On the feasibility of Bell Inequality violation at ATLAS experiment with flavor entanglement of B meson pairs from proton-proton collisions

August 23, 2021 Yosuke Takubo (KEK)

T. Ichikawa (Osaka U. QIQB), S. Higashino (Kobe U.), Y. Mori (KEK), K. Nagano (KEK), I. Tsutsui (KEK)

The paper was accepted by PRD ([arXiv:2106.07399]).

SUSY 2021@Online

Hidden variable theory

Einstein's consideration on quantum mechanics

- Quantum Mechanics (QM) is approximation of the complete theory.
- In the complete theory, element of the physical reality (e.g., spin) is a function of hidden variable λ .
 - → Hidden Variable Theory (HVT)

Premise in HVT

- Locality condition: A measurement on one particle does not influence the other.
- Free will: An experimenter has freedom to choose a measurement condition.

Bell developed formula which HVT must satisfy.

Bell inequality (1)

• $A(t_a)$, $B(t_b)$: eigenvalues of two particles (e.g. meson flavors) measured in a certain condition (e.g. measured time t_a , t_b).

$$\mathbf{A}(t_a) \longleftrightarrow \mathbf{B}(t_b)$$

- Expectation value of $A(t_a)B(t_b)$: $C(t_a, t_b) = \sum_{A,B} ABP_{t_at_b}(A, B)$ PDF (Probability Density Function) of $A(t_a)B(t_b)$
- In HVT, (A, B) is a function of hidden variable λ : $P_{t_a t_b}(A, B) = \int P_{t_a}(A, \lambda) P_{t_b}(B, \lambda) P(\lambda) d\lambda$ $\Box \qquad C(t_a, t_b) = \int \sum_A A P_{t_a}(A, \lambda) \sum_B B P_{t_b}(B, \lambda) P(\lambda) d\lambda$ Free will Locality condition

Bell inequality (2)

$$\sum_{A} AP_{t_a}(A,\lambda) \bigg| = |P_{t_a}(A = 1,\lambda) - P_{t_a}(A = -1,\lambda)| \leq 1$$

Flavor: ±1 Less than 1 since $P_{t_a}(A,\lambda)$ is PDF.

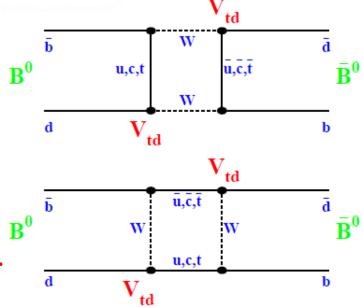
$$|C(t_a, t_b)| = \left| \int \sum_A AP(t_a, \lambda) \sum_B BP(t_b, \lambda) P(\lambda) \, d\lambda \right| \le 1$$
$$\le 1 \qquad \le 1$$

Bell inequality

$$|S| = |C(t_a, t_b) + C(t'_a, t_b) + C(t_a, t'_b) - C(t'_a, t'_b)| \le 2$$

If HVT is correct, $|S| \leq 2$.

Flavor mixing in B meson


• B^0 meson has mass (B_H, B_L) and CP eigenstates (B^0, \overline{B}^0) , and they are expressed by each other:

$$|B^{0}\rangle = \frac{|B_{H}\rangle + |B_{L}\rangle}{\sqrt{2}}, |\overline{B}^{0}\rangle = \frac{|B_{H}\rangle - |B_{L}\rangle}{\sqrt{2}}$$

(Assuming CP conservation)

• B^0 and \overline{B}^0 are mixed during time evolution. $(\Delta M = M_H - M_L, \Gamma = \Gamma_H = \Gamma_L)$

$$P(B^0 \rightarrow B^0, t) = \frac{e^{-\Gamma t}}{2} (1 + \cos \Delta M t)$$

 $P(B^0 \rightarrow \overline{B}^0, t) = \frac{e^{-\Gamma t}}{2} (1 - \cos \Delta M t)$

Flavor mixing in entangled state

• In QM, a $B^0\overline{B}^0$ pair (e.g. created from Y(4S) or gluon) is in entangled state \rightarrow If one is B^0 , the other is \overline{B}^0 , vice versa.

$$\psi(t_a, t_b) = \frac{1}{\sqrt{2}} (|B^0(t_a)\rangle |\overline{B}^0(t_b)\rangle - |\overline{B}^0(t_a)\rangle |B^0(t_b)\rangle)$$
$$B^0 \leftarrow \overline{B}^0 \leftarrow \overline{B}^0 \leftarrow \overline{B}^0 = \overline{B}^0 \leftarrow \overline{B}^0 = \overline{B}^0 \to B^0 \quad \text{max} \quad \overline{B}^0$$

• If B_a decays into B^0 eigenstate, the state of B_b at that timing is \overline{B}^0 (vice versa)

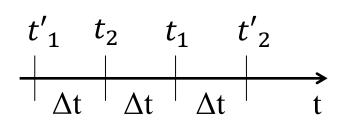
6

• The flavor of B_b is mixed during its travel and the flavor is determined at the timing of its decay.

 $\underset{B^0}{\overset{B_a}{\longleftarrow}} B^0 \overline{B^0} \xrightarrow{B_b} \overline{B^0} \xrightarrow{B^0} B^0 \xrightarrow{B^0} B^0$

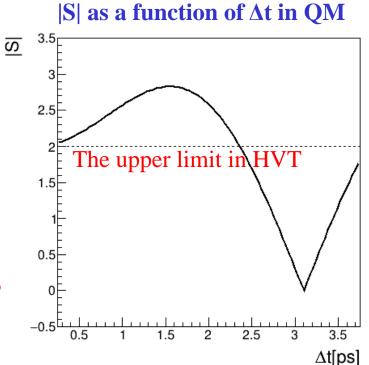
Bell inequality in flavor correlation (1)

PDF of $B_{a/b}$ with flavor (A, B) at their decay times $(t_{a/b})$:


$$P_{t_{a},t_{b}}^{Q}(A,B) = \frac{\left(N_{(t_{a},t_{b})}^{B^{0}B^{0}} + N_{(t_{a},t_{b})}^{\bar{B}^{0}\bar{B}^{0}} + N_{(t_{a},t_{b})}^{\bar{B}^{0}\bar{B}^{0}\bar{B}^{0}\bar{B}^{0}} + N_{(t_{a},t_{b$$

Bell inequality in flavor correlation (2)

Defining $t_2 - t'_1 = t_1 - t_2 = t'_2 - t_1 = \Delta t$,


 $|S^{Q}(\Delta t)| = |C^{Q}(t_{1}, t_{2}) + C^{Q}(t'_{1}, t_{2}) + C^{Q}(t_{1}, t'_{2}) - C^{Q}(t'_{1}, t'_{2})|$ -\cos(\Delta M\Delta t) -\cos(\Delta M\D

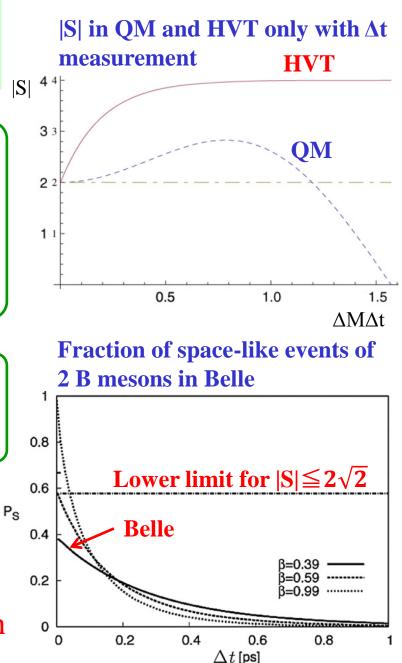
 $= \left|-3\cos(\Delta M \Delta t) + \cos(3\Delta M \Delta t)\right|$

In QM, |S| has the maximum value of $2\sqrt{2}$ at $\Delta t = 1.55$ ps. \rightarrow QM violates Bell inequality

•
$$\Delta M = 3.334 \times 10^{-10} \text{ MeV}$$

Previous experiments

B meson (Belle) [arXiv:0310192 (2003)]

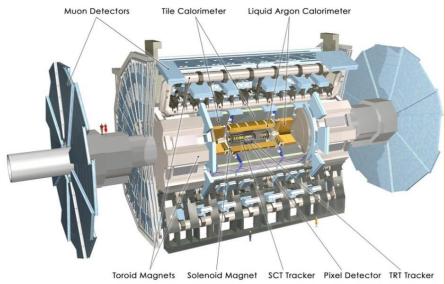

- A measurement only for Δt , where (t_a, t_b) was not measured separately.
- |*S*| has the maximum value of 4 and includes that of QM.
- K meson (CPLEAR) [PLB422, 339-348] A measurement only for $C^Q(t_a, t_b)$ and is not Bell test.

- Both experiments

9

Most of 2 mesons are not space-like and the locality is not ensured.

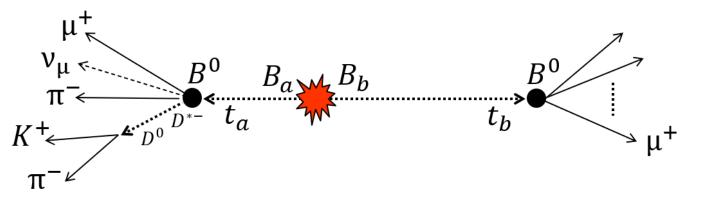
The previous experiments were not enough for Bell test on the flavor entanglement.



ATLAS experiment

- High energy experiment using proton-proton collisions at LHC (Large Hadron Collider).
- The experiment started in 2010 and discovered Higgs boson in 2012.

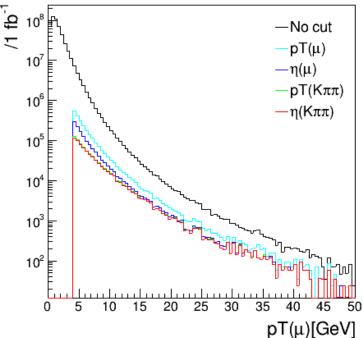
	Period	Integrated luminosity
Run1	2010-12	5.1fb-1 @7TeV 21.3 fb-1 @8 TeV
Run2	2015-18	149 fb-1 @13 TeV
Run3	2021-24	180 fb-1 @~14 TeV


- The instantaneous luminosity reached more than twice of LHC design value $(2.2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1})$ and # of pile-up (μ) became <60.
- Except for usual pp collisions, data are taken in low- μ operation (μ ~1) and heavy ion collisions.

Simulation study

- The simulation was performed for truth level study with PYTHIA8.245.
- The low- μ (μ ~1) operation with 1 fb⁻¹ of data was assumed.

11


- The sensitivity to Bell inequality violation was evaluated with $B^0\overline{B}^0$ events from $\lceil gg/qq \rightarrow b\overline{b} \rfloor$ (69µb) and $\lceil gg/qq \rightarrow jj \rfloor$ (319µb).
- $\lceil B^0 \rightarrow D^{*-} \mu^+ \nu \ (D^{*-} \rightarrow D^0 \pi^-, D^0 \rightarrow K^+ \pi^-) \rfloor$ events were selected.
 - > B meson flavor can be identified with charge sign of decay objects.
 - > The decay time (t_a, t_b) can be measured, reconstructing vertex with μ^+ and π^- from D^{*-} decay ($\sigma_t \sim 0.11 \text{ ps}$)

Acceptance cut

- Selection criteria used in ^ΓD^{*+}μ⁻X J analysis at ATLAS was assumed [Nucl. Phys. <u>B 864 (2012) 341-381</u>].
- $\lceil pT(\mu) > 6 \text{ GeV} \rfloor$ was modified to $\lceil > 4 \text{ GeV} \rfloor$
- $\lceil pT(K^{\pm}\pi^{\mp}\pi^{\mp}) > 4.5 \text{ GeV} \rfloor$ was modified to $\lceil >3 \text{ GeV} \rfloor$

Cut	Total acceptance (A)	$\sigma \times A \text{ (pb)}$
No cut	1.0	247,611
$pT(\mu) > 4 \text{ GeV}$	5.03×10^{-3}	1,246
$ \eta(\mu) < 2.4$	2.79×10^{-3}	690
$pT(K^{\pm}\pi^{\mp}\pi^{\mp}) > 3 \text{ GeV}$	1.56×10^{-3}	385
$ \eta(K^-\pi^+\pi^+) < 2.5$	1.49×10^{-3}	369

Event selection

	Efficiency	Comment
Track reconstruction (ε_{reco})	0.483	From $\lceil D^{*+}\mu^{-}X \rfloor$ analysis
Trigger (ɛ _{trigger})	0.429	 (0.819 × 0.8)² was assumed. 0.819 is efficiency for single-μ trigger with pT>6GeV.

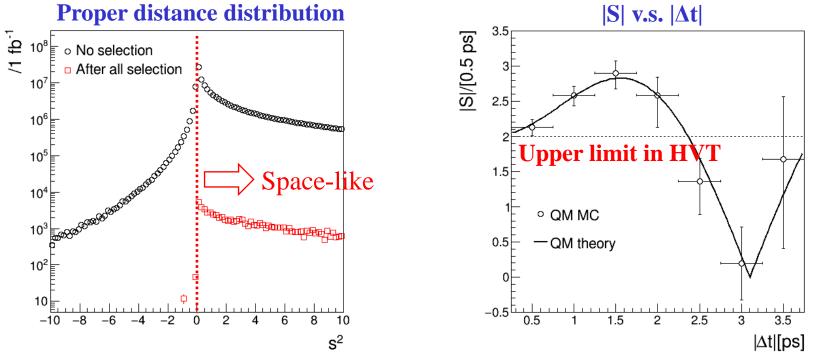
Selection criteria ($\varepsilon_{selection}$)	Total eff.	Comment
pT > 1 GeV for π^+/K^- in D^0 candidates	0.510	
$pT > 250 \text{ MeV for } \pi^+ \text{ from } D^{*+}$	0.452	
• $ m(K^{-}\pi^{+}) - m(D^{0}) < 64 \text{ MeV } (pT(K^{-}\pi^{+}\pi^{+}) > 12 \text{ GeV}, \eta(K^{-}\pi^{+}\pi^{+}) > 1.3)$ • $ m(K^{-}\pi^{+}) - m(D^{0}) < 40 \text{ MeV elsewhere}$	0.209	Assume σ^2 cut (0.46)
$2.5 \text{ GeV} < m(D^{*+}\mu^{-}) < 5.4 \text{ GeV}$	0.097	Assume σ^2 cut (0.46)

 $\varepsilon_{total} (\varepsilon_{reco} \times \varepsilon_{trigger} \times \varepsilon_{selection}) = 0.020$

 $(\sigma \times A) \times \varepsilon_{total} \times L(pb^{-1}) = 7.4L(pb^{-1})$ events \rightarrow 7.4k events with 1fb⁻¹.

Background & systematic errors

Background


- Contamination of $B^0 \overline{B}{}^0$ originated from different gluons is less than 0.1% (negligible)
- BG contamination in $\lceil D^{*+}\mu^{-}X \rfloor$ analysis was $\lceil 6.8 \pm 0.26\% \rfloor$, which is taken into account in this study.
 - ≻ 6.2% is combinatorial BG (e.g.: $\lceil c \rightarrow D^{*+}X \rfloor$ and $\lceil \bar{c} \rightarrow \mu^{-}X' \rfloor$)

Systematic errors on |S|

- BG contamination
 - > Shifting the entries in one Δt bin by 0.26%, the maximum shift in |S| was adopted as the systematic error of BG contamination (most conservative evaluation).
 - > BG should be smaller for $\mu \sim 1$ since $\lceil D^{*+}\mu^{-}X \rfloor$ analysis used data with $\mu > 2$.
- Δt resolution
 - > Evaluated by fluctuating Δt with the resolution $(0.11\sqrt{2}ps)$ 1000 times.

Sensitivity to Bell inequality violation

- More than 99% B meson pairs are space-like in ATLAS.
- $|S(1.5 \pm 0.25 \text{ ps})| = 2.89 \pm 0.17 \text{ (stat)} \pm -0.13 \text{ (syst)}$
 - > |S| has the maximum value at 1.55ps and deviation from 2 can be detected with 4.2 σ significance.
 - The first Bell test on B meson flavor is possible!

Summary & conclusions

- Bell inequality provides the upper limit of correlation between two particles that HVT should satisfy.
- Entangled state of two meson flavors in QM violates Bell inequality.
- The previous experiments on meson flavor entanglement were inconclusive for Bell inequality violation only with Δt measurement without satisfying the locality condition.
- Our simulation study concluded that Bell test on B meson flavor is possible at ATLAS experiment.
 - > Bell inequality violation can be tested with 4.2 σ precision.
- We organized analysis group in ATLAS and aim the measurement during Run 3 (2022-24).
- The paper was accepted and will be published in PRD ([arXiv:2106.07399]).

Q&A in Bell test with meson flavor

- Q1 |S| has the maximum value at 1.55 ps. Is the oscillation frequency is too long with respect to lifetime of B_d^0 (1.5 ps)?
- A1 No problem since $C^{Q}(t_{a}, t_{b})$ is normalized by # of events at (t_{a}, t_{b}) .
- Q2 HVT assumes free will of experimenter in a measurement but decay of B_d^0 is determined by nature. Can it be assumed as free will?
- A2 We assumed that B_d^0 decay randomly and it corresponds to free will of the particle. Also in Aspect experiment, a random generator is used to operate the detector and it is assumed as free will.

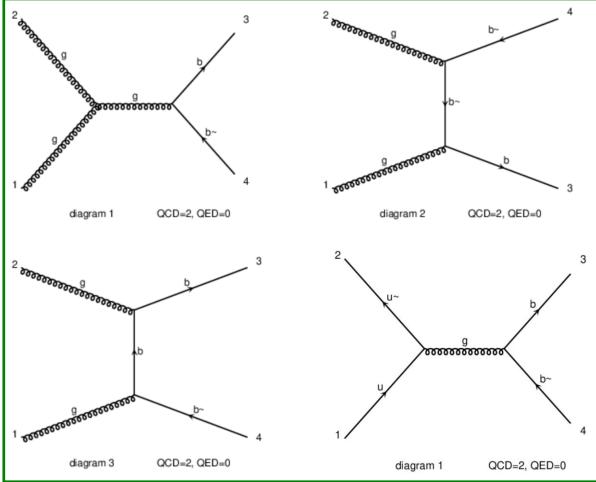
Possible loophole in Bell test

• Free will loophole

This study is assumed that the decay of a particle happened randomly with particle's will.

• Efficiency loophole

About 82.8% $(2\sqrt{2} - 2)$ of efficiency is necessary to close the efficiency loophole. Since the efficiency in this study is only 2%, fair sampling assumption is assumed.


• Locality loophole

2 particles decay randomly and they are space-like, therefore, locality loop hole is closed successfully.

bb events in proton-proton collision

 $gg/q\overline{q} \rightarrow bb$ 2 TRABABABABABAB 3

 $b\overline{b}$ from $\lceil gg/q\overline{q} \rightarrow jj \rfloor$

Cross-section of " $gg/q\overline{q} \rightarrow bb$ " events decaying into "*D*^{*}μν"

	Cross-sec. [nb]
$B^0 \overline{B}{}^0$	4.5
$B^{*0}\overline{B}^{*0}$	21.8
$B^0\overline{B}^{*0}$	19.8
Total	46.2

20

Decay time resolution in ATLAS

- Refer to $\Delta\Gamma$ measurement " $B^0 \rightarrow J/\psi K_s$, $B^0 \rightarrow J/\psi K^*$ " in ATLAS
 - > [JEP06(2016)081](more detail is in[ATL-COM-PHYS-2015-170])
- Decay length ($L_{prop}^B = ct$) is calculated as follows:

> $x^{J/\psi}$: Decay position of " $J/\psi \rightarrow \mu\mu$ "

$$L_{\text{prop}}^{B} = \frac{(x^{J/\psi} - x^{\text{PV}})p_{x}^{B} + (y^{J/\psi} - y^{\text{PV}})p_{y}^{B}}{(p_{\text{T}}^{B})^{2}}m_{B^{0}} = \frac{\vec{d} \cdot \vec{k}_{\perp}}{\beta_{\perp}\gamma_{\perp}}$$

ATLAS v.s. Belle

Decay length/time measurement

• $2 B^0$ mesons travel along the z-axis in Belle.

→ The production position of B^0 is unknown due to beam size in the z-direction. Only Δz and Δt can be measured.

• 2 B^0 mesons can go to xy direction in ATLAS, production and decay position of an individual B^0 mesons can be measured.

Resolution of decay length/time

- Belle: $\sigma(\Delta z) \sim 100$ um, $\sigma(\Delta t) \sim 1.2$ ps
- ATLAS: $\sigma(L_{prop}^B = ct) \sim 34 \text{ um}, \sigma(t) = 0.11 \text{ ps}$