z \rightarrow eµ [ATLAS-CONF-2021-042]
- Machine Learning methods to discriminate signal background

Lepton Flavor Violation ($Z \rightarrow \ell \tau$)

- Signal searched in NN output
- Dominant backgrounds : $Z \rightarrow \tau \tau$. Fake background
- Largest impact on \mathfrak{B} uncertainty: statistical uncertainties
- Result (Run 1+ Run 2):
 - $\mathfrak{B}(Z \to e\tau) < 5.0 \times 10^{-6}$ (DELPHI :12.0 × 10⁻⁶)
 - $\mathfrak{B}(Z \to \mu \tau) < 6.5 \times 10^{-6} \text{ (OPAL} : 9.8 \times 10^{-6} \text{)}$

Lepton Flavor Violation ($Z \rightarrow e\mu$)

- Signal searched in m_{eµ}
- Dominant backgrounds : $Z \rightarrow \tau\tau$, $Z \rightarrow \mu\mu$, WW and top
- Event selection:
 - \circ Veto events with jets with large p_T , missing E_T and b-tagged jets
 - o BDT used for further background rejection
- Analysis statistically limited (<u>data</u> and <u>simulation</u>)
- Result:

 $38(Z \rightarrow e\mu)$ < 3.04 × 10⁻⁷ (ATLAS : 7.5 × 10⁻⁷)

Source of uncertainty	Degradation of $\mathcal{B}^{95\%\text{CL}}(Z \to e\mu)$
Limited simulated events	9.5%
Z o au au	4.7%
$Z o \mu \mu$	6.1%
All other sources	2.4%
Jet energy scale and resolution	1.2%
Pile-up	1.2%
Electron energy scale and resolution	0.8%
Lepton efficiency	0.7%
b-tagging	0.6%
Muon resolution and bias correction	0.6%

Search for heavy gauge bosons (TV)

- New heavy gauge bosons appear in extensions of SM
- Benchmark model: Sequential Standard Model (SSM) → Same couplings to fermions as the SM
- Searches for new bosons decaying to leptons:
 - \circ W' $\rightarrow \ell v$ ($\ell = e, \mu$) [EXOT-2018-30]
 - $\circ \qquad Z' \to \ell\ell \qquad \qquad [\underline{\mathsf{EXOT-2018-08}}]$

have been performed and exclude SSM boson masses below 6 TeV (W') and 5.1 TeV (Z')

- New results in searching for W' → TV [ATLAS-CONF-2021-025]
- Searches in 3rd generation final states:
 interesting for explaining B-meson anomalies or high mass of top quark

Search for heavy gauge bosons (TV)

- Signal Region:
 Large E_T miss
 back-to-back and balanced τ_{had} & E_T miss
- Main Backgrounds:
 Offshell production of W → TV (Simulation)
 Jets misidentified as T (Data driven)
- Signal-background separation:

$$m_{\rm T} = \sqrt{2E_{\rm T}^{\rm miss}p_{\rm T}(1-\cos\Delta\phi)}$$

No significant excess observed over SM expectation

Search for heavy gauge bosons (TV)

- Model Interpretations
 - → Sequential Standard Model (SSM) : same couplings to fermions as SM
 - → Non-Universal Gauge Interaction Models (NUGIM) :

Enhanced coupling to 3rd generation ~ cotθ_{NU}

(possible links to LFV or high-mass of the top quark)

Exclude W' up to 5 TeV (SSM) and 3.5-5 TeV (NUGIM)

Search for Heavy Leptons

- Searches for Heavy Leptons (HL) in multilepton channel (combined):
 - o 2 leptons [<u>EXOT-2018-33</u>]

3/4 leptons [ATLAS-CONF-2021-023]

Linked to light mass of neutrino (Seesaw mechanism) and muon g-2 anomaly (Vector-like Leptons)

Search for Heavy Leptons

- Search performed in various Signal Regions to capture the different event topologies of the various decays
 - → Dominant uncertainty from data statistics
- Interpretation : Type-III seesaw
- Exclude HL masses below 910 GeV @95% C.L.
- Most stringent limits

Model independent multilepton searches

- Several BSM theories can also give multilepton (3, 4 -lepton) final states (SUSY, H^{±±}, type-III seesaw)
- Aim to derive visible cross section limits while covering for a large variety of BSM [EXOT-2019-36]
 - → led to 22 Signal Regions
- Upper limits also derived for H^{±±} and type-III seesaw models

Model	Mass [GeV]	Best single SR	$m_{\rm inv}$	$A \times \epsilon$	$\sigma_{ m exp}^{95}$ [fb]	$\sigma_{\rm obs}^{95}$ [fb]	
Type-III Seesaw	400	3ℓ , Off- Z , $E_{\rm T}^{\rm miss} > 50$ GeV	> 600 GeV	0.0036	41 +17	27	
	700	3ℓ , Off- Z , $E_{\rm T}^{\rm miss} > 50$ GeV	> 600 GeV	0.012	$12 ^{+5}_{-3}$	8.8	
$H^{\pm\pm}$	300	4ℓ , Off-Z	> 400 GeV	0.37	$0.18 ^{+0.08}_{-0.05}$	0.12	
	500	4ℓ , Off-Z	> 400 GeV	0.40	$0.16 \begin{array}{c} +0.07 \\ -0.05 \end{array}$	0.11	

Summary

- Recent discrepancies between SM and observations make searches for new physics in leptonic final states interesting
- ATLAS performs a wide search for such phenomena
 → best worldwide constraints on LFV Z decays with T
 → large exclusion limits on new gauge bosons and heavy leptons
- Improvements expected by the increased luminosities coming with the post Run-2 data collection at LHC
- New possibilities to look for new models and final states

<u>ATL-PHYS-PUB-2021-033</u>

Additional Material

bsll contact interactions

- Recent hints for LFV in rare B-decays
- New physics via EFT at scale Λ with and without b-jet and same-flavor leptons in the final state [EXOT-2018-16]
- Various Signal Regions by scanning a cut on minimum $m_{\ell\ell}$ (>400 GeV) and counting events above this threshold

bsll contact interactions results

- Λ/g_* limits still lower than prediction that resolves B-meson anomalies

Z→ lt (distributions)

Split in lepton p_T for better fake background categorization

Z→ lt (Neural Network)

Z→ lt (selection)

Selection criterion	Purpose
Exactly two isolated light leptons (ℓ_0, ℓ_1) with opposite electric charge and different flavor $(e \text{ or } \mu); p_T(\ell_0) > p_T(\ell_1)$	Select events consistent with signal decays.
No $ au_{ ext{had-vis}}$ candidate	Orthogonality with $\ell au_{ m had}$ channel.
Transverse mass 1 $m_{\rm T}(\ell_1, E_{\rm T}^{\rm miss}) < 35~{\rm GeV}$ $ \Delta\phi(\ell_0, E_{\rm T}^{\rm miss}) > 1~{\rm rad}$ No b -tagged jets (using the 77% efficiency working point)	Reject top-quark and diboson events.
Invariant mass of the ℓ_0 – ℓ_1 pair $m(\ell_0, \ell_1) > 40 \text{GeV}$	Reject events incompatible with <i>Z</i> -boson decays.
Neural network (optimized for signal vs. $Z \rightarrow \tau \tau$) output > 0.2	Ensure selection is orthogonal to the $CRZ\tau\tau$ region.
In $\mu \tau_e$ channel: $p_{\rm T}^{\rm track}(e)/p_{\rm T}^{\rm cluster}(e) < 1.1$	Reject $Z \to \mu\mu$ events.

$Z{\to}~e\mu~BDT$

Search for heavy gauge bosons (W' → TV)

	Preselection	
$E_{\rm T}^{ m miss}$ trigger	$70,90,110~\mathrm{GeV}$	
Event cleaning	applied	
$ au_{ m had-vis}$ tracks	1 or 3	
$\tau_{\rm had\text{-}vis}$ charge	± 1	
$ au_{ m had ext{-}vis} \; p_{ m T}$	> 30 GeV	
$ au_{ m had ext{-}vis} p_{ m T}^{ m leadTrack}$	> 10 GeV	
Lepton veto	applied	
$\Delta\phi(au_{ m had ext{-}vis}\ p_{ m T}, E_{ m T}^{ m miss})$	> 2.4 rad	

			Region requirements		
	\mathbf{SR}	CR1	m CR2	CR3	$\mathbf{V}\mathbf{R}$
Tau identification	L	$VL \setminus L$	L	$VL \setminus L$	L
$E_{ m T}^{ m miss}$	$>150~{\rm GeV}$	$>150~{\rm GeV}$	$< 100 \; \mathrm{GeV}$	$<100~{\rm GeV}$	$>150~{\rm GeV}$
$p_{\mathrm{T}}/E_{\mathrm{T}}^{\mathrm{miss}}$	$\in [0.7, 1.3]$	$\in [0.7, 1.3]$	-	-	< 0.7
$m_{ m T}$	_	_	_	_	$> 240~{ m GeV}$

Measurement of charge asymmetry

Summary

- Late discrepancies between SM and observations make searches for new Physics in leptonic final states interesting
- ATLAS performs a wide search for such phenomena

Expected limit at Γ/m = 10%

--- Γ/m = 0%

m_v [GeV]

10

 10^{-3}

10-4

Non-perturbative regime

m(W') [TeV]

Search for heavy gauge bosons

- New heavy gauge bosons appear in extensions of SM
- Benchmark model: Sequential Standard Model (SSM) → Same couplings to fermions as the SM
- Searches for them decaying to leptons:
 - \circ W' $\rightarrow \ell v$ ($\ell = e, \mu$) [EXOT-2018-30]
 - \circ $Z' \rightarrow \ell\ell$

[EXOT-2018-08]

Have been performed and exclude SSM boson masses below 6 TeV (W') and 5.1 TeV (Z')

Additional models investigated for various resonant widths

