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Dimensional reduction has played a central role in many of the developments in the under-
standing of string theory and M-theory. Some dimensional reductions are simple and easily
understood, such as reduction on a circle or torus. Some are more subtle, such as the re-
duction of D = 11 supergravity on S 7 to give four-dimensional gauged N = 8 supergravity. It
became clear that the consistency of such reductions was intimately associated with supersym-
metry, and more recently, with double field theory. But it was conjectured in 1986, and proven in
2015, that non-trivial group manifold consistent reductions of the effective action for the bosonic
string in any dimension also exist, and for these true supersymmetry obviously cannot play a
role. The arbitrary-dimensional bosonic string can nevertheless be pseudo-supersymmetrised
(i.e. supersymmetry modulo quartic fermion terms), and this can provide a way to understand
the consistent reductions. In recent work, we have shown that the N = 1 supersymmetric ex-
tension of DFT for the bosonic string extends also to a pseudo-supersymmetric DFT in arbitrary,
which draws together the strands of the consistent truncation story.



Dimensional Reductions

In any dimensional reduction, we want the solutions of the lower-dimensional theory to be solu-
tions also of the higher-dimensional theory. This is the requirement that we have a Consistent
Reduction.

There are three principal kinds of dimensional reduction that have been considered:

• Reduction on a circle or torus: These, first considered by Kaluza and Klein, are straight-
forward; the reduction ansatz is invariant under the circle U(1) isometries, and so the
reduction is obviously consistent.

• Group manifold reduction on a group G, keeping all the lower-dimensional fields that
are invariant under GL (or under GR): These were pioneered by Bryce De Witt (1963),
and they are also obviously consistent. (Non-linear terms built from the GL singlets that
are retained can never excite the GL non-singlets that were truncated out.)

• Reduction on coset spaces, such as spheres: Pauli (1953) was the first to propose
these; he envisioned a reduction of six-dimensional Einstein gravity on S 2, to give a four-
dimensional theory with the gauge bosons of S U(2). But he also realised that it wouldn’t
work; it would be inconsistent. (Because the S U(2) gauge bosons would try to act as
sources for massive spin-2 modes that have been truncated. Equivalently stated, the six-
dimensional equations do not reduce to purely four-dimensional ones.) He didn’t publish,
but wrote to Abraham Pais about it.

• It was only with the advent of supergravity that Pauli’s idea of getting the gauge bosons of
the S O(n + 1) isometry group in an S n reduction was successfully resurrected. It turns out
that properties of a particular supergravity theory, and a particular sphere, can conspire to
circumvent the inconsistency problem. The first successful consistent sphere reduction
was the compactification of D = 11 supergravity on S 7 to give four-dimensional SO(8)-
gauged N = 8 supergravity.



Pauli Reductions; Problem and Resolution

• The reason why Pauli’s original idea doesn’t work can easily be seen by considering the
metric reduction ansatz:

dŝ2
6 = gµν dxµ dxν + gmn (dym + Km

I AI
µ dxµ)(dyn + Kn

K AJ
ν dxν) , (1)

where KI = Km
I ∂/∂ym are the S O(3) Killing vectors on the 2-sphere with metric gmn dym dyn.

The four-dimensional components of the six-dimensional Einstein equation R̂MN = 0 then
imply the “four-dimensional” Einstein equation

Rµν − 1
2R gµν = 1

2Km
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J gmn (F I
µρ FJ

ν
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4F I
ρσ FJ ρσ gµν) + · · · . (2)

The problem is that Km
I Kn

J gmn are functions on S 2, depending on the ym coordinates of
the 2-sphere (and the RHS is actually trying to source massive spin-2 modes that have
been truncated out). (We are being a bit schematic here and omitting scalar fields; but
they wouldn’t help with this problem.)

• D = 11 supergravity on S 7 evades this problem because the S O(8) gauge bosons AI
µ

enter also in the ansatz for the 4-form field strength. At the linearised level

Fµνmn = εµνρσ F I ρσ∇mKI n + · · · , (3)

and the four-dimensional Einstein equation becomes
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and now the S O(8) tensor in the square brackets is actually a constant on S 7 (it is just
δIJ). (Again we are being a bit schematic, omitting scalars and factors, but it all works
out.)

• Similar mechanism happens for the other examples of consistent Pauli reductions, such
as type IIB on S 5, and D = 11 supergravity on S 4.



A Group Theoretic Argument

There is another way of seeing why a generic Pauli reduction would be inconsistent, and how
the problem might be evaded in certain special cases (Cvetič, Lü, CNP; hep-th/0003286):

• Suppose in some particular theory a consistent Pauli reduction on S n does exist. In the
lower dimension this will give an S O(n + 1) gauge theory, with a gauge coupling g given
by the inverse radius of the sphere.

• One could then take the ungauged limit g → 0, corresponding to sending the sphere
radius to infinity. This would be equivalent to a reduction on the torus T n.

• Going the other way, one could construct the g , 0 gauged theory by gauging an S O(n+1)
subgroup of the global symmetry group of the ungauged theory.

• To be able to do this, it would be necessary for the global symmetry group of the T n-
reduced theory to be at least big enough to contain S O(n + 1).

• For a generic higher-dimensional theory, the reduction on T n gives a lower-dimensional
theory with GL(n,R) global symmetry. This has maximal compact subgroup S O(n) – which
clearly cannot contain S O(n + 1)!

• So the Pauli S n reduction of a generic theory could not possibly be consistent. To stand a
chance, the higher-dimensional theory must have some special features that result in its
T n reduction having an enhanced global symmetry.

• Precisely such symmetry enhancements are commonly seen in the toroidal reductions of
supergravity theories. For example:



Global Symmetries of T n-reduced Supergravities

• When D = 11 supergravity is reduced on T n, the generic global GL(n,R) global symmetry
is enhanced to En,n (Cremmer-Julia symmetry). In particular

T 7 : GL(7,R) −→ E7,7 ⊃ S U(8) ⊃ S O(8) = Isometry group of S 7 ,

T 4 : GL(4,R) −→ E5,5 = S L(5,R) ⊃ S O(5) = Isometry group of S 4 .

• Similarly, type IIB supergravity reduced on T 5:

T 5 : GL(5,R) −→ E6,6 ⊃ USp(8) ⊃ S O(6) = Isometry group of S 5 .

• In all these cases, the global symmetry enhancement occurs because of additional form
fields in the supergravity theory. The detailed structure of the theory plays an essential
role. For example, in D = 11 supergravity the 3-form potential A, and its Chern-Simons
coupling term 1

6F ∧ F ∧ A, is responsible. The precise coefficient 1
6 is essential for the

global symmetry enhancement to work. This is also exactly the coefficient needed for the
bosonic theory to be supersymmetrisable.

• This seems to suggest that supersymmetry may play an integral role in the consistency of
Pauli reductions. Indeed, the complete proof of the consistency in the first example that
was fully established, namely the S 7 reduction of D = 11 supergravity, made extensive
use of supersymmetry in order to construct the reduction ansatz (de Wit and Nicolai).

• But there is a class of examples where supersymmetry cannot possibly play a role:



Pauli Reduction of Bosonic String on Group Manifold

• In a probably ill-fated attempt to derive the heterotic string from the bosonic string, in 1986
Mike Duff, Bengt Nilsson, Nick Warner and I played around with the idea of compactifying
the bosonic string in 506 dimensions on the group manifold E8 × E8.

• In the course of this work, we discovered that the bosonic string compactified on any
group manifold G exhibited a “conspiracy” involving the reduction ansätze for the metric
and for the B field, suggesting that the lower-dimensional Einstein equation would be
consistent in a Pauli reduction retaining all the gauge bosons of the full GL ×GR isometry
of the group manifold G, and not just the GL or GR of a DeWitt reduction. We conjectured
that in fact such a Pauli reduction would be consistent.

• This conjecture was further supported by the group theory argument discussed previ-
ously. If the bosonic string in any dimension is reduced on T n, then the global sym-
metry group of the lower-dimensional theory is enhanced from GL(n,R) to S O(n, n). Its
S O(n) × S O(n) maximal compact subgroup is large enough to contain G × G, for any
compact semisimple Lie group G of dimension n.

• More recently, Arnaud Baguet and Henning Samtleben invited me to join with them on a
project which proved the conjecture fully, by making use of double field theory techniques
(arXiv:1510.08926).

• So where does this leave the idea that supersymmetry might provide an underlying ex-
planation for the consistency of Pauli reductions? After all, there is no supersymmetry in
506 dimensions, or in any dimension above 11!

• Maybe asking for true supersymmetry is too strong...



Pseudo-Supersymmetry

• In 2011, with Hong Lü and Zhao-Long Wang, we investigated the question of whether
one could relax the strict requirements for having a truly supersymmetric theory, while still
retaining many of the nice features that we like to use in practice:

• Useful properties of supersymmetric theories include: Existence of Killing spinors in spe-
cial (supersymmetric) bosonic backgrounds; Existence of first-order BPS equations; Use
of Killing spinors for constructing consistent Pauli reduction ansätze.

• Features that are necessary for true supersymmetry, but which we often don’t directly
make use of, include: Full supersymmetry of the Lagrangian including the quartic-fermion
terms; full closure of the supersymmetry transformations on a super-algebra.

• We examined what would happen if one followed the steps of trying to supersymmetrise
a bosonic Lagrangian, by parameterising possible fermionic terms and possible terms
in “supersymmetry” transformation laws, and then requiring invariance of the total La-
grangian...

• ...But, using the rule that anything that involved fermions beyond the quadratic order would
be dropped. Never mind that these terms, if one kept them, would fail to work!

• This formed the basis of what we called pseudo-supersymmetry (arXiv:1105.6114). We
can still have all the benefits of first-order BPS equations, Killing spinors in pseudo-
supersymmetric bosonic backgrounds, etc.

• Importantly, this does not lead to a free-for-all where “anything goes.” There are still strict
conditions that must be satisfied in order to construct pseudo-supersymmetric theories.
But there is quite a lot more lattitude than in true supersymmetric theories. For example...



Pseudo-Supersymmetry of the Bosonic String

• In the Einstein frame, the D-dimensional bosonic string Lagrangian density is

e−1L = R − 1
2(∂Φ)2 − 1

12ea Φ H2 ,

with the constant a2 = 8/(D − 2). The dilaton coupling a is dictated by the requirement
that the global symmetry after T n reduction is enhanced from GL(n,R) to S O(n, n).

• By parameterising all possible terms in a fermionic Lagrangian and in transformation laws
(up to quadratic order in fermions), we solved for the coefficients necessary to obtain
invariance (neglecting beyond quadratic in fermions). Gives a unique solution in any
dimension D, and fixes a to be as given above. In the string frame (arXiv:1105.6114):

e−1L = e−2Φ
[
R + 4(∂Φ)2 − 1

12H2 − ψ̄µ Γµνρ Dνψρ + λ̄D/λ − 2i
√
β λ̄Γµν Dµψν

−2ψ̄µ Γµψρ ∂
ρΦ + 2i√

β
ψ̄µΓ

νΓµλ ∂νΦ

+Hνρσ

{
1

24ψ̄µ Γµνρσλ ψλ + 1
4ψ̄

ν Γρ ψσ − 1
24λ̄Γνρσ λ + i

12
√
β
ψ̄µ Γµνρσ λ

}]
,

with the pseudo-supersymmetry transformation rules

δψµ = Dµ ε −
1
8Hµνρ Γνρ ε , δλ = i

√
β
(
Γµ ∂µΦ −

1
12 Γµνρ Hµνρ

)
ε ,

δea
µ = −1

2ψ̄µ Γa ε , δΦ = − i
4
√
β
ε̄ λ , δBµν = ε̄ Γ[µ ψν] .

Here β is either +1 or −1, according to dimension, with ΓT
µ = βCΓµC−1.

• By doubling the fermions, can also add a “conformal anomaly” term:

e−1Lc = e−2Φ
[
− 1

2m2 − m
2
√

2β

(
ψ̄µ Γµν ψν + 2

√
−β ψ̄µ Γµλ − λ̄ λ

)]
,

δextra ψµ = 0 , δextra λ = i
2
√

2
m ε .



Pseudo-Supersymmetric Vacuum

• With the conformal anomaly term included, there exist stablised vacuum solutions of the
form (Minkowski)(D−dimG)×G, for any semi-simple compact group G. These solutions are
of the form

dŝ2
D = ηµν dxµ dxν + ds2(G) , Hmnp = c fmnp , Φ = const.

with ds2(G) the bi-invariant (Einstein) metric on G, and fmnp the structure constants of G.
(The 1986 idea for getting the heterotic string from the bosonic string had G = E8 × E8
and D = 506, yielding a (Minkowski)10 lower-dimensional vacuum.)

• The spin connection and the curvature on G is related to the structure constants, with

ωab = −1
2c fabc ec , Rabcd = 1

4c2 fabe fcd
e , Rab = 1

4c2 CA δab ,

with CA being the quadratic Casimir. Hence from the field equations Φ = 0 and

m2 = 1
3c2 CA dim G .

• The pseudo-dilatino transformation law becomes

δλ = c
12 fabc Γabc ε + im

2
√

2
ε .

1
6 fabc Γabc has equal numbers of eigenvalues ±i

√
1
6CA dimG, implying δλ = 0 for the half

with eigenvalue −i
√

1
6CA dimG. The pseudo-gravitino transformation law then just gives

∂µε = 0 in Minkowski and ∂mε = 0 on G (since Habc cancels againt the spin connection on
G). Thus the (Minkowski)(D−dimG) ×G vacuum is pseudo-supersymmetric.

• The full consistent reduction on G yields a pseudo-supersymmetric gauge theory with
G ×G gauge group in the lower dimension.



Generalised Geometry and Pseudo-Supersymmetry

• We (Falk Hassler, Haoyu Zhang, CNP) most closely follow the discussion for N = 1 ten-
dimensional supersymmetric DFT in Hohm and Kwak, arXiv:1111.7293 (and see also
Coimbra, Strickland-Constable and Waldram, arXiv:1107.1733). Define the generalised
dilaton d and its pseudo-superpartner ρ:

d = Φ − 1
2 log e , ρ = Γµ ψµ + i√

β
λ .

Define also the generalised frame field with components

E(+)
a = 1

√
2

(eµa ∂µ + eµa dxµ − eµa Bµν dxν) , E(−)
a = 1

√
2

(eµa ∂µ − eµa dxµ − eµa Bµν dxν) . (5)

These each define the 2D components of a vector on the generalised tangent space
T M + T ∗M.

• The pseudo-supersymmetry transformation rules are now simply written as

δψµ = ∇
(−)
µ ε , δρ = Γµ∇

(+)
µ ε , δextra ψµ = 0 , δextra ρ = − 1

2
√

2β
m ε ,

〈E(−)
b , δE(+)

a 〉 = −1
2 ε̄ Γb ψa , δd = −1

4 ε̄ ρ .

Here, the O(D) × O(D) covariant derivatives are defined by

∇
(−)
µ ε = (Dµ −

1
8Hµνρ Γνρ) ε , Γµ∇

(+)
µ ε = (Γµ Dµ −

1
24Hµνρ Γµνρ − Γµ ∂µΦ) ε . (6)

The Lagrangian takes the simple form

e2dLD = R + 4(∂Φ)2 − 1
12H2 − ψ̄a Γb∇

(+)
b ψa − β ρ̄Γa∇

(+)
a ρ + 2ψa∇

(−)
a ρ . (7)

The additional conformal anomaly is also simplified, becoming

e2dLc = −
m2

2
−

m
√
β

2
√

2
(ρ̄ ρ − β ψ̄µ ψµ) .



O(D,D) Structure and Covariant Derivatives

• We introduce an O(D,D) invariant metric ηAB and also the generalised tangent-frame
metric HAB that breaks this to O(D) × O(D):

ηAB =

(
ηab 0
0 −ηāb̄

)
, HAB =

(
ηab 0
0 ηāb̄

)
.

In coordinate indices we have the generalised metric

H IJ =

(
gi j − Bik gk` B` j −Bik gk j

gik Bk j gi j

)
.

(Using i, j, . . . for coordinate indices now, with corresponding I, J, . . . for the generalised
coordinate indices.) The metrics HAB and H IJ are related by the generalised vielbein
EA

I:

H IJ = EA
I EB

JHAB , EA
I =

(
E(+)

a i E(+)
a

i

E(−)
ā i E(−)

ā
i

)
,

where E(+)
a and E(−)

ā are the generalised frame fields defined previously in eqn (5).

• The EA
I generalised vielbein gives a torsion-free connection, with the covariant deriva-

tives ∇(+) and ∇(−) we saw earlier in the pseudo-supergravity transformation rules and
action; ∇A = 1√

2
(∇(+)

a ,∇(−)
ā ). This satisfies ∇A ηBC = 0, ∇AHBC = 0 and

∫
e−2d ∇A VA = 0.



Consistent Truncations

• Define generalised Lie derivative LξV I = ξJ ∇JV I + (∇IξJ − ∇Jξ
I)V J + w (∇Jξ

J)V I on a
weight w vector, etc. Then one has FAB

C and FA defined by

LEA
EB = FAB

C EC , LEA
e−2d = FA e−2d , (with FABC = F[ABC]) .

• Can now describe consistent truncation on a group manifold G. With the O(D,D) struc-
ture, where D = dim G, and FABC the structure constants of the corresponding Lie algebra
g ⊂ O(D,D); [tA, tB] = FAB

C tC. Then FABC and FA are constants. There is then a covari-
ant derivative DA that is flat (no curvature), but with torsion FABC, and

FABC = 3E[A
I ∂IEB

J EC] J , DI FABC = 0 , ∂I FABC = 0 . (8)

• The invariance conditions on FABC in eqn (8) do not have a unique solution, but one choice
is the one employed in arXiv: 1510.08296, Baguet, Samtleben, CNP,

√
2 E(+)

a = Km
(L) a ∂m − ηab (ιKb

(L)
B − Kb

(L) mdxm) ,
√

2 E(−)
a = Km

(R) a ∂m − ηab (ιKb
(R)

B + Kb
(R) mdxm) , (9)

where K(R) and K(L) denote the Killing vectors of the right-action and the left-action of G
on the group G, and B = − c

3! fabc Ka
(R) ∧ Kb

(R) ∧ Kc
(R). The tensor FABC has components

given by the structure constants of G:

Fabc = c
√

2
fabc , Fāb̄c̄ = c

√
2

fāb̄c̄ .

The dilaton must be constant on G, and FA vanishes.

• This provides the necessary framework for the consistent Pauli reduction on G, with GL ×

GR gauge bosons.



Squashed Group Manifold Vacua

• We saw already the (Minkowski)(D−dim G)×G pseudo-supersymmetric vacuum of the bosonic
string, where G is any semi-simple compact group G equipped with its bi-invariant Einstin
metric. All simple compact groups with dimension > 3 admit at least two inequivalent
homogeneous Einstein metrics. What about other inequivalent (Minkowski)(D−dim G) × G
vacua of the bosonic string?

• Consider S O(5) as an example. Define left-invariant 1-forms LIJ, with LIJ = L[IJ] and
dLIJ = LIK ∧ LKJ and I, J = 1, . . . 5. Any metric ds2 = xIJ,KL LIJ ⊗ LKL with constants
xIJ,KL = xKL,IJ is homogeneous and left-invariant. Solving the equations of motion be-
comes tractable if one restricts the coefficients so that some subgroup of GR is preserved.
For example, consider S O(5)L × S O(3)R-invariant metrics

ds̃2 = x1 L1i ⊗ L1i + x2 L2i ⊗ L2i + x3 Li j ⊗ Li j + x4 L12 ⊗ L12 ,

where i = 3, 4, 5. There are three such inequivalent (up to scale) Einstein metrics, for
(x1, x2, x3, x4) = (1, 1, 1, 1), (1, 2, 1, 2) or (14, 14, 4, 19) (arXiv:0903.2493.)

• The 3-form G = LIJ ∧LJK ∧LKI is closed, dG = 0. This is the 3-form fabc ea∧ eb∧ ec where
fabc are the structure constants. One can obtain a solution of the bosonic string equations
of the form

dŝ2
D = ηµν dxµ dxν + ds̃2 , H = c G , Φ = 0 ,

if d∗̃G = 0 in the squashed group-manifold metric ds̃2. We find two solutions (up to scale):

(x1, x2, x3, x4) = (1, 1, 1, 1) , or (x1, x2, x3, x4) = (1, 1, 3,−3) .
The first is the solution with the bi-invariant metric that we saw previously; it is pseudo-

supersymmetric. The second solution, which is S O(5) × S O(3)-invariant has no pseudo-
supersymmetry. Since x4 is negative, this metric on S O(5) is Lorentzian, with signature
(9, 1).



Summary

• Supersymmetry is a powerful tool for constructing consistent Pauli dimensional reduc-
tions, such as the S 7 reduction of D = 11 supergravity. But not all consistent Pauli
reductions can be understood using supersymmetry; notably, the reduction of the D-
dimensional bosonic string on a group manifold G, in a consistent truncation that retains
all the GL ×GR gauge bosons.

• Double field theory provides another powerful tool for constructing consistent Pauli reduc-
tions; including the bosonic string reduction on G. The N = 1 super-extension of DFT
cannot directly be generalised to the DFT of the bosonic string in general dimensions D,
because strict supersymmetry does not exist.

• For many purposes, the full closure of the supersymmetry transformations is not neces-
sary. Invariance of the Lagrangian modulo higher-order fermion terms suffices for finding
Killing spinors in bosonic backgrounds, first-order BPS equations, etc. Such a pseudo-
supersymmetric extension of the bosonic string does exist in arbitrary dimension D.

• We have shown how one can extend the DFT of the arbitrary-dimensional bosonic string
to incorporate pseudo-supersymmetry. This can be used in order to obtain consistent
Pauli reductions, etc. It seems plausible that all known consistent Pauli reductions occur
in (pseudo)-supersymmetric theories.

• We saw that the pseudo-supersymmetrised bosonic string admits pseudo-supersymmetric
Minkowski × G vacua, where G has its bi-invariant metric. Solutions exist also with
squashed metrics; examples we have studied have no pseudo-supersymmetry. Might
examples preserving some fraction of pseudo-supersymetry exist?

• Relaxing the strict requirement of invariance at the full quartic order in fermions opens up
possibilities for broader classes of pseudo-supersymmetric theories, in higher dimensions
where interesting geometric structures can arise. It is not an anarchic free-for-all though;
e.g. there is no N = 2 pseudo-supersymmetric extension.


