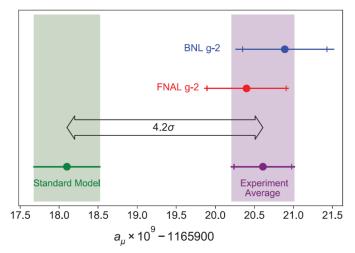
Muon g-2 in the MSSM and 2HDM

Dominik Stöckinger, TU Dresden


SUSY Conference 2021, 27th August 2021

Collaborators: Peter Athron, Csaba Balasz, Douglas Jacob, Wojciech Kotlarski, Hyejung Stöckinger-Kim [2104.03691]

(ロ) (団) (国) (国) (国)

Dominik Stöckinger 1/12

Finally: Fermilab Run 1 versus Theory Initiative SM value

Which models can(not) explain it?

<ロ > < 部 > < き > < き > り へ ()

Dominik Stöckinger 2/12

Two important general points

SM prediction too low by $\approx (25\pm 6)\times 10^{-10}$

$$\begin{array}{c} {\rm discrepancy} \approx 2 \times a_{\mu}^{\rm SM,weak} \\ {\rm but: \ expect \ } a_{\mu}^{\rm NP} \sim a_{\mu}^{\rm SM,weak} \times \left(\frac{\textit{M}_W}{\textit{M}_{\rm NP}}\right)^2 \times {\rm couplings} \end{array}$$

Dominik Stöckinger 3/12

Two important general points

SM prediction too low by
$$\approx (25\pm 6)\times 10^{-10}$$

$$\begin{array}{c} {\rm discrepancy} \approx 2 \times \textit{a}_{\mu}^{\rm SM, weak} \\ {\rm but: \ expect \ \textit{a}_{\mu}^{\rm NP} \sim \textit{a}_{\mu}^{\rm SM, weak} \times \left(\frac{\textit{M}_{W}}{\textit{M}_{\rm NP}}\right)^{2} \times \text{couplings} \end{array}$$

loop-induced, CP- and Flavor-conserving, chirality-flipping ($\mu_L \leftrightarrow \mu_R$)

compare:

EDMs,
$$B \to s\gamma$$

 $\mu \to e\gamma$

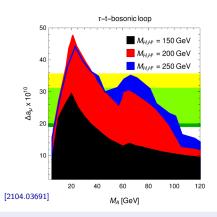
EWPO

Dominik Stöckinger 3/12

Two promising directions

- 1. Dark sectors/dark matter
 - hard to see in detectors, but could couple to muons
- 2. Window to muon mass generation mechanism
 - ullet g-2 and m_{μ} break "chiral" symmetry
 - and break EW gauge invariance
 - chiral enhancements possible with modified Higgs/Yukawa sector

Dominik Stöckinger 4/12


Outline

- Examples of concrete models and constraints
 - 2HDM
 - MSSM and other SUSY models

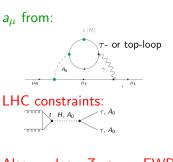
Two-Higgs doublet model: $M_A < 100 \text{ GeV}$

Aligned 2-Higgs doublet model, rich new Higgs/Yukawa sectors

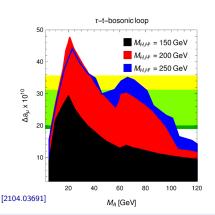
[Type X extensively studied by E.J. Chun et al, Aligned (incl. full 2-loop) by Cherchiglia et al]

Details on Yukawa couplings:

Type X/lepton-specific: $Y_{\ell} \propto \tan \beta$ Type II: $Y_{\ell,d} \propto \tan \beta$


Examples of concrete models and constraints

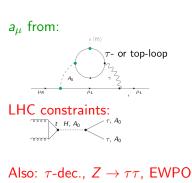
Aligned: $Y_{\ell} \propto \zeta_{\ell}$

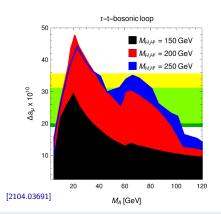

Two-Higgs doublet model: $M_A < 100 \text{ GeV}$

Aligned 2-Higgs doublet model, rich new Higgs/Yukawa sectors

[Type X extensively studied by E.J. Chun et al, Aligned (incl. full 2-loop) by Cherchiglia et al]

Details on Yukawa couplings:


Type X/lepton-specific: $Y_{\ell} \propto \tan \beta$ Type II: $Y_{\ell,d} \propto \tan \beta$


Aligned: $Y_{\ell} \propto \zeta_{\ell}$

Two-Higgs doublet model: $M_A < 100 \text{ GeV}$

• Aligned 2-Higgs doublet model, rich new Higgs/Yukawa sectors

[Type X extensively studied by E.J. Chun et al, Aligned (incl. full 2-loop) by Cherchiglia et al]

- can explain g − 2
- need large new Yukawa couplings
- under pressure, testable at LHC, lepton colliders, B-physics

Analysis: a_{μ} in the MSSM

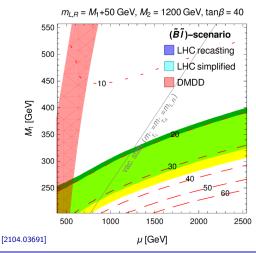

Typical SUSY contributions are chirally enhanced — Two interesting cases:

Wino-Higgsino-smuon

or

Bino-smuonL-smuonR(+heavy Higgsino)

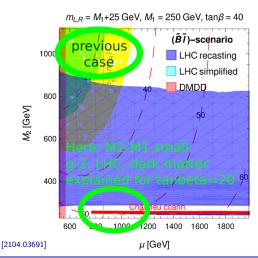
$$\begin{split} a_{\mu}(\textit{WHL}) &\approx 21 \times 10^{-10} \left(\frac{500 \text{ GeV}}{\textit{M}_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40} \\ a_{\mu}(\textit{BLR}) &\approx 2.4 \times 10^{-10} \left(\frac{500 \text{ GeV}}{\textit{M}_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40} \frac{\mu}{500 \text{ GeV}} \end{split}$$


MSSM can explain g-2 and dark matter

$$a_{\mu}(WHL) \approx 21 \times 10^{-10} \left(\frac{500 \text{ GeV}}{M_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40}$$

$$a_{\mu}(\textit{WHL}) \approx 21 \times 10^{-10} \left(\frac{500 \text{ GeV}}{\textit{M}_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40}$$
 $a_{\mu}(\textit{BLR}) \approx 2.4 \times 10^{-10} \left(\frac{500 \text{ GeV}}{\textit{M}_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40} \frac{\mu}{500 \text{ GeV}}$

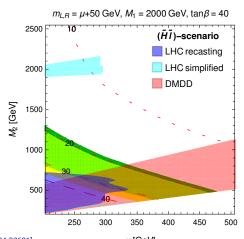
- Bino-LSP, close-by sleptons
- DM explained by stau/slepton-coannihilation
- \bullet explains g-2 in large region (expands for $\tan \beta \neq 40$) (both WHL and BLR important)
- this automatically evades (current) LHC limits


MSSM can explain g-2 and dark matter

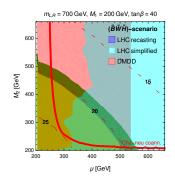
$$a_{\mu}(WHL) \approx 21 \times 10^{-10} \left(\frac{500 \text{ GeV}}{M_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40}$$

$$a_{\mu}(\textit{WHL}) \approx 21 \times 10^{-10} \left(\frac{500 \text{ GeV}}{\textit{M}_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40}$$
 $a_{\mu}(\textit{BLR}) \approx 2.4 \times 10^{-10} \left(\frac{500 \text{ GeV}}{\textit{M}_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40} \frac{\mu}{500 \text{ GeV}}$

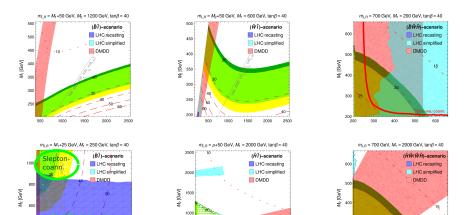
- Still Bino-LSP and close-by sleptons
- Now lower M_w : strong LHC limits
- DM also explained by Wino-coannihilation
- again evades (current) LHC limits


MSSM can explain g-2 and dark matter

$$a_{\mu}(WHL) \approx 21 \times 10^{-10} \left(\frac{500 \text{ GeV}}{M_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40}$$


$$a_{\mu}(\textit{WHL}) \approx 21 \times 10^{-10} \left(\frac{500 \text{ GeV}}{\textit{M}_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40}$$
 $a_{\mu}(\textit{BLR}) \approx 2.4 \times 10^{-10} \left(\frac{500 \text{ GeV}}{\textit{M}_{\text{SUSY}}}\right)^2 \frac{\tan \beta}{40} \frac{\mu}{500 \text{ GeV}}$

- Higgsino-LSP and \approx light sleptons
- DMRD too small
- significant LHC limits on M_2
- ⇒ attractive, generic scenario


Further case: Bino-LSP < charginos < sleptons

- Bino-LSP <Wino, Higgsino < sleptons: stau-coann. essentially excluded because of LHC limits on cha-decays into staus and by DMDD constraints
 Hagiwara, Ma, Mukhopadhyay: more details on stau recasting
 - Hagiwara, Ma, Muknopadnyay: more details on stau recasting
- This entire scenario might be excluded by further g-2, DM, LHC constraints
- The case with Wino-coann. is viable

MSSM overview:

[Peter Athron, Csaba Balasz, Douglas Jacob, Woiciech Kotlarski, DS, Hyejung Stöckinger-Kim, 2104.03691]

u (GeV) Bino-LSP: DM via slepton- or Wino-coannihilation Interesting/challenges: $M_1 < M_2/2$ preferred; super-large μ helps

300

Higgsino- or Wino-LSP: promising if we accept some other DM candidate Both charginos < sleptons: disfavoured, may be excluded(?)

500

4日 > 4周 > 4 至 > 4 至 >

μ (GeV)

500 600

1400 1600 1800

μ (GeV)

300

200 300

Summary of main points

discrepancy
$$\approx 2 \times \textit{a}_{\mu}^{\mathrm{SM,weak}}$$

but: expect
$$a_{\mu}^{\mathrm{NP}} \sim a_{\mu}^{\mathrm{SM,weak}} imes \left(\frac{\mathit{M}_{\mathit{W}}}{\mathit{M}_{\mathrm{NP}}} \right)^2 imes$$
 couplings

a_{μ} is loop-induced, CP- and flavor-conserving and chirality-flipping rather light, neutral (?) particles \rightarrow Connection to dark matter?

rather light, neutral (!) particles \leadsto Connection to dark matters

Chirality flip enhancement \leadsto Window to muon mass generation? EWSB/generations?

Which models can still accommodate large deviation?

Many (but not all) models!

but always: experimental constraints!

MSSM and 2HDM:

- 2HDM still "just about possible", many constraints
- General MSSM very promising: Bino-LSP+coannihilation; Wino-/Higgsino-LSP.
- But "non-traditional" parameter regions particularly favourable