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Introduction

• Jet reconstruction makes use of both Inner Detector tracks and Calorimeter Topoclusters.


• Relevant for many signatures searched for with ATLAS.


• e.g Anti-Kt 0.4 jets in direct stop production (top right)


• e.g Large radius jets to reconstruct boosted systems such as top decay into bottom quark and hadronically decaying W boson (bottom right).


• Different jet reconstruction techniques relevant in different parts of phase space (middle).


• Similar arguments apply to many other experimental topologies, which are signatures of production of Supersymmetric particles.

Eur. Phys. J. C 80 (2020) 737
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https://link.springer.com/article/10.1140/epjc/s10052-020-8102-8
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Particle Flow

• Starts with Inner Detector tracks and calorimeter topological clusters as input.


• Matching algorithms associate them to each other, and when appropriate 
subtract out the charged calorimeter shower (based on reference 
measurements of e/p distributions).

Particle Flow 
(Eur. Phys. J. C 77 (2017) 466) 
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https://arxiv.org/abs/1703.10485
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Jet Finding

• We use the Anti-kt 4 algorithm to reconstruct jets.


• Takes as input a set of 4-vectors - could be the Particle Flow objects discussed on previous slide, ID tracks or 
calorimeter topoclusters.


• The jet 4-vector that results from this procedure is then calibrated via a set of steps outlined in above diagram 
- can measure both the Jet Energy Resolution (JER) and the Jet Energy Scale (JES) to quantify the 
performance.

Eur. Phys. J. C 81 (2021) 689
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-05/
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Small Radius Jet Performance

• Improved Particle Flow jet resolution at low PT (left)


• Due to smaller contribution to resolution from pileup (middle)


• Fewer Particle Flow pileup jets are reconstructed for the same Hard Scatter efficiency (right)

ATLAS-JETM-2018-005
ATLAS-JETM-2017-006

ATLAS-JETM-2019-01
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2018-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2017-006/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2019-01/
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Small Radius Jet Uncertainties

• Particle Flow jets provide similar uncertainties on both noise term and in-situ Jet Energy Resolution (JER) 
measurement with di-jets (left and middle), except for the lowest PT bins where Particle Flow uncertainty is smaller.


• Similar overall situation on the Jet Energy Scale (JES) too (right).

ATLAS-JETM-2018-005
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ATLAS-JETM-2018-006

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2018-005/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2018-006/
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Unified Flow Objects (UFO)

Unified Flow Objects (UFO) 
(Eur. Phys. J. C 81 (2021) 334) 

Particle Flow

• Particle Flow most relevant for areas of low particle density with charged particles typically having low PT.


• TrackCaloCluster (TCC) most relevant for areas of high particle density with charged particles typically having higher PT.


• TCC matches tracks to topoclusters and uses the ID track angular coordinates and the calorimeter energy measurement.


• UFO combines TCC and Particle Flow to get the best of both worlds - in this scheme TCC matches ID tracks to neutral PFO.


• Studied in context of large radius jets so far, but can in principle be used for small radius jets.
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https://arxiv.org/abs/2009.04986
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Large Radius Jet Calibration
Eur. Phys. J C 79 (2019) 135

• Takes as input a set of 4-vectors - could be the UFOobjects discussed on 
previous slide, ID tracks, calorimeter topoclusters or particle flow objects.
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-02/
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Large Radius Jets

• UFO scheme performs better than TCC, Particle Flow or Topocluster inputs


• Jet Mass resolution across large PT range


• Background rejection across large W-tagging efficiency range


• Stability across large NPV range

(Eur. Phys. J. C 81 (2021) 334) 
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https://arxiv.org/abs/2009.04986
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Machine Learning

• “LC Topo” (LCW) scheme calibrates individual topoclusters via the Local Hadron Calibration , which is applied 
to topocluster inputs prior to input to jet finding - has been used for large radius jet finding in ATLAS.


• Can replace topocluster inputs calibrated to LCW scale with ML calibrated topoclusters.


• Alternative calibration scheme has been studied using Machine Learning (LC)


• Used samples of isolated charged and neutral pions, without pileup. Calorimeter cluster settings are as used 
in 2018 data taking conditions.


• Have considered particles with |eta|  < 0.7 (uniform detector layout)

ATL-PHYS-PUB-2020-018
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/
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• Deep Neutral Network (DNN), Convolutional Neural  Network (CNN) and Densely Connected Convolution Network (DenseNet) have been studied.


• Currently ATLAS LCW scheme uses a Likelihood:


• Classification step using Likelihood ratio, making use of  the cluster energy, eta position, longitudinal depth and average cell energy density.


• Calibration step deploys calorimeter cell signal weighting which depend on cluster energy and location.


• The Machine Learning schemes also do both classification and regression.

Machine Learning
ATL-PHYS-PUB-2020-018

DNN Classifier CNN Classifier Densenet
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/
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Machine Learning
ATL-PHYS-PUB-2020-018

• For the classification problem, shown on the left, all three schemes perform better than the LCW scheme ( )


• DNN not as good as CNN, Densenet.


• For the regression problem, shown in the right two plots, all three schemes perform better than the LCW scheme.


• DNN gives best resolution and has good linearity.

ρclus
EM
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/
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Machine Learning

• Combined classification and regression test:


• Compare LCW to combination of CNN Classifier (best) and DNN regression (best)


• High performance of CNN classifier ensures that the correct energy regression is applied in 
this mixed particle sample.

ATL-PHYS-PUB-2020-018
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2020-018/
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Conclusions
• ATLAS reconstruction matches calorimeter clusters and ID tracks in different 

ways for different environments.


• Particle Flow and UFO algorithms


• Particle Flow improves jet performance in low PT regime and leads to similar 
uncertainties on JES and JER.


• UFO scheme gives best large radius jet mass resolution, tagging efficiency 
and pileup stability across a wide phase space.


• Machine learning approach to calorimeter cluster calibration improves 
performance compared to existing LCW scheme.
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Extras
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Jet Vertex Fraction (JVT)

Eur. Phys. J. C (2016) 76:581
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https://arxiv.org/abs/1510.03823
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Jet Vertex Fraction (JVT)

Particle Flow jets have similar hard scatter efficiency to calorimeter jets (left), whilst reconstructing fewer fake jets (right).

ATLAS-JETM-2017-006
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2017-006/
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JES Uncertainties
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ML
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ML

DNN Regression

DNN Classifier

21



N
ot

re
vi

ew
ed

,f
or

in
te

rn
al

ci
rc

ul
at

io
n

on
ly

ML
CNN Classifier CNN Regression
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ML
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ML
Densenet
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ML Taggers
ATL-PHYS-PUB-2021-029 ATL-PHYS-PUB-2021-028
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-029/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-028/

