Quark Pair Production at Lepton Colliders: Experimental challenges

Adrián Irles

AITANA group at IFIC - CSIC/UV

Outline of the talk

- ► What? top/b/c-quark differential cross section measurements (sensitive to EW couplings)
 - Experimental prospects based on <u>full simulation</u> including a comprehensive study of the systematic uncertainties
 - Emphasis on the b-quark experimental case
- ▶ Where? International Linear Collider, ILC@250GeV, and the International Large Detector ILD
 - Full simulation studies

Outline of the talk

- ▶ What? top/b/c-quark differential cross section measurements (sensitive to EW couplings)
 - Experimental prospects based on <u>full simulation</u> including a comprehensive study of the systematic uncertainties
 - Emphasis on the b-quark experimental case
- ▶ Where? International Linear Collider, ILC@250GeV, and the International Large Detector ILD
 - Full simulation studies

Studies done in collaboration with F. Richard, R. Poeschl et al (IJCLab Orsay)

Motivation

ILC physics program

- ➤ All Standard Model particles within reach of planned linear colliders
- ▶ Machine settings can be "tailored" for specific processes
 - Centre-of-Mass energy
 - Beams polarisation (straightforward at linear colliders)
- ▶ Background free searches for BSM through beam polarisation

- ► First phase at 250GeV
 - A Higgs Factory and much more!

250 GeV: 2 ab-1, 500 GeV: 4ab-1, 350 GeV: 0.2 ab-1

also, runs at 91 GeV (5B Z's) and 1000 GeV (8 ab-1)

L upgrade: 5 Hz → 10 Hz; E upgrade: extend the linac

Two fermion processes

Differential cross section for (relativistic) di-fermion production

$$\frac{d\sigma}{d\cos\theta} (e_L^- e_R^+ \to f \, \overline{f}) = \Sigma_{LL} (1 + \cos\theta)^2 + \Sigma_{LR} (1 - \cos\theta)^2$$

$$\frac{d\sigma}{d\cos\theta} (e_R^- e_L^+ \to f \, \overline{f}) = \Sigma_{RR} (1 + \cos\theta)^2 + \Sigma_{RL} (1 - \cos\theta)^2$$

$$\frac{d\sigma}{d\cos\theta} (e_R^- e_L^+ \to f \, \overline{f}) = \Sigma_{RR} (1 + \cos\theta)^2 + \Sigma_{RL} (1 - \cos\theta)^2$$

- The helicity amplitudes Σ_{11} , contain the couplings g_1/g_0 (or Form factors or EFT factors)
- Left≠right (characteristic for each fermion)
- Only beam polarisation allows inspection of the 4 helicity amplitudes for all fermions
 - Beam polarisation also enhances the cross section values

Two fermion processes

► These processes have been deeply studied at LEP/SLC at the Z-pole

- Very comprehensive physics program at Z-Pole
- no access to the γ or Z/γ interference's ("cleaner" access to Z-couplings)
- Moderated quark tagging and/or charge measurements capabilities (or moderated statistics)
- Also moderated angular acceptance of the detectors

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH STANFORD LINEAR ACCELERATOR CENTER

CERN-PH-EP/2005-041 SLAC-R-774 hep-ex/0509008 7 September 2005

arXiv:hep-ex/0509008v3 27 Feb 200

Precision Electroweak Measurements on the Z Resonance

The ALEPH, DELPHI, L3, OPAL, SLD Collaborations, ¹ the LEP Electroweak Working Group, ² the SLD Electroweak and Heavy Flavour Groups

Accepted for publication in *Physics Reports*

Updated: 20 February 2006

Motivation: LEP/SLC tension

- Current LEP & SLC best **sin²θ'**_{eff} **measurements** show **tension**
 - This measurement is the one with largest tension with the SM fit.
 - Most precise single Individual determination of sin²θ¹
 _{eff}
 from SLC → Left-right asymmetry of leptons
 - Most precise single Individual determination of sin²θ¹
 eff
 from LEP → forward backward assymetry (b-quark)
- ► Heavy quark effect, effect on all quarks/fermions, no effect at all?

The **resolution** of this issue requires improving the the measurements precission an order of magnitude

Per mil level of experimental precision is required

Motivation: BSM Z' resonances

- ▶ Many BSM scenarios (i.e. Randal Sundrum, compositeness, Higgs unification models...) predict heavy resonances coupling to the (t,b) doublet and also lighter fermions (i.e. c/s quarks)
 - BSM resonances tend to couple to the right components.
 - Only coupling to (t,b) doublet
 - → Peskin, Yoon arxiv:1811.07877
 - → Djouadi et al arxiv:hep-ph/0610173
 - Coupling also to lighter fermions
 - → Hosotani et al arxiv:1705.05282 arxiv:2006.02157

Motivation: BSM Z' resonances

- ▶ Many **BSM scenarios** (i.e. Randal Sundrum, compositeness, Higgs unification models...) predict heavy resonances coupling to the (t,b) doublet and also lighter fermions (i.e. c/s quarks)
 - BSM resonances tend to couple to the right components.
 - Only coupling to (t,b) doublet
 - → Peskin, Yoon arxiv:1811.07877
 - → Djouadi et al arxiv:hep-ph/0610173
 - Coupling also to lighter fermions
 - → Hosotani et al arxiv:1705.05282 arxiv:2006.02157

Check Naoki Yamatsu's talk for a detailed discussion

Motivation: BSM Z' resonances

- ➤ Many **BSM scenarios** (i.e. Randal Sundrum, compositeness, Higgs unification models...) predict heavy resonances coupling to the (t,b) doublet and also lighter fermions (i.e. c/s quarks)
 - BSM resonances tend to couple to the right components.
 - Only coupling to (t,b) doublet
 - → Peskin, Yoon arxiv:1811.07877
 - → Djouadi et al arxiv:hep-ph/0610173
 - Coupling also to lighter fermions
 - → Hosotani et al arxiv:1705.05282 arxiv:2006.02157

Probe such scenarios require at least per mil level for experimental precision tt/bb/cc... (ss?) Can we do it?

(this talk)

Observables

▶ Quark (fermion) **electroweak couplings** can be **inferred from cross section, Rq** and forward backward asymmetry **AFB** observables.

$$R_{q}^{0} = \Gamma_{q\bar{q}} / \Gamma_{had}(Z - pole)$$

$$\rightarrow R_{q}^{cont} = \sigma_{q\bar{q}} / \sigma_{had}(s > Z - pole)$$

Quark identification. No need tomeasure an angular distribution (but possible)

Angular Distribution.

Quark ID + charge measurement (quark – antiquark disentangling)

Gives access to all left/right couplings.

Observables

Quark (fermion) electroweak couplings can be inferred from cross section, Rq and forward backward asymmetry AFB observables.

$$R_{q}^{0} = \Gamma_{q\bar{q}} / \Gamma_{had}(Z - pole)$$

$$\Rightarrow R_{q}^{cont.} = \sigma_{q\bar{q}} / \sigma_{had}(s > Z - pole)$$

Quark identification. No need tomeasure an angular distribution (but possible)

Angular Distribution.

Quark ID + charge measurement (quark – antiquark disentangling)

Gives access to all left/right couplings.

Normalized quantities are highly preferred: to control (remove) systematic uncertainties

Experimental setup

(few) Experimental challenges

- ► C-quark pairs
- High efficient flavour tagging for cquarks expected at future colliders
- ▶ Charge measurement
 - Primary method: identification of Kaons produced D-meson decays → K-method (requires PID)
 - Secondary method: reconstruction of charged mesons → Vtx-method

<u>PID is mandatory</u> to reach competitive ac curacies

s-quark pairs (in progress)

- **▶** B-quark pairs
- High efficient flavour tagging for b-quarks expected at future colliders
- Charge Measurement
 - Primary method: reconstruction of charged mesons → Vtx-method
 - Secondary method: identification of Kaons produced in b-hadron decays → K-method (requires PID)

top-quark pairs... decay before hadronizing lepton ID tracking positron electron flavor tagging 4 jets, isolated lepton

PID is very useful

ILD highlights

▶ ILD snapshot

► High angular coverage with minimum material budget and PID (TPC)

- ► Linear Colliders offer tiny beam spots
- ▶ ILC experiments, as the **ILD**, will provide excellent:
 - Beam IP constraint
 - Tracking efficiency (>99%)
 - Secondary vertex separation and excellent flavour tagging
- ▶ Particle Flow optimized detector with high granularity calorimeters (>10° cells!)

Flavour tagging

Dedicated tools for vertexing and flavour tagging: LCFIPlus (for lepton colliders)

- A high-purity secondary vertex finder based on build-up vertex clustering,
- a jet clustering algorithm using vertex information
- and multivariate jet flavor tagging for the separation of b and c jet

Design goals

- Impact parameter resolution $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$
- Transverse momentum resolution $\sigma(1/p_T) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_T \sin^{1/2}\theta)$

	<i>b</i> -qı	uark	light quarks		
Experiment	Eff. [%]	Pur. [%]	Eff. [%]	Pur. [%]	
DELPHI [19]	47%	86%	51%	82%	
ILD (this note)	80%	98.7%	58%	96.1%	

Flavor tagging and charge measurement

► Flavor tagging

Indispensable for analysis with any final state quarks

Quark charge measurements

 Important for top-quark studies but Indispensable for ee→ bb/cc/ss...

▶ Charge measurements:

- Vtx charge and Kaon Identification
- High efficiency (double tagging)
- High purity → control of the migrations

- ► Future detectors can base their entire measurements on double Tagging and vertex charge
 - LEP/SLC had to include single tags and semileptonic events

Hadron ID

- For bb/cc/ss analysis we are interested in a high power of K/pion separation
- ▶ Possible solutions: using dEdx and/or TOF
 - Yellow points

PID via dEdx is considered in the following

The analysis

Analysis chain: preselection

- Preselection aiming for high background rejection and high efficiency.
- Main bkg ee→ Zγ(ISR)
 - ~x10 larger than signal
 - ~90% of such ISR photons are lost in the beam pipe → events filtered by energy & angular mom. conservation arguments
 - The remaining ~10% are filtered by identifying photons in the detector (efficiency of >90%)

Analysis chain: Double Tag Method

- ► The method is based on the comparison of single vs double tagged samples
- ► It is required to minimize the modeling dependence on the efficiency of b-tagging → aiming to the per mil precision

- ► Excellent prospects for b-tagging (or c-tagging) with very low correlation factor ~ 0% (~2% at LEP)
- **▶** Differential measurements!
 - Constant values for most of the angles
 - Drop of acceptance the very forward region → optimizations are under consideration
- Miss-efficiencies very small
 - <1% for c-quark
 - ~0% for uds

Analysis chain: jet charge

- ▶ Mis-measurements of the jet charge produce a flip of the sign in the differential distribution: **migrations**.
 - Mistakes due to lost tracks, mis-identification of kaons...
- Migrations look as "new physics" → we need to correct them
 - Using data: double charge measurements with same and opposite charges (see back-up slides)
 - We measure the probability to reconstruct correctly the charge (P_R) and use it for correction
 - DATA DRIVEN METHOD.

P_B limited by vertex reconstruction efficiency, Particle ID efficiency and B0 oscillations.

Results

Results (1)

		Beam Polarisation				
_		(-+)	(+-)			
	$\Delta R_b^{cont.}$	$0.12 ({ m stat.}) \pm 0.14 ({ m syst.}) \%$	$0.15 ({ m stat.}) \pm 0.13 ({ m syst.}) \%$			
	$\Delta A_{FB}^{bar{b}}$	0.30 (stat.) \pm 0.05 (syst.) %	$0.85 ({ m stat.}) \pm 0.10 ({ m syst.}) \%$			

Excellent agreement between predicted and reconstructed distributions

- ► Gap between red dots and green histogram = acceptance drop.
- ► Blue dots = corrected acceptance
- ► The fit is restricted to |costheta|<0.8
 - Minimal impact of the corrections

Stat unc (2000 fb-1)

Syst unc.:

- Selection and background rejection
- quark tagging/mistagging (modelisation, QCD, correlations)
- Luminosity
- Polarisation

Results (2) BSM benchmarks

Many BSM predict deviations only for the right couplings

BEAM POLARISATION is crucial

Expected number of standard deviations for different RS/compositeness BSM scenarios when determining the different EW couplings to c- and b-quark at ILC250 (with GigaZ input).

- Models that predict multi-TeV Z' resonances
- With or without mixing at Z-pole
- See backup for more details on the models

Potential for discovery of new resonances mZ' \sim O(10-20) TeV at ILC250

Summary / conclusions

- ▶ ILC is ideally suited for precision measurements of two-fermion final states
- ▶ ILC will have the answer whether new physics acts on heavy doublet (t,b) only or on all fermions
 - Will/would probe helicity structure of electroweak fermion couplings over at least one order of magnitude in energy (Z-Pole -> ~1 TeV)
- ► Achievable experimental precisions ~0.1 1%
 - Demanding analysis requiring the full detector capabilities: Vertex charge and particle ID, PFO for final state jets, etc
 - Comprehensive assessment of the systematic uncertainties done (b-quark)
 - or in progress (top and charm, strange)
- ► Effects may become already visible at 250 GeV stage for b quark and c quarks (and other light fermions)
 - Amplification of effects at higher energies (studies at 500 GeV at preliminary stage)
 - Clear and unique pattern thanks to polarised beams

Detector Technologies

Vertex: CMOS, DEPFET, FPCCD,

Tracker:

TPC (GEM, micromegas, pixel) + silicon pixels/strips

ECAL:

Silicon (5x5mm²) or Scintillator (5x45mm²) with Tungsten absorber

HCAL:

Scintillator tile (3x3 cm²) or Gas RPC (1x1 cm²) with Steel absorber

All inside solenoidal coil of 3-4 T

Detector R&D collaborations:

ILD Design Goals

Features of ILC:

low backgrounds, low radiation, low collision rate (5-10 Hz)

These allow us to pursue aggressive detector design:

Detector Requirements

Physics Impact parameter resolution H→bb,cc,qq,ττ $\sigma(d_0) < 5 \oplus 10 / (p[GeV] \sin^{3/2}\theta) \mu m$

- Transverse momentum resolution Total e+e-→ZH cross section $\sigma(1/p_T) = 2 \times 10^{-5} \text{ GeV}^{-1} \oplus 1 \times 10^{-3} / (p_T \sin^{1/2}\theta)$
- Jet energy resolution H→invisible 3-4% (around $E_{iet} \sim 100 \text{ GeV}$)
- Hermeticity H→invisible: BSM $\theta_{min} = 5 \text{ mrad}$

R. Fte: "The ILD Software Tools and Detector Performance"

Why this luxury?

Beam spot size

FCCee ILC | SLC LEP σ_x[nm] 13700 516 1500 200000 σ_ν[nm] 7.7 | 500 2500 Source SLC, LEP, PDG

©R. Poeschl

LEP

SLC

ILC

EF03 Kickoff

Cross sections

$$\sigma_{e^-e^+ o q\overline{q}}$$

	Channel	σ_{unpol} [fb]	σ _{.,+} [fb]	σ _{+,-} [fb]
	q=t	572	1564	724
500 GeV	q=b	372	1212	276
	q=u+d+s+c	2208	6032	2793
	q=t			
250 GeV	q=b	1756	5677	1283
250 GEV	q=c	3020	8518	3565
	q=u+d+s	6750	18407	5463

▶ Beam polarisation also enhances the cross section values

High Level Reco Challenges: Particle ID

- For bb/cc/ss analysis we are interested in a high power of K/pion separation momentum [Ge
- Possible solutions: using dEdx and/or TOF
 - Yellow points

Double Tag Method

- \blacktriangleright Method used to remove modeling dependence on the efficiency of b-tagging \rightarrow aiming to the per miles precision
- The sample consisted on events made of two hadronic jets (ggbar)
 - The LEP/SLC preselection consisted on a "simple" veto of Z→ leptons events
- ▶ The method is based on the comparison of single vs double tagged samples

$$\begin{aligned} &\textbf{ideally} \\ & \begin{aligned} & f_{1tag} \! \simeq \! \varepsilon_{b-tag} R_b \\ & f_{2tag} \! \simeq \! \varepsilon_{b-tag}^2 R_b \\ & \textit{with} \\ & \textit{BKG} \! \simeq \! 0 \\ & \varepsilon_b^{\textit{pres}} \! \simeq \! \varepsilon_c^{\textit{pres}} \! \simeq \! \varepsilon_{\textit{uds}}^{\textit{pres}} \end{aligned}$$

New challenges at LC operating beams above from the Z-pole

Event selection \rightarrow backgrounds from radiative return (x10 signal) events and WW/ZZ/HZ

b/c-quarks: reconstruction efficiencies

Arxiv:1709.04289, ILD Paper in progress

- ► Double tagging (and charge measurement) techniques require:
 - Preselection with similar efficiency for all quark flavours
 - Preselection that cut out the main backgrounds
- ▶ Require dedicated studies with full simulations: done at ILD for b and c-quark
 - Profits from a highly efficient ISR photon identification (~XX %)

Efficiency of selection for $e_L^+ e_R^+ \to X$ [%]									
	$X = q\overline{q} \ (E_{\gamma} < 35 GeV)$			X	$= q\overline{q} (E_{\gamma} > 35 Ge)$	V)			
	$b\overline{b}$	$c\overline{c}$	$q\overline{q}$ (uds)		$q\overline{q}$ (udscb)		X = ZZ	X = WW	X = HZ
No cuts	100%	100%	100%		100%		100%	100%	100
Cut 1	84.5%	84.9%	86.4%		6.7%		12.3%	11.7%	12.6
+ Cut 2	82.8%	82.0%	80.3%		1.2%		12.1%	11.1%	11.8
+ Cut 3	72.1%	71.7%	71.3%		0.7%		2.5%	5.0%	4.5
+ Cut 4	71.5%	71.1%	70.7%		0.7%		1.6%	3.6%	3.8

qq signal

Rad. Ret. BKG

Other BKG

Double charge measurements (b-quark)

- ► Mistakes in the charge calculation due to loss tracks (acceptance issues, mis reconstruction etc) have to be corrected and estimated using data \rightarrow Mistakes produce migrations (flip of the cos(θ))
- ► The **migrations are restored** by determining the purity of the charge calculation using double charge measurements
 - Accepted events, N_{acc}, with (-,+) compatible charges
 - Rejected events, N_{rei}, non compatible (–,++) charges

pq-equation Incognitas: pq and N.

$$N_{acc} = Np^{2} + Nq^{2}$$

$$N_{rej} = 2Npq$$

$$1 = p + q$$

The **pq-equation** allows for correcting for migrations (finding the correct N) and in particular for the last and ultimate migration (dilution) due to B0 oscillations

Results (2)

Couplings (notation for new resonances)

Prospects for couplings determination are order of magnitude better than at LEP

- ► Resolution of the LEP/SLC anomaly
- Full disentangling of helicity structure for all fermions only possible with polarised beams!!

b/c-quarks: Results (2)

c-quark case

- ▶ Similar precision (work in progress, being updated with the most recent ILD samples)
- Lower tagging efficiency compensated by higher statistics for both polarisations.
- ▶ Kaon Identification becomes the most promising channel for the charge measurement

- ➤ Semi-leptonic channel
- ► Left polarisation plots
 - B-jet carries top direction information
 - Very useful for the hadronic channel!
- Right polarisation (not shown)
 - W-carries the top direction information → lepton charge and c/s tagging become important

- ▶ Integrated Luminosity 4 fb -1
- ▶ Thanks to the jet charge calculations capabilities, we could use all decay channels.
- ▶ Efficiencies of 75% (cross section) and 30% (differential cross section)
- Exact reproduction of generated spectra
 - Statistical precision on cross section: ~0.1% Statistical precision on A FB: ~0.5%

Can expect that systematic errors will match statistical precision (but needs to be sho

IDR-L/S
Are two detector
Concepts compared
In the ILD
Interim Design Report ILD
Arxiv:2003.01116

Top quark: results (2)

- ▶ e+e- collider way superior to LHC (\sqrt{s} = 14 TeV)
- ► Final state analysis at FCCee (polarisation)
 - Also possible at LC => Redundancy

- ► Two remarks:
 - 500 GeV is nicely away from QCD Matching regime

Less systematic uncertainties

 The determination of axial form factors highly benefit from higher energies

a BSM example: GUT Inspired Grand Higgs Unification Model

arxiv:2006.02157 • Model parameter is Hosotani angle θ_{μ} yielding the Higgs-Potential as consequence of Aharanov-Bohm Phase in 5th dimension

- Model defined in Randall-Sundrum warped extra dimensions
 - KK excitations of gauge bosons and new bosons modify fermion couplings
- Predictions for II C
 - $m_{\nu\nu}$ = 13 TeV and θ_{μ} = 0.1
- Deviations from SM of the order of a few %
 - Effects measurable already at 250 GeV
 - Effects amplified by beam polarisations
 - Effects for tt, bb and cc (and other light fermions)
- One concrete example for importance to measure full pattern of fermion couplings
- etingFull pattern only available with beam polarisation polarisation

 $g^{\gamma}_L, g^{\gamma}_R, g^Z_L, g^Z_R$

Polarisation & Electroweak Physics at high energies

similarly, disentangle Z / γ exchange in $e^+e^- \rightarrow f\bar{f}$

g_{Lf}, g_{Rf}: helicity-dependent couplings of Z to fermions

$$\Rightarrow A_f = \frac{g_{Lf}^2 - g_{Rf}^2}{g_{Lf}^2 + g_{Rf}^2}$$

$$=> A_f = \frac{g_{Lf}^2 - g_{Rf}^2}{g_{Lf}^2 + g_{Rf}^2}$$
 specifically for the electron: $A_e = \frac{(\frac{1}{2} - \sin^2\theta_{eff})^2 - (\sin^2\theta_{eff})^2}{(\frac{1}{2} - \sin^2\theta_{eff})^2 + (\sin^2\theta_{eff})^2} \approx 8(\frac{1}{4} - \sin^2\theta_{eff})$

at an *un*polarised collider:

$$A_{FB}^f \equiv rac{(\sigma_F - \sigma_B)}{(\sigma_F + \sigma_B)} = rac{3}{4} A_e A_f$$
 => no direct access to Ae,

only via tau polarisation

While at a *polarised* collider:

$$A_e = A_{LR} \equiv \frac{\sigma_L - \sigma_R}{(\sigma_L + \sigma_R)}$$

$$A_e = A_{LR} \equiv \frac{\sigma_L - \sigma_R}{(\sigma_L + \sigma_R)} \quad \text{and} \quad A_{FB,LR}^f \equiv \frac{(\sigma_F - \sigma_B)_L - (\sigma_F - \sigma_B)_R}{(\sigma_F + \sigma_B)_L + (\sigma_F + \sigma_B)_R} = \frac{3}{4} A_f$$

trading theory uncertainy:

the **polarised** $A_{FB,LR}^{J}$ receives 7 x smaller radiative corrections than the unpolarised A_{FB}^{I} !

5

Polarisation & Electroweak Physics at the Z pole

new detailed studies by ILD:

- at least factor 10, often ~50 improvement over LEP/SLC
- note in particular:
 - A_c nearly 100 x better thanks to excellent charm / anti-charm tagging:
 - excellent vertex detector
 - tiny ILC beam spot
 - Kaon-ID via dE/dx in ILD's TPC

typically only factor 2-3 less precise than FCCee's unpolarised *TeraZ*

=> polarisation buys a factor of ~100 in luminosity

arXiv:1908.11299, talks by A.Irles & G, Wilson

7

Predictions (as a function of the ISR)

- ▶ The cross section depends on the "effective" center of mass energy
 - At which the Z/y couple to the quark-antiquark pair

$$\rightarrow \frac{d\sigma_q^{cont.}\overline{q}}{d\cos\theta_q}(\hat{s}>s_{cut}) = \frac{d\sigma_{e^-e^+\to q\overline{q}}^{cont.}}{d\cos\theta_q}(E_\gamma < K_{cut})$$

Preselection

- ► Alternatives to m(2jets)?
- Estimator of the energy of the photon ISR using only the two reconstructed jets.
 - From momentum conservation (if the photon/s are emitted parallel to the beam pipe):

Two jet acolinearity

$$\sin \Psi_{acol} = \frac{\vec{p_{j_1}} \times \vec{p_{j_2}}}{|\vec{p_{j_1}}| \cdot |\vec{p_{j_1}}|}$$

Jet angular variables (w.r.t. detector frame)

Preselection: Kreco

- Estimator of the energy of the photon ISR
- ▶ We apply a cut of Kreco<35 GeV
- ➤ Some signal events have larger Kreco (~15%)
 - Because of detector resolution and double photon ISR
- Some radiative return events have Kreco<35GeV (~7%)
 - Because the photon(s) has not escaped through the beam pipe
- ➤ Can we identify the photon clustered in one or both jets and veto these events?

$$d_{ij} = min(E_i^{2p}, E_j^{2p}) \frac{1 - cos(\theta_{ij})}{1 - cos(R)}$$
$$d_{iB} = E_i^{2p}$$

Final steps of the preselection

- ► Cut on y23<0.015 (jet distance at which the 2 jet event would be clustered in 3 jets)
- Cut on mj1+mj2<100 GeV

