Searches for charginos and neutralinos with the ATLAS detector

Sara Alderweireldt on behalf of the ATLAS Collaboration

SUSY 2021 23-28 August 2021

SUSY and simplified models

- Many SM parameters measured with exceptional precision and agreement with theoretical predictions
- New physics is out there, why haven't we found it yet?
 - $\rightarrow~$ nature of DM? hierarchy problem? unification of the forces? flavour anomalies?
- SUSY = new (broken) fermion/boson symmetry
 - $\rightarrow~$ can provide solutions to the open problems
 - \rightarrow supersymmetric partner for every SM particle
 - → including an extended Higgs sector
 - → chargino/neutralino eigenstates through mixing of bino/wino/higgsino states

 Focus on simplified models to systematically cover large phase space, but moving to also include more general interpretations

(Electroweak) SUSY at the LHC

assuming acc*eff $\sim 1\%$ then expect O(100) events in full Run 2 13 TeV dataset

- Supersymmetry can provide solutions to the open problems
- Stringent limits have been set on strong production of SUSY particles, putting pressure on naturalness
 - \rightarrow stop / squark / gluino limits up to 1.3 / 1.85 / 2.2 TeV
 - \rightarrow electroweak production cross sections smaller

- Same SUSY motivations remain for electroweak production
 - \rightarrow probe lower cross section processes with full Run 2 dataset
 - \rightarrow naturalness favours light higgsinos

ATLAS searches for electroweak SUSY

Considering various production modes, intermediate states, final states & LSP

Searches continue to evolve

- → push towards kinematic bounds and statistically challenging regions (decreasing cross section)
- $\rightarrow\,$ develop searches to cover gaps and target unexplored corners of phase space
- ightarrow consider more general models than just the simplified cases
- \rightarrow further facilitate reinterpretation

Electroweakino pair production

Searches for charginos and neutralinos with the ATLAS detector (23/Aug 202

This talk – Searches in multilepton final states

Searches for charginos and neutralinos with the ATLAS detector (23/Aug 202

Run: 359058 Event: 2965933740 2018-08-25 01:51:44 CEST

$Chargino-Neutralino \rightarrow 4 \text{ or more leptons}$

JHEP 07 (2021) 167

$\tilde{\chi}\tilde{\chi} \rightarrow$ 4 or more leptons

- including C1C1 / C1N1 / C1N2 / N1N2 production
- final states with ≥ 4 leptons (including $\leq 2 \ \tau_h$)

RPC targetting regions

signal regions separated by

- presence/absence of Z bosons (2Z / 0Z)
- τ_h and b-jet multiplicity
- $\mathbf{E}_{\!\!\perp}^{\!\!\!\mathrm{miss}}$ and $m_{\rm eff}$

main backgrounds

- irreducible: ZZ and $\ensuremath{t\bar{t}Z}$ from MC normalised in CR
- reducible: fake leptons from data-driven measurement

excess follow-up

RPC targetting regions – results

$\tilde{\chi}\tilde{\chi} \rightarrow$ 4 or more leptons

- better sensitivity to $\mathcal{B}(\tilde{\chi}^0_1 \to Z + \tilde{G})$ than to $\mathcal{B}(\tilde{\chi}^0_1 \to h + \tilde{G})$ due to relatively high $Z \to \ell \ell$ branching ratio
- great complementarity of $\frac{4\ell}{k}$ with $\frac{4b}{k}$ and $\frac{0\ell}{k}$ results, sensitive respectively at higher $\mathcal{B}(\tilde{\chi}^0_1 \to h + \tilde{G})$ and at higher higgsino mass

Chargino–Neutralino \rightarrow WZ/Wh \rightarrow 3 ℓ +MET

$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \mathbf{3}\ell \,+\, \mathbf{E}_{\!\perp}^{\mathrm{miss}}$

Chargino-Neutralino pair production

- search in $3\ell+E_{\!\perp}^{\!\scriptscriptstyle{\text{miss}}}$ final states
- intermediate WZ (both on-shell or off-shell) or Wh decays $(h \rightarrow WW/ZZ/\tau\tau)$

Two interpretations

- 1. wino/bino scenario
- \rightarrow used to optimise analysis regions
- \rightarrow bino-like LSP, degenerate wino-like NLSPs
- \rightarrow DM co-annihilation motivated
- \rightarrow slightly higher cross section
- \rightarrow important for intermediate & higher mass splittings

X light

 \tilde{R}

2. alternative higgsino scenario

- \rightarrow nearly degenerate higgsino triplet
- → naturalness motivated
- \rightarrow smaller cross section
- $\rightarrow\,$ important for smaller mass splittings, considered up to $\Delta m(\tilde{\chi}^0_2,\tilde{\chi}^0_1)=60~{\rm GeV}$

$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \rightarrow \mathbf{3}\ell \,+\, \mathbf{E}_{\!\!\perp}^{\mathrm{miss}}$

Multiple analysis channels

On-shell WZ

- $\bullet \ \Delta m(\tilde{\chi}^0_2,\tilde{\chi}^0_1) \geq m_{\rm Z}$
- update 36 fb⁻¹ result arxiv:1803.02762
- extend towards $\Delta m=m_{\rm Z}$ kinematic bound & towards higher $m(\tilde{\chi}_2^0)$

Off-shell WZ

- $\bullet \ \Delta m(\tilde{\chi}^0_2,\tilde{\chi}^0_1) < m_{\rm Z}$
- first 3ℓ result since Run 1 arxiv:1402.7029
- cover Δm gap between on-shell and very compressed phase space arxiv:1911.12606 (soft 2ℓ)

Wh

● first 3ℓ result since Run1 arxiv:1402.7029

+ Combination of results in WZ channel including new and soft 2ℓ results

Sara Alderweireldt (Edinburgh)

Analysis concept

Multibin selection covering varied signal scenarios and masses

- $ightarrow \ 3\ell + {\sf E}_{\!\!\perp}^{\sf miss}$ with ≥ 1 opposite-sign same-flavour pair
- \rightarrow jet-veto and jet-inclusive selections
- ightarrow further binning in $\mathsf{E}^{ extsf{miss}}_{\!\!\perp}$, $\,m_{\mathsf{T}}^{}$, and $m^{ extsf{min}}_{\ell\ell}$

Background estimation

- irreducible: WZ (MC with normalisation in CR), tt (MC)
- reducible: Z+jets fake/non-prompt (data-driven estimation)

on-shell $WZ m_T$ shape validation

in DFOS mis-paired events

BDT-based 3rd lepton isolation in off-shell WZ selection

for fake/non-prompt lepton background reduction

Searches for charginos and neutralinos with the ATLAS detector (23/Aug 202

Results – intermediate Wh

${ ilde \chi}_1^\pm { ilde \chi}_2^0$ pair production in wino/bino scenario

- 19 SFOS regions + 2 extra DFOS regions important for sensitivity \rightarrow slight excesses translate to exclusion contour
- first 3ℓ result for Wh since Run 1
- expected sensitivity improved by 90 GeV in $m(\tilde{\chi}^0_2)$

Results – intermediate WZ

+ Combine results in WZ channel where sensitivity overlaps

• new on-shell + off-shell SRs and results of previous soft 2ℓ search

+ Excess follow-up 3ℓ recursive jigsaw reconstruction technique result

- 36fb⁻¹ result arxiv:1806.02293
- good agreement with SM expectation in full Run 2 dataset

Results – WZ – wino/bino scenario

$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ pair production with intermediate WZ

- improved exclusion \rightarrow by ~150 GeV in $m(\tilde{\chi}_2^0)$ in $\Delta m = m_7$ region
 - \rightarrow by 40 GeV towards higher $m(\tilde{\chi}_2^0)$
 - $ightarrow\,$ down to $\Delta m=7$ GeV and up to $m({ ilde \chi}_2^0)=$ 310 GeV covering the gap between the bulk and very compressed region

 3ℓ on-shell 3ℓ off-shell soft 2ℓ

- showing observed DM relic density interpretation following arxiv:1804.05238
- **combination** with previous soft 2ℓ result arxiv:1911.12606
- improves exclusion \rightarrow from 240 to 280 GeV near $\Delta m = m_7$
 - \rightarrow from 210 to 240 GeV around $\Delta m = 10 15$ GeV

Results – WZ – higgsino scenario

${ ilde \chi}_1^\pm { ilde \chi}_2^0$ pair production with intermediate $W\!Z$

- · alternative scenarios targeted with off-shell WZ search category
- · subtly different kinematics and lower cross section
- improved exclusion from 120 to 200 GeV in $m(\tilde{\chi}_2^0)$ GeV for intermediate mass splittings
- combination with previous soft 2ℓ result arxiv:1911.12606
- mild excess around $\Delta m = 25$ GeV, mostly from soft 2ℓ result, still visible in combined result

Summary

Several new and updated ATLAS results in the search for electroweak SUSY

- · Explored the full Run 2 dataset with a wide range of analysis techniques
- · No significant deviations observed and setting stronger exclusion limits

Searches discussed today probe various well-motivated and challenging corners of phase space

- Complementary sensitivity in ${\tilde \chi}^0_1 \to ~Z/h + {\tilde G}$ plane from $4\ell, \, 4b$, and 0ℓ results
- Covering gaps in sensitivity for chargino-neutralino pair production with targeted 3ℓ searches and combination of results, improving limits for Δm near m_7 by 150 GeV and for intermediate $\Delta m < m_7$ by up to 310 GeV in $m(\tilde{\chi}_2^0)$
- More new results in dedicated talks (see p.5)

Continue with exciting search program in Run 3

- Dataset will keep growing beyond Run 2
- Still more phase space to cover
- · Search strategies and analysis techniques continue to evolve

Additional slides

Search strategy

Analyses may use varying techniques for signal/background separation

- · cut & count analysis: use simple selection on kinematic variables
- shape analysis: use multi-bin fit

Signal regions (SRs) are built optimising discovery/exclusion power

- target specific signatures and maximise S/B
- range from simple selection, to building complex variables, to employing e.g. machine-learning techniques

Background estimation

- Reducible/irreducible: different/same final state as signal
- estimation from MC / partially data-driven / from data
- · often normalisation to data in dedicated control regions (CRs)

Validation regions (VRs)

• typically defined close to SR phase space to validate background estimation

Lepton reconstruction and identification performance

Improvements for leptons at very low transverse momentum open up opportunities for searches

New techniques for lepton isolation assist fake/non-prompt lepton background reduction

- BDT-based isolation using lepton isolation, lepton and track quantities, and b-jet likeness in cone around lepton
- · optimised for use down to the lowest lepton transverse momenta
- performance example from 3ℓ analysis:

2-3x background reduction while retaining 70-90% efficiency for real leptons

ATLAS detector

$\geq 4\ell$ JHEP 07 (2021) 167

RPV targetting regions

- 4L0T (λ_{12k} (k=1,2)) and 3L1T/2L2T (λ_{i33} (i=1,2)) regions
- selection using Z-veto and separating by b-multiplicity
 - general SRs & VRs with moderate m_{eff} threshold
 - specific λ_{ijk} targetting SRs at very high $\mathrm{m_{eff}}$
- dominant backgrounds: ZZ and ttZ, as well as fake leptons
- considering $\mathcal{B}(\tilde{\chi}^0_1 \rightarrow \ell\ell\nu) = 100\%$
- showing wino NSLP scenario, additional results for slepton/gluino NLSP

Results – WZ – wino/bino alternative interpretation

Excess follow-up: Recursive Jigsaw Reconstruction technique

$\tilde{\chi}_{\pm}^{\pm}\,\tilde{\chi}_{2}^{0}$ pair production with on-shell intermediate W/Z decays, and 3 ℓ + final state

- RJR technique: arxiv:1607.08307 , arxiv:1705.10733
- Two excesses in $2/3\ell$ 36 fb⁻¹ result: SR3 ℓ -Low (2.1 σ) and SR3 ℓ -ISR (3.0 σ)
 - $\rightarrow~$ RJR technique to boost back to the rest frames of the parent particles
 - ightarrow discriminating variables can be defined using object/frame momenta
- Earlier follow-up analysis with 139 fb⁻¹ emulated RJR analysis
 - \rightarrow Translation of RJR variables to lab frame variables
 - \rightarrow Able to reproduce 36 fb⁻¹ result
 - \rightarrow No significant excesses using full 139 fb⁻¹ dataset
- New result repeating original analysis with 139 fb⁻¹ dataset
 - \rightarrow No changes to original analysis
 - \rightarrow Good agreement with emulated RJR result
 - $\rightarrow~$ No significant excesses using full 139 $\rm fb^{-1}~dataset$

Region	SR3ℓ-Low	SR3ℓ-ISR
Observed	53	25
Fitted SM	49 ± 14	17 ± 4
Diboson	47 ± 14	16 ± 4
FNP leptons	1.36 ± 0.29	0.83 ± 0.27
Triboson	0.40 ± 0.14	0.14 ± 0.06
Others	0.052 ± 0.029	0.41 ± 0.21

 3ℓ RJR (139 fb⁻¹),

arxiv:2106.01676