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Dimensional reduction has played a central role in many of the developments in the under-
standing of string theory and M-theory. Some dimensional reductions are simple and easily
understood, such as reduction on a circle or torus. Some are more subtle, such as the re-
duction of D = 11 supergravity on S’ to give four-dimensional gauged N = 8 supergravity. It
became clear that the consistency of such reductions was intimately associated with supersym-
metry, and more recently, with double field theory. But it was conjectured in 1986, and proven in
2015, that non-trivial group manifold consistent reductions of the effective action for the bosonic
string in any dimension also exist, and for these true supersymmetry obviously cannot play a
role. The arbitrary-dimensional bosonic string can nevertheless be pseudo-supersymmetrised
(i.e. supersymmetry modulo quartic fermion terms), and this can provide a way to understand
the consistent reductions. In recent work, we have shown that the N = 1 supersymmetric ex-
tension of DFT for the bosonic string extends also to a pseudo-supersymmetric DFT in arbitrary,
which draws together the strands of the consistent truncation story.



Dimensional Reductionsl

In any dimensional reduction, we want the solutions of the lower-dimensional theory to be solu-
tions also of the higher-dimensional theory. This is the requirement that we have a Consistent
Reduction.

There are three principal kinds of dimensional reduction that have been considered:

e Reduction on a circle or torus: These, first considered by Kaluza and Klein, are straight-
forward; the reduction ansatz is invariant under the circle U(1) isometries, and so the
reduction is obviously consistent.

e Group manifold reduction on a group G, keeping all the lower-dimensional fields that
are invariant under G, (or under Gg): These were pioneered by Bryce De Witt (1963),
and they are also obviously consistent. (Non-linear terms built from the G singlets that
are retained can never excite the G non-singlets that were truncated out.)

e Reduction on coset spaces, such as spheres: Pauli (1953) was the first to propose
these; he envisioned a reduction of six-dimensional Einstein gravity on S?2, to give a four-
dimensional theory with the gauge bosons of S U(2). But he also realised that it wouldn’t
work; it would be inconsistent. (Because the S U(2) gauge bosons would try to act as
sources for massive spin-2 modes that have been truncated. Equivalently stated, the six-
dimensional equations do not reduce to purely four-dimensional ones.) He didn’t publish,
but wrote to Abraham Pais about it.

e |t was only with the advent of supergravity that Pauli’s idea of getting the gauge bosons of
the SO(n+ 1) isometry group in an S reduction was successfully resurrected. It turns out
that properties of a particular supergravity theory, and a particular sphere, can conspire to
circumvent the inconsistency problem. The first successful consistent sphere reduction
was the compactification of D = 11 supergravity on S’ to give four-dimensional SO(8)-
gauged N = 8 supergravity.



\Pauli Reductions; Problem and Resolutionl

e The reason why Pauli’s original idea doesn’t work can easily be seen by considering the
metric reduction ansatz:

dﬁé = gy dX'dx” + gpn (dY" + K} Afl dx*')(dy" + K A; dx”), (1)

where K; = K}" d/dy™ are the § O(3) Killing vectors on the 2-sphere with metric g,,,, dy™ dy".
The four-dimensional components of the six-dimensional Einstein equation Ry = 0 then

imply the “four-dimensional” Einstein equation

R/JV_ %Rgﬂv = %K?Kggmn (F/{lngp — %F/IJO.FJpO-quV)+ cee (2)

The problem is that K" K} g, are functions on S 2, depending on the y" coordinates of

the 2-sphere (and the RHS is actually trying to source massive spin-2 modes that have
been truncated out). (We are being a bit schematic here and omitting scalar fields; but
they wouldn’t help with this problem.)

e D = 11 supergravity on S’ evades this problem because the S O(8) gauge bosons A/’l
enter also in the ansatz for the 4-form field strength. At the linearised level

F,uvmn = €uvpo Flpo- ViuKin+ -+, (3)

and the four-dimensional Einstein equation becomes

Ruv = 3R guv = %[K}n K7 gmn + (ViuKin) (VmK’})] (Fip Fyf = 3FL F1P7 gu)) + - - (4)

and now the S O(8) tensor in the square brackets is actually a constant on S7 (it is just
o77). (Again we are being a bit schematic, omitting scalars and factors, but it all works
out.)

e Similar mechanism happens for the other examples of consistent Pauli reductions, such
as type lIBon S, and D = 11 supergravity on S*.



A Group Theoretic Argumentl

There is another way of seeing why a generic Pauli reduction would be inconsistent, and how
the problem might be evaded in certain special cases (Cvetic, Lu, CNP; hep-th/0003286):

Suppose in some particular theory a consistent Pauli reduction on S” does exist. In the
lower dimension this will give an S O(n + 1) gauge theory, with a gauge coupling g given
by the inverse radius of the sphere.

One could then take the ungauged limit g — 0, corresponding to sending the sphere
radius to infinity. This would be equivalent to a reduction on the torus 7.

Going the other way, one could construct the g # 0 gauged theory by gauging an S O(n+1)
subgroup of the global symmetry group of the ungauged theory.

To be able to do this, it would be necessary for the global symmetry group of the 7"-
reduced theory to be at least big enough to contain SO(n + 1).

For a generic higher-dimensional theory, the reduction on 7" gives a lower-dimensional
theory with GL(n, R) global symmetry. This has maximal compact subgroup S O(n) —which
clearly cannot contain S O(n + 1)!

So the Pauli $” reduction of a generic theory could not possibly be consistent. To stand a
chance, the higher-dimensional theory must have some special features that result in its
T" reduction having an enhanced global symmetry.

Precisely such symmetry enhancements are commonly seen in the toroidal reductions of
supergravity theories. For example:



‘Global Symmetries of T"-reduced Supergravities'

When D = 11 supergravity is reduced on 7", the generic global GL(n, R) global symmetry
is enhanced to E,,,, (Cremmer-Julia symmetry). In particular

T7:  GL(1,R) — E77 > SU(8) > SO(8) = Isometry group of S’

T*:  GL(#4,R) — Ess = SL(5,R) 2 SO(5) = Isometry group of S*.

Similarly, type 1IB supergravity reduced on T°:

T3:  GL(5,R) — E¢g D USp(8) D SO(6) = Isometry group of S°.

In all these cases, the global symmetry enhancement occurs because of additional form
fields in the supergravity theory. The detailed structure of the theory plays an essential
role. For example, in D = 11 supergravity the 3-form potential A, and its Chern-Simons
coupling term %F AN F A A, is responsible. The precise coefficient % is essential for the
global symmetry enhancement to work. This is also exactly the coefficient needed for the
bosonic theory to be supersymmetrisable.

This seems to suggest that supersymmetry may play an integral role in the consistency of
Pauli reductions. Indeed, the complete proof of the consistency in the first example that
was fully established, namely the S’ reduction of D = 11 supergravity, made extensive
use of supersymmetry in order to construct the reduction ansatz (de Wit and Nicolai).

But there is a class of examples where supersymmetry cannot possibly play a role:



‘Pauli Reduction of Bosonic String on Group Manifoldl

In a probably ill-fated attempt to derive the heterotic string from the bosonic string, in 1986
Mike Duff, Bengt Nilsson, Nick Warner and | played around with the idea of compactifying
the bosonic string in 506 dimensions on the group manifold Eg X Eg.

In the course of this work, we discovered that the bosonic string compactified on any
group manifold G exhibited a “conspiracy” involving the reduction ansatze for the metric
and for the B field, suggesting that the lower-dimensional Einstein equation would be
consistent in a Pauli reduction retaining all the gauge bosons of the full G; X Gg isometry
of the group manifold G, and not just the G or G of a DeWitt reduction. We conjectured
that in fact such a Pauli reduction would be consistent.

This conjecture was further supported by the group theory argument discussed previ-
ously. If the bosonic string in any dimension is reduced on T", then the global sym-
metry group of the lower-dimensional theory is enhanced from GL(n,R) to S O(n,n). Its
S O(n) x S O(n) maximal compact subgroup is large enough to contain G x G, for any
compact semisimple Lie group G of dimension n.

More recently, Arnaud Baguet and Henning Samtleben invited me to join with them on a
project which proved the conjecture fully, by making use of double field theory techniques
(arXiv:1510.08926).

So where does this leave the idea that supersymmetry might provide an underlying ex-
planation for the consistency of Pauli reductions? After all, there is no supersymmetry in
506 dimensions, or in any dimension above 11!

Maybe asking for true supersymmetry is too strong...



Pseudo-Supersymmetry |

In 2011, with Hong LU and Zhao-Long Wang, we investigated the question of whether
one could relax the strict requirements for having a truly supersymmetric theory, while still
retaining many of the nice features that we like to use in practice:

Useful properties of supersymmetric theories include: Existence of Killing spinors in spe-
cial (supersymmetric) bosonic backgrounds; Existence of first-order BPS equations; Use
of Killing spinors for constructing consistent Pauli reduction ansatze.

Features that are necessary for true supersymmetry, but which we often don’t directly
make use of, include: Full supersymmetry of the Lagrangian including the quartic-fermion
terms; full closure of the supersymmetry transformations on a super-algebra.

We examined what would happen if one followed the steps of trying to supersymmetrise
a bosonic Lagrangian, by parameterising possible fermionic terms and possible terms
in “supersymmetry” transformation laws, and then requiring invariance of the total La-
grangian...

...But, using the rule that anything that involved fermions beyond the quadratic order would
be dropped. Never mind that these terms, if one kept them, would fail to work!

This formed the basis of what we called pseudo-supersymmetry (arXiv:1105.6114). We
can still have all the benefits of first-order BPS equations, Killing spinors in pseudo-
supersymmetric bosonic backgrounds, etc.

Importantly, this does not lead to a free-for-all where “anything goes.” There are still strict
conditions that must be satisfied in order to construct pseudo-supersymmetric theories.
But there is quite a lot more lattitude than in true supersymmetric theories. For example...



Pseudo-Supersymmetry of the Bosonic StringI

¢ In the Einstein frame, the D-dimensional bosonic string Lagrangian density is
e £L=R-100) - L' H?,

with the constant > = 8/(D — 2). The dilaton coupling a is dictated by the requirement
that the global symmetry after 7" reduction is enhanced from GL(n, R) to S O(n, n).

e By parameterising all possible terms in a fermionic Lagrangian and in transformation laws
(up to quadratic order in fermions), we solved for the coefficients necessary to obtain
invariance (neglecting beyond quadratic in fermions). Gives a unique solution in any
dimension D, and fixes a to be as given above. In the string frame (arXiv:1105.6114):

el L = e|R+4(00) - 5H - §, T Dy, + 1PA = 2i\JBAT Dy,
~201, T, D + % o, T4 20,D

+Hypo {20, D07 g + 307 TP 47 = 242 s 7 )
with the pseudo-supersymmetry transformation rules
Sy = Dye—3Hu,T"e,  61=iB(I*0,®— 5" Hyp)e.
ocf, = -3, Ie€, 5CD——W6/1 5Bﬂvzer[ﬂ¢/ﬂ.

Here S is either +1 or —1, according to dimension, with FZ =pBCT, c1.
e By doubling the fermions, can also add a “conformal anomaly” term:
-1 _ =20 _ 1.2 m T MY .7 TH)Y) _ )
el L = | —im 2\@(%r by + 2N=B U, T - 22)].

5extralﬁ,u = 0, 5extra/l:2—i/§m6.



Pseudo-Supersymmetric Vacuum I

e With the conformal anomaly term included, there exist stablised vacuum solutions of the
form (Minkowski)(D_dimG) X G, for any semi-simple compact group G. These solutions are

of the form
dss =y dx*dx’ +ds*(G),  Huwp = funp, @ =const.

with ds?(G) the bi-invariant (Einstein) metric on G, and fmnp the structure constants of G.
(The 1986 idea for getting the heterotic string from the bosonic string had G = Eg X Ejg
and D = 506, yielding a (Minkowski) o lower-dimensional vacuum.)

e The spin connection and the curvature on G is related to the structure constants, with

Wap = _%C Jabe €, Rapea = %02 Jave fed® s Rap = %02 Cadap
with C4 being the quadratic Casimir. Hence from the field equations ® = 0 and

m’ = %CZCAdimG.

e The pseudo-dilatino transformation law becomes

_ C abc im
0 = 5 fave T 6+2\/§6.

%fabc [“*¢ has equal numbers of eigenvalues ii,/%CA dimG, implying 64 = O for the half

with eigenvalue —i‘/%CA dimG. The pseudo-gravitino transformation law then just gives

d,€ = 0 in Minkowski and d,,¢e = 0 on G (since H,,. cancels againt the spin connection on
G). Thus the (Minkowski) ,_dimg, %X G vacuum is pseudo-supersymmetric.

e The full consistent reduction on G yields a pseudo-supersymmetric gauge theory with
G X G gauge group in the lower dimension.



Generalised Geometry and Pseudo-SupersymmetryI

e We (Falk Hassler, Haoyu Zhang, CNP) most closely follow the discussion for N' = 1 ten-
dimensional supersymmetric DFT in Hohm and Kwak, arXiv:1111.7293 (and see also
Coimbra, Strickland-Constable and Waldram, arXiv:1107.1733). Define the generalised
dilaton d and its pseudo-superpartner p:

d:(I)—%loge, p:F“wN+L\/'_ﬁ/l.
Define also the generalised frame field with components
E,) = 5 (€, + euqdx =&y Bydx’),  E; = J5(id,—euadr =€y By dx’).  (5)

These each define the 2D components of a vector on the generalised tangent space
TM+T*M.

e The pseudo-supersymmetry transformation rules are now simply written as

oy, = VL_) e, op=1I" Vﬁ) €, Oextra Wy = 0, Oextra = _ﬁ me,
(B, 0Ey = —YeTyy,,  o6d=—jép.
Here, the O(D) x O(D) covariant derivatives are defined by
Vi e=(Dy—tHnpyDP)e, TV e= "Dy L H, " -TH9,0)¢. (6)
The Lagrangian takes the simple form
' Lp = R+ 400 — HH =g T,y = BTV p + 20V p. (7)
The additional conformal anomaly is also simplified, becoming
2
m>  m B
L=~ Bp =By

2 22



O(D, D) Structure and Covariant Derivatives'

e We introduce an O(D, D) invariant metric n4p and also the generalised tangent-frame
metric HH 4 that breaks this to O(D) x O(D):

— Nab 0 Han = (nab 0 )
A5 ( 0 _Ual}) ’ A8 0 7ap)
In coordinate indices we have the generalised metric
a1 — (8ii — Bik gBr;  —Big"
g% By gl ]
(Using i, j, ... for coordinate indices now, with corresponding 1, J, ... for the generalised

coordinate indices.) The metrics H? and H'’/ are related by the generalised vielbein
EAIZ

H = EAI EBJ HAB EAI — (EEZH" EE;F)")

Ei‘,—)i Eé_)i
where Eﬁf) and Ef_l_) are the generalised frame fields defined previously in egn (5).

e The E,! generalised vielbein gives a torsion-free connection, with the covariant deriva-
tives V) and V() we saw earlier in the pseudo-supergravity transformation rules and

action; V4 = % (VSD,VE)). This satisfies V4 npc = 0, Va4 Hpe = 0 and [e2v,vA =0.



Consistent Truncations |

Define generalised Lie derivative L:V! = ¢/ V, V! + (V& - V,HV7 + w(V,€7)V! on a
weight w vector, etc. Then one has F43¢ and F4 defined by

Li, Ep = Fa3° Ec, Lp e =F e, (With Fapc = Flapcy) -

Can now describe consistent truncation on a group manifold G. With the O(D, D) struc-
ture, where D = dim G, and F 4 ¢ the structure constants of the corresponding Lie algebra
g C O(D,D); [ta,tg] = Fag©tc. Then Fupc and F4 are constants. There is then a covari-
ant derivative D4 that is flat (no curvature), but with torsion F 43¢, and

Fapc = 3E' 01Ep” Eqy;, Dy Fapc =0, 01 Fapc =0. (8)

The invariance conditions on F4pc in egn (8) do not have a unique solution, but one choice
is the one employed in arXiv: 1510.08296, Baguet, Samtleben, CNP,

V2E = K)o Om = b (i, B = K(py ™),
V2E. = K}y, 0m— tab (g B+ Kl . dx™), (9)

where K, and Kz, denote the Killing vectors of the right-action and the left-action of G

on the group G, and B = —% Sfabe K(“R) A Kf}e) A K(CR). The tensor F4pc has components

given by the structure constants of G:
Fape = %fabm Fa[}a = %faﬁé'
The dilaton must be constant on G, and F4 vanishes.

This provides the necessary framework for the consistent Pauli reduction on G, with G x
G gauge bosons.



'Squashed Group Manifold Vacua'

o We saw already the (Minkowski)p-4im 6)XG pseudo-supersymmetric vacuum of the bosonic
string, where G is any semi-simple compact group G equipped with its bi-invariant Einstin
metric. All simple compact groups with dimension > 3 admit at least two inequivalent
homogeneous Einstein metrics. What about other inequivalent (Minkowski)p—dimc) X G
vacua of the bosonic string?

e Consider SO(5) as an example. Define left-invariant 1-forms L;;, with L;; = L;;;; and
dL[j = Lijx N Lgy and I,J =1,...5. Any metric dS2 = XIJKL Ly ® Lkp, with constants
Xk = Xkrgy 1S homogeneous and left-invariant. Solving the equations of motion be-
comes tractable if one restricts the coefficients so that some subgroup of Gy is preserved.
For example, consider S O(5); x S O(3)g-invariant metrics

ds* = x; L;; ® Li; + xo Ly; ® Ly; + x3 Lij®Ljj+ x4 L12® Ly,
where i = 3,4,5. There are three such inequivalent (up to scale) Einstein metrics, for
(x1,x2,x3,x4) = (1,1,1,1), (1,2,1,2) or (14, 14,4,19) (arXiv:0903.2493.)

e The 3-form G = L;; A Lyg A Lg; is closed, dG = 0. This is the 3-form £ e® A e’ A e€ where
fupe are the structure constants. One can obtain a solution of the bosonic string equations
of the form

d§2D:anx“dxv+d§2, H=cG, =0,

if d*G = 0 in the squashed group-manifold metric d5?. We find two solutions (up to scale):

(X],XQ,X3,X4) = (1,1,1,1), or (.X],XQ,X3,X4) = (1,1,3,—3).

The first is the solution with the bi-invariant metric that we saw previously; it is pseudo-
supersymmetric. The second solution, which is S O(5) x S O(3)-invariant has no pseudo-
supersymmetry. Since x4 is negative, this metric on S O(5) is Lorentzian, with signature
9,1).



SummaryI

Supersymmetry is a powerful tool for constructing consistent Pauli dimensional reduc-
tions, such as the S’ reduction of D = 11 supergravity. But not all consistent Pauli
reductions can be understood using supersymmetry; notably, the reduction of the D-
dimensional bosonic string on a group manifold G, in a consistent truncation that retains
all the G X G gauge bosons.

Double field theory provides another powerful tool for constructing consistent Pauli reduc-
tions; including the bosonic string reduction on G. The N = 1 super-extension of DFT
cannot directly be generalised to the DFT of the bosonic string in general dimensions D,
because strict supersymmetry does not exist.

For many purposes, the full closure of the supersymmetry transformations is not neces-
sary. Invariance of the Lagrangian modulo higher-order fermion terms suffices for finding
Killing spinors in bosonic backgrounds, first-order BPS equations, etc. Such a pseudo-
supersymmetric extension of the bosonic string does exist in arbitrary dimension D.

We have shown how one can extend the DFT of the arbitrary-dimensional bosonic string
to incorporate pseudo-supersymmetry. This can be used in order to obtain consistent
Pauli reductions, etc. It seems plausible that all known consistent Pauli reductions occur
in (pseudo)-supersymmetric theories.

We saw that the pseudo-supersymmetrised bosonic string admits pseudo-supersymmetric
Minkowski X G vacua, where G has its bi-invariant metric. Solutions exist also with
squashed metrics; examples we have studied have no pseudo-supersymmetry. Might
examples preserving some fraction of pseudo-supersymetry exist?

Relaxing the strict requirement of invariance at the full quartic order in fermions opens up
possibilities for broader classes of pseudo-supersymmetric theories, in higher dimensions
where interesting geometric structures can arise. It is not an anarchic free-for-all though;
e.g. there is no N = 2 pseudo-supersymmetric extension.



