$t\bar{t}t\bar{t}$ signatures through the lens of color-octet scalars

Taylor Murphy

The Ohio State University

Department of Physics

August 27, 2021

Based on arXiv:2107.13565 in collaboration with L. M. Carpenter and M. J. Smylie

ATLAS-CONF-2020-013: $\sigma(pp \to t\bar{t}t\bar{t})$

■ SM production of four top quarks is rare —

$$\sigma_{\rm SM}(pp \to t\bar{t}t\bar{t}) = (12.0 \pm 2.4)\,{\rm fb}$$
 at $\sqrt{s} = 13\,{\rm TeV}$

- ATLAS-CONF-2020-013 [1]: search for $t\bar{t}t\bar{t}$ production in multilepton final states
 - \Box 4.2 σ over background: closer than ever to 5σ discovery
 - \Box Signal strength $\mu=2.0^{+0.8}_{-0.6},$ cross section $\sigma(pp\to t\bar{t}t\bar{t})=24^{+7}_{-6}\,{\rm fb}$
 - \Box 1.7 σ over SM prediction
- ATLAS-CONF-2021-013 [2]: search in lepton(s) + jets final states improves $4.2\sigma \rightarrow 4.7\sigma$ (null), $1.7\sigma \rightarrow 2.0\sigma$ (SM)
- New physics hiding in these results? Multiple SUSY scenarios feature resonances decaying to $t\bar{t}$

ATLAS-CONF-2020-002: many jets + $E_{\rm T}^{\rm miss}$

- Meanwhile, the search for physics beyond SM particularly SUSY — continues
- ATLAS-CONF-2020-002 [3]: search for new phenomena in final states with 8–12 jets and significant missing transverse energy $(E_{\rm T}^{\rm miss})$
 - $\ \square$ 8 signal regions (SRs) optimized for various bSM scenarios
 - \Box Constrains e.g. model with pair-produced $\tilde{g} \to t\bar{t} + \tilde{\chi}^0_1 \; (E^{\rm miss}_{\rm T})$
 - □ No excess over SM background reported
- Ever-improving multijet analysis enhances bSM probing power
- CONF-2020-013 $(t\bar{t}t\bar{t})$ sees excess while CONF-2020-002 $(t\bar{t}t\bar{t}+E_{\mathrm{T}}^{\mathrm{miss}})$ does not what models can accommodate both?
- Maybe color-octet scalars in models with **Dirac gauginos**

DIRAC GAUGINOS: A REVIEW

■ In e.g. MSSM, $\tilde{g} = \tilde{g}_{\text{M}} \longleftrightarrow g$ is Majorana:

$$\mathcal{L}_{\mathrm{Maj}} \supset -\frac{1}{2} M_3 (\lambda_3^a \lambda_3^a + \mathrm{H.c.}) \equiv -M_3 \, \tilde{g}_{\mathrm{M}}^a \tilde{g}_{\mathrm{M}}^a$$

■ Supersoft operators [4] offer a different approach:

$$\mathcal{L}_{\mathrm{Dirac}} \supset \frac{\kappa_3}{\Lambda} \int \mathrm{d}^2 \theta \, \mathcal{W}'^{\alpha} \mathcal{W}^a_{3\alpha} \mathcal{O}^a + \mathrm{H.c.}$$

- \square \mathcal{W}' = field-strength superfield of hidden $\mathrm{U}(1)'$ sector
- \square $\mathcal{O}^a = \varphi_3^a + \theta^\alpha \psi_{3\alpha}^a + \dots = \text{new SU}(3)_c \text{ adjoint (octet)}$ superfield
- If $\mathcal{L}_{\text{Maj}} = 0$, then $\tilde{g} = \tilde{g}_{\text{D}}$ is Dirac:

$$\mathcal{L}_{\text{Dirac}} \supset -m_3(\lambda_3^a \psi_3^a + \text{H.c.}) \equiv -m_3 \, \bar{\tilde{g}}_{\text{D}}^a \tilde{g}_{\text{D}}^a$$

R Symmetry and color-octet scalars

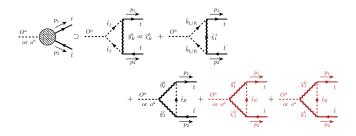
■ \mathcal{L}_{Maj} is forbidden by an **R** symmetry under which *e.g.*

$$W_3 \to e^{iR}W_3 \implies g \to g$$
 and $\lambda_3 \to e^{iR}\lambda_3$

- Typically SM bosons have R = 0, but Higgs R charge varies
- Supersoft operators hence Dirac gaugino masses allowed if

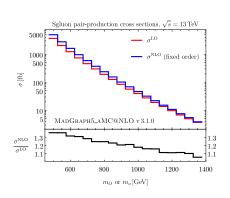
$$\mathcal{O} \to \mathcal{O} \implies \varphi_3 \to \varphi_3 \quad \text{and} \quad \psi_3 \to e^{-iR} \psi_3$$

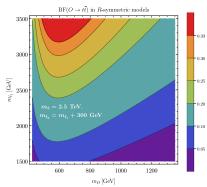
■ New color-octet fermion ψ_3 brings along **color-octet scalar**(s)


$$\varphi_3^a \equiv^* \frac{1}{\sqrt{2}} (O^a + io^a)$$

*Assuming no CPV s.t. O = scalar, o = pseudoscalar

SGLUON INTERACTIONS WITH SM PARTICLES


Sgluons O, o enjoy loop couplings to quarks and gluons [5]

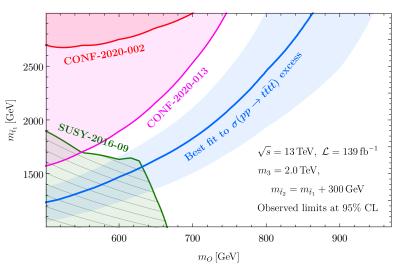


- Available decay channels and partial widths can be modified by R symmetry breaking, which splits Dirac gluino + introduces novel interactions [6]
 - \Box Generally diminishes branching fractions to $t\bar{t}$!

Cross sections & Branching Fractions

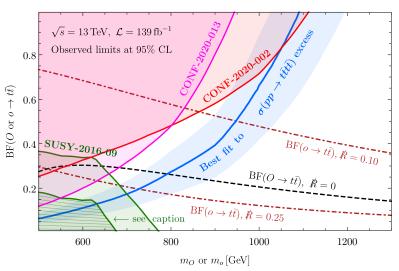
- $\sigma(pp \to OO \text{ or } oo) \in [1 \text{ fb}, 1 \text{ pb}]$ with modest K factors
- BF($O \to t\bar{t}$) $\lesssim 0.30$ in natural R-symmetric models

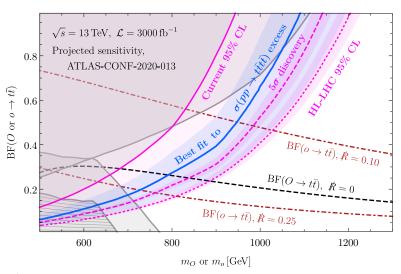
RESULTS: BEST FIT, LIMITS, AND DISCOVERY

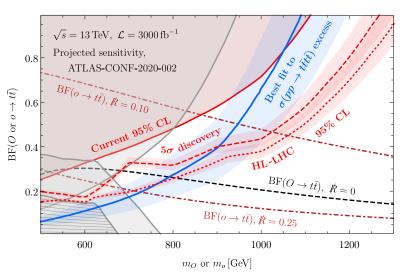

■ Recall: ATLAS-CONF-2020-013 finds

$$\mu = 2.0^{+0.8}_{-0.6}$$
 and $N_{\rm obs}(t\bar{t}t\bar{t}) = 60 \implies \sim 30$ event excess

- We use Madanalysis 5 to compute best fit to $t\bar{t}t\bar{t}$ excess + exclusion limits at 95% CL for sgluon pair-production model
- Results provided in natural R-symmetric (Dirac gaugino) + generic BF(O or $o \to t\bar{t}$) parameter spaces
- Analysis extrapolated to planned HL-LHC luminosity $\mathcal{L} = 3\,\mathrm{ab}^{-1}$
 - □ Future 95% CL limits estimated with luminosity-scaled background yield errors in case no excess is found
 - \Box Also estimate 5σ discovery potential $S = s_{\text{HL-LHC}} / \sqrt{b_{\text{HL-LHC}}}$
- Multiple scenarios can be discovered or excluded in future


RESULTS IN NATURAL DG PARAMETER SPACE


RESULTS IN GENERIC PARAMETER SPACE


HL-LHC PROJECTIONS: $\sigma(pp \to t\bar{t}t\bar{t})$

HL-LHC PROJECTIONS: jets + $E_{\mathrm{T}}^{\mathrm{miss}}$

Outlook

- We have found complementary constraints on color-octet scalars from ATLAS searches for $t\bar{t}t\bar{t}$ production and events with $t\bar{t}t\bar{t}+E_{\mathrm{T}}^{\mathrm{miss}}$
- R-symmetric (Dirac gaugino) scenarios and models with broken
 R symmetry both currently viable
- At HL-LHC, these searches provide complementary discovery channels for TeV-scale color-octet scalars decaying to top quarks
 or can rule them out
- Future hypothesis discrimination or discovery without a $t\bar{t}t\bar{t}$ signal may depend on other channels, including $g\gamma/gZ$

OUTLOOK

- We have found complementary constraints on color-octet scalars from ATLAS searches for $t\bar{t}t\bar{t}$ production and events with $t\bar{t}t\bar{t} + E_{\mathrm{T}}^{\mathrm{miss}}$
- R-symmetric (Dirac gaugino) scenarios and models with broken
 R symmetry both currently viable
- At HL-LHC, these searches provide complementary discovery channels for TeV-scale color-octet scalars decaying to top quarks
 or can rule them out
- Future hypothesis discrimination or discovery without a $t\bar{t}t\bar{t}$ signal may depend on other channels, including $g\gamma/gZ$

Thank you for your attention

I am happy to answer questions if we have time

BIBLIOGRAPHY (1)

- [1] M. Aaboud et al. (ATLAS), Eur. Phys. J. C 80 (2020).
- [2] G. Aad et al. (ATLAS), ATLAS-CONF-2021-013, Tech. Rep. (2021).
- [3] G. Aad et al. (ATLAS), J. High Energy Phys. **2020** (10).
- [4] P. J. Fox, A. E. Nelson, and N. Weiner, J. High Energy Phys. 08, 035.
- [5] T. Plehn and T. M. P. Tait, J. Phys. G 36, 10.1088/0954-3899/36/7/075001 (2009).
- [6] L. M. Carpenter and T. Murphy, J. High Energy Phys. **05** (079).
- [7] E. Conte, B. Fuks, and G. Serret, Comput. Phys. Commun. 184, 222–256 (2013).

REINTERPRETING ATLAS-CONF-2020-013

- Both searches recast for application to color-octet scalar models using Madanalysis 5 framework [7]
- ATLAS-CONF-2020-013 defines one inclusive SR with stringent preselection criteria:
 - \square 1 SS lepton pair **or** \ge 3 leptons with no charge requirement
 - \square SS *e* pairs: $m_{ee} > 15 \,\text{GeV}$ and $\notin [81, 101] \,\text{GeV}$
 - □ OSSF lepton pairs: $m_{\ell\ell} \notin [81, 101] \text{ GeV}$
 - $\square \geq 6$ jets and ≥ 2 b-tagged anti- k_t jets with R=0.4
 - $\hfill\Box$ Total scalar transverse momentum

$$H_{\rm T} \equiv \sum_{i} \left[p_{{\rm T}i}^{\rm jet} + p_{{\rm T}i}^{\rm lepton} \right] \ge 500 \,{\rm GeV}$$

• We apply cuts to SM signal + leading backgrounds to validate reimplementation at $\mathcal{O}(10)\%$ level

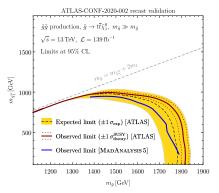
■ We simulate 5×10^4 events for signal and three leading backgrounds for SM without $t\bar{t}t\bar{t}$

	ATLAS yield	MadAnalysis 5 yield	Error [%]
$t\bar{t}W + \mathrm{jets}$	102 ± 26	90.3	-11.5
$t\bar{t}Z + \text{jets}$	48 ± 9	37.7	-21.5
$t\bar{t}H + \text{jets}$	38 ± 9	21.1	-44.5
$t\bar{t}t\bar{t}$ [SM]	30 ± 8	32.6	+8.76

- We achieve errors of $\mathcal{O}(10)\%$
- Lepton cuts are most stringent
- Largest errors likely statistical for smaller backgrounds

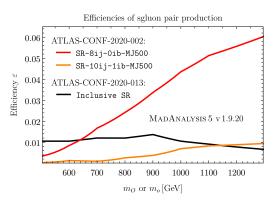
REINTERPRETING ATLAS-CONF-2020-002

- Eight non-overlapping SRs with multiple ways to control SM multijet background
 - \square 0 leptons in any SR
 - \square 8–12 R=0.4 jets with $p_{\rm T}\geq 50\,{\rm GeV}\,+\,1$ –2 b jets in some SRs
 - \square Missing transverse energy significance $\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) > 5.0$
 - \Box Cumulative mass of reclustered fat (R = 1.0) jets


$$M_{\rm J}^{\Sigma} \equiv \sum_i m_i^{{\rm jet},R=1.0} \ge 340\,{\rm GeV}$$
 or $500\,{\rm GeV}$

- ATLAS performs single-bin and multi-bin subanalyses we reimplement single-bin
- We apply cuts to gluino pair-production benchmark model and directly compare to ATLAS results, again achieving $\mathcal{O}(10)\%$ error

CONF-2020-002 RECAST VALIDATION



- ATLAS offers constraints on benchmark "SUSY" model with $pp \to \tilde{g}\tilde{g} \quad \text{followed by} \quad \tilde{g} \to t\bar{t} + \tilde{\chi}^0_1 \quad \text{via off-shell } \tilde{q}$
- We simulate 10^4 events for variety of $m_{\tilde{g}}$ and $m_{\tilde{\chi}_1^0}$

MA5 SGLUON EFFICIENCIES

- Efficiencies statistically concurrent for scalar and pseudoscalar
- \blacksquare CONF-2020-002 more efficient for heavier sgluons decaying to increasingly boosted $t\bar{t}$