The XXVIII International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2021)

Contribution ID: 491

Type: not specified

Odd-dimensional analogue of the Euler characteristic

Wednesday 25 August 2021 16:00 (40 minutes)

When compact manifolds X and Y are both even dimensional, their Euler characteristics obey the Kunneth formula χ (X × Y) = χ (X) χ (Y). In terms of the Betti numbers of b_p (X), χ (X) = Σ_p (-1)^p b_p (X), implying that χ (X) = 0 when X is odd dimensional. We seek a linear combination of Betti numbers, called ρ , that obeys an analogous formula ρ (X × Y) = χ (X) ρ (Y) when Y is odd dimensional. The unique solution is ρ (Y) = $-\Sigma_p$ (-1)^p p b_p(Y). Physical applications include: (1) $\rho \rightarrow$ (-1)^m ρ under a generalized mirror map in d = 2m+1 dimensions, in analogy with $\chi \rightarrow$ (-1)^m χ in d = 2m; (2) ρ appears naturally in compactifications of M-theory. For example, the 4-dimensional Weyl anomaly for M-theory on X⁴ × Y⁷7 is given by χ (X⁴) ρ (Y⁷7) = ρ (X⁴ × Y⁶7) and hence vanishes when Y⁶7 is self-mirror. Since, in particular, ρ (Y ×S¹1) = χ (Y), this is consistent with the corresponding anomaly for Type IIA on X⁴ × Y⁶6, given by χ (X⁴) χ (Y⁶6) = χ (X⁴ × Y⁶6), which vanishes when Y⁶ 6 is self-mirror; (3) In the partition function of p-form gauge fields, ρ appears in odd dimensions as χ does in even.

Presenter: BORSTEN, Leron

Session Classification: Gravity and Supergravity

Track Classification: Gravity and Supergravity