Longitudinally polarized ZZ scattering at the Muon Collider

Longitudinally polarized ZZ scattering at the Muon Collider

Tianyi Yang,¹ Sitian Qian,¹ Congqiao Li,¹ Zhe Guan,¹ Fanqiang Meng,¹ Jie Xiao,¹ Meng Lu,² and Qiang Li¹

¹Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China ²School of Physics, Sun Yat-Sen University, Guangzhou 510275, China

> **arXiv:2107.13581** *tyyang99@pku.edu.cn*

SUSY 2021

Longitudinally polarized ZZ scattering at the Muon Collider

Contents

➢Introduction

≻Physics processes at the muon collider

- >Inclusive and polarized ZZ scattering
- Simulation and analysis framework
- ≻Analysis results
- Discussion and outlook

2

Longitudinally polarized ZZ scattering at the Muon Collider

Why we choose the Muon Collider?

≻High collision energy

➢ Fundamental particle

- ➤ more effective than LHC
- $\triangleright\,m_{\mu}\approx 207m_{e}$
 - Reduced synchrotron radiation

≻High luminosity

- ≻More details:
 - https://muoncollider.web.cern.ch/

VBS and longitudinal polarization

≻VBS: scattering between two vector bosons radiated from incoming partons.

- > At the LHC:
 - \succ Two very forward jets, with large eta separation and invariant mass
 - Low hadronic activity in central region

➢longitudinal polarization

- Closely related to the important theoretical property of unitarity restoration through Higgs and possible new physics
- ≻ Below 10% of the total VBS
- > Needs long time to reach 5σ (same-sign WW at the CMS)
 - \succ full simulation: 2.7σ at the 14TeV HL_LHC
 - \succ full Run II: about 1*σ*

An example Feynman diagram of VBS at the LHC

Physics processes at the Muon Collider

 $X = nt\overline{t} + mV + kH$ $\begin{pmatrix} \mu^{+}\mu^{-} \to X \nu_{\mu}\overline{\nu}_{\mu} & (WW_VBS) \\ \mu^{+}\mu^{-} \to X \mu^{+}\mu^{-} & (ZZ_VBS) \\ \mu^{+}\mu^{-} \to X \mu^{\pm}\frac{(-)}{\nu_{\mu}} & (WZ_VBS) \end{pmatrix}$

Simpler than the LHC, can be expressed as a "high-luminosity weak boson collider"

Longitudinally polarized ZZ scattering at the Muon Collider

Signal and backgrounds selection

- ➢ Signal:
 > $Z_L Z_L \rightarrow 4l$ in WW_VBS
- > 14 TeV, $L = 20ab^{-1}$; 6TeV, $L = 4ab^{-1}$, using $L = 10ab^{-1} \times \left(\frac{E_{\rm cm}}{10 {\rm TeV}}\right)^2$

SUSY 2021

- ➢ Backgrounds:
 - ➤ Have sufficiently large cross section
 - Exist the possibility of decaying to 4 leptons

SM process type

WW_VBS

ZZ_VBS

WZ_VBS

s-channel

Selected background

 $H, HZ, HZZ, HWW, HH, WWZ, ZZZ, Z_TZ_T, Z_TZ_L, t\bar{t}Z$

 $H, WW, t\bar{t}, 4e, 2e2\mu, 4\mu$

WZ, WZH, WH, WWW, WZZ

ZZ, WWZ

6

SUSY 2021 Longitudinally polarized ZZ scattering at the Muon Collider Analysis steps

≻1.Events generation

►2.Initial selection

≻ select events using root file generated by delphes.

➤3.Use Boosted Decision Tree(BDT) algorithm to distinguish between signals and backgrounds.

≻4.Compare BDT with cut-based method

Longitudinally polarized ZZ scattering at the Muon Collider

Initial events selection

> 4 pt > 20GeV leptons

2muons 2electrons

 \rightarrow -----charge(11)*charge(12)==-1 and charge(13)*charge(14)==-1

➤ 4muons or 4electrons

 \succ ——sum(charge(4l))==0 and \prod charge(4l)==1

> delta_r(Ktjets, leptons)

- \succ clean leptons $\Delta R < 0.5$
- \succ if no jets left ——select

➤ separate 4 leptons to 2 "Z bosons"

$$> l_1^+ l_2^+ l_3^- l_4^- \rightarrow l_1 l_3, l_2 l_4; l_1 l_4, l_2 l_3$$

$$> \Delta M^2 = \left(M_{Z_1'} - M_Z \right)^2 + \left(M_{Z_2'} - M_Z \right)^2$$

$$> \Delta M_{13,24}^2 > \Delta M_{14,23}^2 \rightarrow \text{choose } 14,23, \text{ vice versa}$$

$$> 2e2\mu: Z_1 \rightarrow e^+ e^-, Z_2 \rightarrow \mu^+ \mu^-$$

Tianyi Yang(Peking University)

Longitudinally polarized ZZ scattering at the Muon Collider

Initial events selection

> 4 pt > 20GeV leptons

 \rightarrow -----charge(11)*charge(12)==-1 and charge(13)*charge(14)==-1

 \succ 4muons or 4electrons

 \succ -----sum(charge(4l))==0 and \prod charge(4l)==1

> delta_r(Ktjets, leptons)
> clean leptons — $\Delta R < 0.5$ > if no jets left — select
> separate 4 leptons to 2^("Z bosons")
> $p_{T_{Z1}} > p_{T_{Z2}}$ > $l_1^+ l_2^+ l_3^- l_4^- \rightarrow l_1 l_3, l_2 l_4; l_1 l_4, l_2 l_3$ > $\Delta M^2 = \left(M_{Z_1'} - M_Z\right)^2 + \left(M_{Z_2'} - M_Z\right)^2$ > $\Delta M_{13,24}^2 > \Delta M_{14,23}^2 \rightarrow \text{choose } 14,23, \text{ vice versa}$ > $2e2u; Z_1 \rightarrow e^+e^-, Z_2 \rightarrow u^+u^-$

BDT parameters setting

- ≻num of trees=200, max depth=5
- ➤apply the per-event weight to account for the cross-section difference among the processes. The weight is defined by:

 $n_L = \sigma_X L / N_{G_X}$

Longitudinally polarized ZZ scattering at the Muon Collider

BDT training results— $\sqrt{S} = 14$ TeV

Longitudinally polarized ZZ scattering at the Muon Collider

BDT training results

$$S = \sqrt{2(s+b)\ln\left(1+\frac{s}{b}\right) - 2s}$$

s(*b*) means the weighted number of signal(background) events

2021/8/25

Longitudinally polarized ZZ scattering at the Muon Collider

BDT training results

Tianyi Yang(Peking University)

SUSY 2021

2021/8/25

Longitudinally polarized ZZ scattering at the Muon Collider

BDT training results

BDT training results

> split the training and test sets with 150 different random configurations:

Optimal cut value ≈ 0.93 , Significance $\approx 14\sigma$

2021/8/25

Comparison between BDT and cut-based method

$$rac{1}{5} = 205.7, \overline{b} = 49.2$$

$$\hat{\sigma}_{s} = 14.1, \hat{\sigma}_{b} = 11.7$$

Longitudinally polarized ZZ scattering at the Muon Collider

Comparison between BDT and cut-based method

≻Consider the top 10 features:

17

Comparison between BDT and cut-based method

≻cut-flow table and the corresponding significance:

cuts	S	b	$S[\sigma]$
$70 \text{GeV} < M_{Z1}, M_{Z2} < 140 \text{GeV}$	476.5	6592.1	5.8
$70 \text{GeV} < M_{Z1}, M_{Z2} < 140 \text{GeV}, \Delta R_{Z2,pm} < 0.4$	238.1	1165.9	6.8
$70 \text{GeV} < M_{Z1}, M_{Z2} < 140 \text{GeV}, \Delta R_{Z2,pm} < 0.4,$	213.5	424.9	9.6
$p_{\mathrm{T,4}\ell} < 300 \mathrm{GeV}$			
$70 \text{GeV} < M_{Z1}, M_{Z2} < 140 \text{GeV}, \Delta R_{Z2,pm} < 0.4,$	147.8	158.1	10.4
$p_{\mathrm{T,4}\ell} < 300 \mathrm{GeV}, \not \!\!\! E < 140 \mathrm{GeV}$			

 $\Delta R_{Z2,pm}$: ΔR between the two leptons forming Z_2

$$L'' = \frac{5^2}{10^2} L \approx 5ab^{-1} = 5000 \text{fb}^{-1}$$

Comparison between $\sqrt{S} = 14$ TeV&6TeV

Same analysis frame, but get $S_{\text{max}} \approx 2.4\sigma$

≻Three main reasons

- Smaller cross-section of signal, larger crosssection of some backgrounds
- Fewer events after initial selection (1/10 of signal)
- harder to distinguish between signal and backgrounds—mainly between different polarization fraction

Comparison between $\sqrt{S} = 14$ TeV&6TeV

Evidence of the 3rd reason

Tianyi Yang(Peking University)

Comparison between $\sqrt{S} = 14$ TeV&6TeV

Evidence of the 3rd reason

Longitudinally polarized ZZ scattering at the Muon Collider

Discussion about the evidence

> Why exists a peak at $\Delta R_{Z2,pm} \approx 0$?

➤ MG run_card: no cut decay

False = cut_decays ! Cut decay products

\triangleright delphes muon_collider_card: $\Delta R_{max} = 0.1$ — $\Delta R_{max} = 0.5$ in CMS_card

Tianyi Yang(Peking University)

Verify the correctness of MC simulation

Check two variables at the Z boson's rest frame

Cut-flow table and the corresponding *S* when $\Delta R_{Z_{1,2},pm} > 0.2$

cuts	s	b	$S\left[\sigma ight]$
$\Delta R_{Z_{1,2},pm} > 0.2$	334.3	14331.2	2.8
$0.2 < \Delta R_{Z_1,pm} < 0.8, \ 0.2 < \Delta R_{Z_2,pm} < 0.5$	108.7	1007.6	3.4
$0.2 < \Delta R_{Z_1,pm} < 0.8, \ 0.2 < \Delta R_{Z_2,pm} < 0.5,$	100.0	695.4	3.7
$60 { m GeV} < M_{Z1}, M_{Z2} < 130 { m GeV}$			
$0.2 < \Delta R_{Z_1,pm} < 0.8, \ 0.2 < \Delta R_{Z_2,pm} < 0.5,$	97.0	400.7	4.7
$60 \text{GeV} < M_{Z1}, M_{Z2} < 130 \text{GeV}, p_{\text{T},4\ell} < 500 \text{GeV}$			
$0.2 < \Delta R_{Z_1,pm} < 0.8, \ 0.2 < \Delta R_{Z_2,pm} < 0.5,$	61.7	90.2	5.9
$60 \text{GeV} < M_{Z1}, M_{Z2} < 130 \text{GeV}, p_{T,4\ell} < 500 \text{GeV},$			
$M_{4l} < 3000 { m GeV}, \not\!\!\!\! E < 180 { m GeV}$			

 $\triangleright \Delta R_{Z_{1,2},pm}$ has a significant impact on the results, require better detector resolution

pp > ZZjj, Z > l+l-

Comparison between the Muon Collider and the LHC

Distributions of $\Delta R_{Z2,pm}$ in different $p_{T_{Z2}}$ intervals at the Muon Collider Distributions of $\Delta R_{Z2,pm}$ and $p_{T_{Z2}}$ at the LHC

Outlook and conclusions

 $\gg \sqrt{s} = 14$ TeV

- > If $\Delta R_{\text{max}} = 0.1$, BDT and cut-base method gives $L' = 3000 \text{fb}^{-1}$ and $L'' = 5000 \text{fb}^{-1}$, respectively.
- > If $\Delta R_{\text{max}} = 0.2$, cut-base method gives a bigger target luminosity, which is about 14000 fb⁻¹.
- $\gg \sqrt{s} = 6 \text{TeV}$
 - $> S \approx 2.4\sigma$ when $L = 4ab^{-1}$
- ≻In LHC, peak at at $\Delta R_{Z2,pm} \approx 0$ is not observed, possibly because the 2 Z bosons don't have large p_T.
- ≻Further research is needed.

Longitudinally polarized ZZ scattering at the Muon Collider

THANKS!

Tianyi Yang(Peking University)

SUSY 2021

2021/8/25

27