

The Precision of Higgs Measurement at CEPC

Yaquan Fang (IHEP) on behalf of CEPC Higgs working group SUSY2021 August 23-28, 2021 Chengdu, China

Why do we need e⁺e⁻ collider

- LHC and HL-LHC is a discovery machine at TeV scale:
 - The precisions of measurements of Higgs coupling with HL-LHC are at the level of a few percent.
 - Theoretical uncertainties start to be the dominant one.
- If the new physics is at the sub-percent level, need e⁺e⁻ machine to precisely measure Higgs properties as well as explore new physics.
 - Complementary to LHC.

Higgs related physics at e⁺e⁻ collider

- With the increase of the energy, different Higgs related physics can be explored at e⁺e⁻ collider.
- With the energy around 240 GeV, ZH as well as ww/zz fusion can be intensively studied.
 - the dominant production is from HZ, the WW/ZZ fusions contribute a few percent of the total cross-section.

SM Higgs decay branching ratio, Bkg process

 ✓ e⁺e⁻ collider provides a good opportunity to measure the jj, invisible decay of Higgs.
 ✓ For 5.6 ab⁻¹ data with CEPC, 1M Higgs, 10M Z, 100M W are produced.

Performance

Higgs analyses @CEPC CDR

A lot of decay channels can be investigated.

Direct measurement of Higgs cross-section

$$M_{\rm recoil}^2 = (\sqrt{s} - E_{ff})^2 - p_{ff}^2 = s - 2E_{ff}\sqrt{s} + m_{ff}^2$$

- ✓ For this model independent analysis, we reconstruct the recoil mass of Z without touching the other particles in a event.
 ✓ The M_{recoil} should exhibit a resonance peak at m_H for signal; Bkg is expected to smooth.
- ✓ The best resolution can be achieved from $Z(\rightarrow e^+e^-, \mu^+\mu^-)$.

Direct measurement of Higgs cross-section and m_{H}

- The combined precision with three channels is $\Delta\sigma/\sigma=0.5\%$
- Similar sub-percent level for ILC/FCC-ee
- ✓ The mass of Higgs can be measured with a precision 5.9 MeV combining Z→ee (14 MeV) and Z→ $\mu\mu$ (6.5 MeV)

Measurement of Higgs width

 Method 1: Higgs width can be determined directly from the measurement of σ(ZH) and Br. of (H->ZZ*)

$$\Gamma_H \propto \frac{\Gamma(H \to ZZ^*)}{\text{BR}(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{\text{BR}(H \to ZZ^*)}$$
 Precision : 5.1%

- But the uncertainty of Br(H->ZZ*) is relatively high due to low statistics.
- Method 2: It can also be measured through:

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \qquad \sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b}) \propto \Gamma(H \to WW^{*}) \cdot BR(H \to bb) = \Gamma(H \to bb) \cdot BR(H \to WW^{*})$$

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \propto \frac{\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b})}{BR(H \to b\bar{b}) \cdot BR(H \to WW^{*})} \qquad 3.0\%$$
Precision : 3.5%

• These two orthogonal methods can be combined to reach the best precision. Combined Precision : 2.9%

Precision for the Measurement of Higgs

		1 Precision		
Property	CEF	CEPC-v1		PC-v4
m_H	5.9	MeV	5.9	MeV
Γ_H	2.	7%	2.	8%
$\sigma(ZH)$	0.	5%	0.	5%
$\sigma(\nu\bar{\nu}H)$	3.	0%	3.	2%
Decay mode	$\sigma \times BR$	BR	$\sigma \times BR$	BR
$H \rightarrow b\bar{b}$	0.26%	0.56%	0.27%	0.56%
$H \rightarrow c\bar{c}$	3.1%	3.1%	3.3%	3.3%
$H \rightarrow gg$	1.2%	1.3%	1.3%	1.4%
$H \rightarrow WW^*$	0.9%	1.1%	1.0%	1.1%
$H \rightarrow ZZ^*$	4.9%	5.0%	5.1%	5.1%
$H \rightarrow \gamma \gamma$	6.2%	6.2%	6.8%	6.9%
$H \rightarrow Z \gamma$	13%	13%	16%	16%
$H\!\rightarrow\!\tau^+\tau^-$	0.8%	0.9%	0.8%	1.0%
$H \rightarrow \mu^+ \mu^-$	16%	16%	17%	17%
BRBSM	-	< 0.28%		< 0.30%

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs Physics at the CEPC

- ✓ With combination of $\sigma = Br$ of vvH(→bb) /Br(H→bb)/Br(H→ww) and the direct measurement, one can obtain the decay width of Higgs with the precision at ~3%.
- ✓ The measurement of Br is done by introducing the uncertainty of xsection of ZH from the direct measurement around sub-precent level.
- Most precisions are a few percent or lower (bb, invisible), allowing us to be sensitive to BSM deviation
- **CEPC** is complementary to LHC at the Higgs precision measurement.
- Higgs white paper are published at CPC (arxiv: <u>1810.09037</u>) and results are included in CDR.
 - Other publications: σ(ZH):1601.05352; bb/cc/gg: 1905.12903; ττ:1903.1232
 Invisible: 2001.05912

Precision for the measurement of Higgs

Property	Estimated Pr	recision		
m_H	5.9 Me	5.9 MeV		
Γ_H	3.1%			
$\sigma(ZH)$	0.5%			
$\sigma(\nu\bar{\nu}H)$	3.2%			
Decay mode	$\sigma(ZH) \times BR$	BR		
$H \rightarrow b\bar{b}$	0.27%	0.56%		
$H \rightarrow c\bar{c}$	3.3%	3.3%		
$H \rightarrow gg$	1.3%	1.4%		
$H \to WW^*$	1.0%	1.1%		
$H \rightarrow ZZ^*$	5.1%	5.1%		
$H \rightarrow \gamma \gamma$	6.8%	6.9%		
$H \rightarrow Z\gamma$	15%	15%		
$H \to \tau^+ \tau^-$	0.8%	1.0%		
$H ightarrow \mu^+ \mu^-$	17%	17%		
$H \rightarrow inv$	-	< 0.30%		

CEPC CDR: arxiv: 1811.10545

Fcc-ee 240 GeV/365 GeV: CERN-ACC-2018-0057

\sqrt{s} (GeV)	240		36	5
Luminosity (ab ⁻¹)	5		1.	5
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}H$
${\rm H} \rightarrow {\rm any}$	± 0.5		± 0.9	
${ m H} ightarrow { m b} { m ar b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	±10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H\to\gamma\gamma$	± 9.0		± 18	± 22
$\mathrm{H} \to \mu^+ \mu^-$	± 19		± 40	
${\rm H} \rightarrow {\rm invisible}$	< 0.3		< 0.6	

• Fcc-ee has similar results as CEPC but including a 365 GeV run improving the measurement of Higgs width.

MVA methods used in different channels and other activities

• After training with 6 variables: $cos\theta_{ee}$, $cos\theta_{\mu\mu}$, $\Delta_{\mu,\mu}$, M_{qq} , E_{ee} , $E_{qq\mu\mu}$, get the BDTG response

Scan the total sensitivity (S/√S + B) vs BDTG to find the optimal BDTG point
 The sensitivity is estimated in the 90% signal coverage region

	,					
	Sig yield	Bkg yield	Sensitivity	Mass range (GeV)		
BDTG > 0.45	86.20 +/- 0.51	198.20 +/- 19.82	7.46 +/- 0.27	[120.78 - 125.33]		
BDTG < 0.45	29.77 +/- 0.30	1402.95 +/- 52.73	1.08 +/- 0.03	[114.08 - 125.28]		
Total	115.97 ± 0.59	1601 15 ±/- 56 33	754+/-038			

- For H->μμ, the improvement is ~35% w.r.t cut based one for the signal significance (improvement on precision 17%-12%).
 - The overall precision has been improved from 6.8% to 5.7% with MVA as well as full simulated samples used for H->γγ.

Category	$\frac{\Delta(\sigma \cdot BR)}{(\sigma \cdot BR)}$	[%]
H->ZZ	cut-based	BDT
$\mu\mu\mathrm{H} u\nu qq^{\mathrm{cut/mva}}$	15.5	13.6
$\mu\mu Hqq \nu\nu^{cut/mva}$	48.0	42.1
$\nu\nu H\mu\mu q q^{ m cut/mva}$	11.9	12.5
$ u u Hqq \mu \mu^{cut/mva}$	23.5	20.5
$qqH u u\mu\mu^{ m cut/mva}$	45.3	37.0
$qqH\mu\mu\nu\nu\nu^{\rm cut/mva}$	52.4	44.4
Combined	8.34	7.89

Global analysis for CEPC Higgs

Efficiency modulate $N \rightarrow n$

$$\mathbf{n} = \mathbf{EN}$$
 .

Similar for their covariances

$$oldsymbol{\Sigma}^n \equiv ig(c^n_{ij}ig) = \mathbf{E}oldsymbol{\Sigma}^N \mathbf{E}^T \;,$$

We know the covariance of N

 $\begin{array}{l} \textbf{\Sigma}^{N} = N_{t}^{e} \left(\begin{array}{cccc} B_{1}(1-B_{1}) & -B_{1}B_{2} & \dots & -B_{1}B_{m} \\ -B_{2}B_{1} & B_{2}(1-B_{2}) & \dots & -B_{2}B_{m} \\ \vdots & \vdots & \ddots & \vdots \\ -B_{m}B_{1} & -B_{m}B_{2} & \dots & B_{m}(1-B_{m}) \end{array} \right) , \end{array}$

Solve all Ni by minimizing

$$\chi_{ee}^{2} = \sum_{i} \frac{\left(\sum_{k} \epsilon_{ik} N_{k} - n_{i}\right)^{2}}{c_{ii}} + \frac{\left(\sum_{k} N_{k} - N_{t}^{e}\right)^{2}}{\sigma_{N_{t}}^{2}},$$

Global analysis : Enhance Higgs coupling precision

calculate the efficiency matrix

Particle level information as input, no dependence on jet-clustering, ...

Proof-of-principle study shows precision improved by a factor of ~2

Full simulation study is ongoing ...

ArXiv:2105.14997

Decay Mode	Ind.Ana.	Glo.Ana.	IP	CEPC CDR
$H \to c\bar{c}$	1.8%	0.65%	2.7	3.3%
$H \to b \bar{b}$	0.19%	0.09%	2.1	0.56%
$H \to \mu^+ \mu^-$	12%	7.2%	17	17%
$H \to \tau^+ \tau^-$	0.61%	0.41%	1.4	1.0%
$H \to gg$	0.7%	0.35%	2.0	1.4%
$H\to\gamma\gamma$	3.3%	2.3%	1.4	6.9%
$H \rightarrow ZZ$	2.0%	0.65%	3.0	5.1%
$H \to W^+ W^-$	0.37%	0.21%	1.7	1.1%
$H\to \gamma Z$	11%	2.8%	3.9	15%

Higgs CP study at CEPC

Study channel: $ee \rightarrow ZH \rightarrow \mu\mu H (\rightarrow b\bar{b}/c\bar{c}/gg)$

Differential cross section could be represent as:

 $\frac{d\sigma}{d\cos\theta_1 d\cos\theta_2 d\phi} = N \times (J_{CP-even}(\theta_1, \theta_2, \phi) + p \times J_{CP-odd}(\theta_1, \theta_2, \phi)).$

An Optimal Variable ω which combines the information from $\{\theta_1, \theta_2, \phi\}$ defined as: $\omega = \frac{J_{CP-odd}(\theta_1, \theta_2, \phi)}{J_{CP-even}(\theta_1, \theta_2, \phi)}$ to measure p

Used ML-fit in ω distribution to extract p.

Result:

For *p*: 68% CL: [-2.9×10⁻², 2.9×10⁻²] 95% CL: [-5.7×10⁻², 5.7×10⁻²]

Image Recognition Techniques to Identify Long-Lived Particles(h->LLPs)

- Mapping the raw detector information to a 2D image
- Input information: image with resolution of $(R, \phi) = 200 \times 200$ and 1 to 2 channel(s)
 - *R* starts from 0 to 8 m, ϕ starts from $-\pi$ to π
 - Energy is the sum of Calorimeter hits.
 - Time is the maximum ΔT (E > 0.1 GeV) within (R, ϕ) pixel
- Model: ResNet18 (Classification), ResNet50 (Vertex Finding)
- Binary Cross Entropy Loss: $loss(x_i, y_i) = -\omega_i [y_i \log(x_i) + (1 y_i) \log(1 x_i)]$

Expected Search Sensitivity

Signal Efficiency of ML-based and Cut-based analysis for $Z \rightarrow \bar{\nu} \nu$

Selections	Signal: $Z \to \nu \bar{\nu}$	$ee \rightarrow q\bar{q}$	$ee \to ZH$
-		2.5×10^8	
-	$1.0 imes 10^6$	0.99×10^7	
$\not\!$	88,077	290	$3,\!361$
ML score > 0.95	$87,\!050$	0	0
Efficiency (ML-based)	98.83%		
$E_{2j} \ge 30 \text{GeV}$	$67,\!244$	0	0
Efficiency (cut-based)	75.19%		

- Best branching ratio exclusion limit at decay length around a few meters: $BR(h \rightarrow XX) > \sim 10^{-5}$ for most LLP masses
- Good sensitivity for low LLP mass (as low as 1 GeV)

$H \rightarrow \gamma \gamma$ precision @ CEPC conceptual detector

- BGO crystal ECAL in CEPC conceptual detector:
 - full BGO crystal, 24 X_0 , expected energy resolution $\frac{\sigma_E}{F} \sim \frac{3\%}{\sqrt{F}} \bigoplus \sim 1\%$.
 - Simulate the detector response by smearing truth MC.
- $\sigma(ZH) \times Br(H \rightarrow \gamma \gamma)$ precision @ CEPC:
 - Only consider the σ_E influence in $m_{\gamma\gamma}$ shape in $\nu\nu H \rightarrow \gamma\gamma$ and $\mu\mu H \rightarrow \gamma\gamma$ channels, with cut-based analysis.
 - Combined statistical only precision: $\delta Br(H \rightarrow \gamma \gamma) = 8.0\%$ (11% SiW ECAL scheme, 27% improvement.)

New Concept

Higgs related physics at 360 GeV (generic study)

- With the NNLO calcuation, the highest xsection is at the energy of 381.3 GeV
- Considering the Lumi-suppression factor when going to higher energy, the effective highest xsection is around 365 GeV.
- The effective xsection from 360 GeV is not much different from that of 365 GeV.
- If we choose higher order correction, the peak could be even lower than 360 GeV.
- For 2 ab⁻¹ data, it will take 4-5 years with optimized setup of the accelerator.

Extrapolations

- Mainly scale yields from 240GeV case.
- $\sigma(ZH)$: preliminarily, around 1%
 - Need patient work on qqH channel
- Resolution change: 2 benchmarks

Ideal inclusive $Z \rightarrow \mu\mu$: 0.92% $\rightarrow 1.72\%$

- dimuon: would worse; from ~0.3GeV to 1GeV; (23% -> 29%)
- diphoton: would better; from ~2.8GeV to 2.3GeV; (9% -> 8%)

Additional sensitivity on Higgs measurement

	2406-01/		
	5.6ab ⁻¹	360GeV, 2ab ⁻¹	
	ZH	ZH	vvH
any	0.50%	1%	١
$H \rightarrow bb$	0.27%	0.63%	0.76%
$H \rightarrow cc$	3.3%	6.2%	11%
$H \rightarrow gg$	1.3%	2.4%	3.2%
$H \rightarrow WW$	1.0%	2.0%	3.1%
here $H \rightarrow ZZ$	5.1%	12%	13%
$H \rightarrow \tau \tau$	0.8%	1.5%	3%
$H \rightarrow \gamma \gamma$	5.7%	8%	11%
$H \rightarrow \mu \mu$	12%	29%	40%
Br _{upper} (H → inv.)	0.2%	١	١
$\sigma(ZH) * Br(H) \rightarrow Z\gamma)$	16%	25%	١
Width	2.9%		
Combined Width 240/360	1.4%		

Fcc-ee 240 GeV/365 GeV: CERN-ACC-2018-0057

\sqrt{s} (GeV)	24	0	36	5
Luminosity (ab ⁻¹)	5	j	1.	5
$\delta(\sigma BR)/\sigma BR(\%)$	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}H$
${\rm H} ightarrow { m any}$	± 0.5		± 0.9	
${ m H} ightarrow { m b} { m ar b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	± 10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22
$H \rightarrow \mu^+ \mu^-$	± 19		± 40	
${\rm H} \rightarrow {\rm invisible}$	< 0.3		< 0.6	

- > 360 GeV run can significantly improve the Higgs width measurement.
- > For Higgs physics results, there are no significant difference for the colliding energy with 360 GeV or 365 GeV.

combined width: 1.3%

Conclusion

- After the Higgs white paper and CDR are done, analyses from individual channels have been documented. Several publications of them are available now.
- Improved analyses on CEPC Higgs are on going
- We also have a generic study on Higgs physics at 360 GeV (360 GeV/2 ab⁻¹ as a benchmark)
 - Can bring some improvements in Higgs precision measurement in addition to top coupling measurements.
 - Significant improvement on Higgs width measurement.

backup slides

CEPC: 240-250GeV ere* Higgs Factory

Table 2. Key characteristic/performance of a conceptual CEPC detector.

Geometry acceptance	TPC (97%), FTD (99.5%)
Tracking efficiency	$\sim 100\%$ within geometry acceptance
Tracking performance	$\Delta(1/p_T) \sim 2 \times 10^{-5} \ (1/\text{GeV})$
ECAL intrinsic energy resolution	$16\%/\sqrt{E} \oplus 1\%$ (GeV)
HCAL intrinsic energy resolution	$60\%/\sqrt{E} \oplus 1\%$ (GeV)
Jet energy resolution	3-4%
Impact parameter resolution	$5 \mu\mathrm{m}$

- ✓ A CEPC (phase I)+ Super proton-proton
 Collider (SPPC) was proposed
- ✓ Ecm ~240-250 GeV, Lum 5.6 ab⁻¹ for 10 years

Jiayin Gu, Cen Zhang et al.,

Impact on Higgs

light shades: 12 Higgs op. floated + 6 top op. floated dark shades: 12 Higgs op. floated + 6 top op. $\rightarrow 0$

Uncertainties on the top have a big effect on the Higgs

- · Higgsstr. run: insufficient
- Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t}$: large y_t contaminations in various coefficients
- Higgsstr. run \oplus top@HL-LHC: large top contaminations in $\bar{c}_{\gamma\gamma,gg,Z\gamma,ZZ}$
- · Higgsstr. run $\oplus e^+e^- \rightarrow t\bar{t} \oplus top@HL-LHC$: top contam. in \bar{c}_{gg} only

Triple Higgs coupling:

Combination/comparisons with HL-LHC

Typical individual channels

2021/8/23

Signal/bkg Cross Sections

Kaili Zhang

• 240GeV:

- 360GeV: (vvH ~ 117% Z->vv), (eeH ~ 67% Z->ee)

fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Total	203.6		159.0		
Total Events	1.14M		0.32M		

In total ~1.5M Higgs would be collected in CEPC 240+360. More fusion events, also eeH can not be ignored in 360GeV.

Status of H-> $\tau\tau$

- Develop signal strength analysis with and without jets
 - MVA for the former
 - TAURUS package
- Study BMR dependency
- Decay modes ID....

	$\delta(\sigma \times \text{BR})/(\sigma \times \text{BR})$
$\mu\mu H$	2.8%
eeH	5.1%
vvH	7.9%
qqH	0.9%
combined	0.8%

Dan Yu's <u>talk</u>

Status of H->bb,cc,gg

- Wrap the analysis into <u>a note</u> and submit to CPC.
- Flavor tagging used in the fit (3 dim)

• Start to consider the systematics.

Decay mode	$\sigma(ZH) \times BR$	BR	
$H \rightarrow b\bar{b}$	0.28%	0.57%	
$H \rightarrow c\bar{c}$	2.2%	2.3%	
$H \rightarrow gg$	1.6%	1.7%	

More at Yu Bai's talk

HL-LHC: Differential xsection measurement

The precision can reach a few percent for different p_T bins.

Results and systematics for H->bb,cc,gg

Combination of the 4 channels:

Statistic precision of σ (ZH)*Br(H->bb/cc/gg) is 0.3% 3.3% and 1.3%

Consistent with the goal expected in pre-CDR with full simulation samples

Decay mode	$\sigma(ZH) \times BR$	BR		
$H \rightarrow b\bar{b}$	0.28%	0.57%		
$H \rightarrow c\bar{c}$	2.2%	2.3%		
$H \rightarrow gg$	1.6%	1.7%		

IIH with 3D fit and systematic uncertainties considered:

	$\mu^+\mu^-H$			e^+e^-H		
	$H \rightarrow b \overline{b}$	$H \rightarrow c \bar{c}$	$H \rightarrow gg$	$H \to b \bar{b}$	$H \to c \bar c$	$H \rightarrow gg$
Statistic Uncertainty	1.1%	10.5%	5.4%	1.6%	14.7%	10.5%
Fixed Background	-0.2% +0.1%	+4.1% -4.2%	7.6%	-0.2% +0.1%	+4.1% -4.2%	7.6%
Event Selection	+0.7%	+0.4%	+0.7%	+0.7% -0.2%	+0.4%	+0.7%
Flavor Tagging	-0.4% +0.2%	+3.7% -5.0%	+0.2% -0.7%	-0.4% +0.2%	+3.7% -5.0%	+0.2%
Non uniformity	< 0.1%		< 0.1%			
Combined Systematic Uncertainty	+0.7% -0.5%	+5.5% -6.6%	+7.6% -7.8%	+0.7% -0.5%	+5.5% -6.6%	+7.6% -7.8%

Table 2. Uncertainties of $H \rightarrow b\bar{b}$, $H \rightarrow c\bar{c}$ and $H \rightarrow gg$

Analysis with more reliable approaches. Systematic uncertainties considered.

Advantages from circular colliders

• The luminosity spectrum at linear colliders is obviously worse than circular colliders given the particles with energy loss not being removed by the bending magnets

• This can substantially change the cross-section curve at around the tt threshold

Our setup

- Use the package "<u>QQbar_threshold</u>" to calculate crosssection near threshold in ee-colliders at N³LO in resummed non-relativistic perturbation theory
 - Coulomb interactions between the quark and the antiquark leading to a strong enhancement of the cross section is included
- To avoid IR renormalon ambiguities, the PS shift (PSS) mass scheme is applied by default in the package

 $m_t^{\rm PS} = 171.5 \,{
m GeV}, \qquad \alpha_s(m_Z) = 0.1184$

- ISR effects are also included in the package
- We incorporate luminosity spectrum by a simple Gaussian function with 1 GeV as the energy resolution at the moment

tt threshold scan

- Our plan is to study possible solutions for CEPC for top quark measurements with tt threshold scans
- ee-colliders provide not only the top reconstruction method but also the tt threshold scan
- The scan is made against \sqrt{s} and cross-section is the direct observable
- This brings measurements of top mass and a bunch of other parameters
 - Top width

• α_{S}

• Top Yukawa coupling

ISR and LS effects

- The cross section as a function of centre-of-mass energy
 - A clear peak of production can be seen at around the tt threshold
 - Adding ISR and LS (1 GeV width), the position of peak is hardly affected, but the sharpness is weakened and the total rate is suppressed in this region

Fisher information

\sqrt{s} scan points

Χ

- Test with a series of centre-of-mass energy grids
 - $4 \sqrt{s}$ scheme = {341.5, 342.5, 343, 344.5} GeV
 - $6 \sqrt{s}$ scheme = {341,342,342.5,343,343.5,344.5} GeV
 - $8-\sqrt{s}$ scheme = {340,341,342,342.5,343,343.5,344.5,345} GeV
- Top mass is assumed as 171.5 GeV; the acceptance and efficiency is assumed to be 100% at the moment; ISR is considered; but LS is yet to be included
- Luminosity per scan point is assumed to range from 25/fb to 100/fb
- A likelihood is constructed to combine the statistical power of all scan points

$$L = \prod_{i} P(\overrightarrow{D}_{i} | \overrightarrow{E}_{i}(\sigma(m_{top}, \Gamma_{top}, \alpha_{S}, \sqrt{s}), \mathscr{L}_{i}, \overrightarrow{\theta})) \quad \text{i corresponds to the i-th } \sqrt{s} \text{ scan point}$$

Sixth workshop of the LHC LLP Community

What is a long-lived particle?

Object (neutral or charged) decaying a *macroscopic* and *reconstructible* distance from IP

Signal signature of a long-lived particle:

Neutral LLP decays are a spectacular signature, and the burst of energy appearing out of nowhere sets it apart from the collision point.

Phys. Rev. Lett. **122**, 131801 – 2019.04.03

Basic Setup

- Muon Detector
 - $R_{\rm in} \approx 4m$
 - $R_{\rm out} \approx 6m$
 - $\Delta t = t_{\rm Hit} r_{\rm Hit}/c$
- Dominant Background
 - $e^+e^- \rightarrow ZH$
 - $e^+e^- \rightarrow qq$
- Full simulation with CEPC official software

Expected Limits for LLPs

	Signal	Total Background	Expected Limits	
$e^+e^- ightarrow Zh ightarrow (Z; \overline{q}q)\overline{q}q\overline{\nu} u$	373308	0.02 (CR)	2.4×10^{-5}	
$e^+e^- ightarrow Zh ightarrow (Z; \overline{ u} u) \overline{q} q \overline{ u} u$	87,050	0.02 (CR)	9.8×10^{-5}	
Combined limit: 1.9×10 ⁻⁵				

- Limits are the minimal branching ratio of Higgs decaying to LLPs (the smaller the better).
- Cosmic Ray(CR) veto efficiency is calculated by the filter that the time difference of two clusters on the outermost cell must be less than 2.4 meters. (signal inefficiency~ 2.1%)
- Signal Yield: $n_s = \mathcal{L} \times \sigma(e^+e^- \to Zh) \times \sigma(Z \to qq, \bar{\nu}\nu) \times \epsilon_{sig} \times \epsilon_{CR}$

Theory model

<u>JHEP 03(2016) 050</u> <u>JHEP 11(2014) 028</u>

• Differential cross section for $ee \to ZH \to llH$: $\frac{d\sigma}{dcos\theta_1 dcos\theta_2 d\phi} = \frac{\mathcal{N}_{\sigma}(q^2)}{m_H^2} \mathcal{J}(q^2, \theta_1, \theta_2, \phi),$ $\mathcal{N}_{\sigma}(q^2) = \frac{1}{2^{10}(2\pi)^3} \cdot \frac{1}{\sqrt{r}\gamma_7} \cdot \frac{\sqrt{\lambda(1,s,r)}}{s^2}$

 $\begin{aligned} \mathcal{J}(q^2,\theta_1,\theta_2,\phi) &= J_1(1+\cos^2\theta_1\cos^2\theta_2+\cos^2\theta_1+\cos^2\theta_2) \\ &+ J_2\sin^2\theta_1\sin^2\theta_2+J_3\cos\theta_1\cos\theta_2 \\ &+ (J_4\sin\theta_1\sin\theta_2+J_5\sin2\theta_1\sin2\theta_2)\sin\phi \\ &+ (J_6\sin\theta_1\sin\theta_2+J_7\sin2\theta_1\sin2\theta_2)\cos\phi \\ &+ J_8\sin^2\theta_1\sin^2\theta_2\sin2\phi+J_9\sin^2\theta_1\sin^2\theta_2\cos2\phi. \end{aligned}$

Variables for studying distribution: θ_1, θ_2, ϕ

Efficiecy matrix determined by DL multi-classification

$$\begin{pmatrix} n_1 \\ n_2 \\ \vdots \\ n_9 \end{pmatrix} = \begin{pmatrix} \epsilon_{11} \ \epsilon_{12} \ \cdots \ \epsilon_{19} \\ \epsilon_{21} \ \epsilon_{22} \ \cdots \ \epsilon_{29} \\ \vdots \ \vdots \ \ddots \ \vdots \\ \epsilon_{91} \ \epsilon_{92} \ \cdots \ \epsilon_{99} \end{pmatrix} \begin{pmatrix} N_1 \\ N_2 \\ \vdots \\ N_9 \end{pmatrix}$$

"on-shop" measurement: 9 quantities more efficient, better precision