# Searches for sleptons with the ATLAS detector

Lorenzo Rossini on behalf of the ATLAS collaboration

DESY







### Supersymmetry: sleptons

Sleptons play a key role in several models:

- Smuons ( $\tilde{\mu}$ ) and sneutrinos ( $\tilde{\nu}$ ) can play a key role in  $(g-2)_{\mu}$
- Staus (\(\tilde{\tau}\)) could play a role in coannihilation of neutralinos (\(\tilde{\tau}\)<sup>0</sup>) and give correct Dark Matter relic density consistent with cosmological observations
- Naturalness reasons suggest that sleptons  $\underline{\underline{a}}_{10^2}$ might have masses close to the EWK scale 101
- Rare processes but with very clean signatures





## ATLAS and the Sleptons

#### Several searches at ATLAS target direct sleptons production

- Different experimental final states
- Sleptons  $(\tilde{e}/\tilde{\mu}) \rightarrow$  Soft leptons  $(e/\mu) + E_T^{miss}$  (compressed mass splitting between  $\tilde{\ell}$  and  $\tilde{\chi}_1^0$ )
- Sleptons  $(\tilde{e}/\tilde{\mu}) \rightarrow$  high p<sub>T</sub> leptons  $(e/\mu) + E_T^{miss}$
- Direct stau  $\rightarrow$  hadronic taus +  $E_T^{miss}$
- R-parity violating models
- Both direct production and cascade from heavier particles



### ATLAS and the Sleptons

#### Analysis references:



(\*) displaced leptons will be presented by Emily Thompson!

### **ATLAS current limits**

# Current limits on direct sleptons and chargino/neutralino via sleptons



Strong constraint on mass degenerate sleptons

### ATLAS current limits and $(g - 2)_{\mu}$

#### Current limits on (only) direct smuons production

The bands indicate
 regions that are
 compatible with the
 observed muon

 $(g-2)_{\mu}$  anomaly

(arXiv:2104.03281)

Calculated using the
GM2Calc and SPheno
packages for  $m(\tilde{\chi}_1^0) \geq 10 \, \text{GeV}$ 



Sleptons are very interesting to study for this anomaly!

### **Compressed EKW: analysis overview**

#### Phys. Rev. D 101 (2020) 052005 analysis targeting very compressed spectra:





Main Backgrounds:

- Non prompt leptons: Main source of background → Data Driven method
- ▶ Irreducible backgrounds: VV, top (tt, Wt), and  $Z \rightarrow \tau \tau$ .

Taken from MC, normalised in dedicated CR

- Shape fit stransverse mass (m<sub>T2</sub>) to exploit kinematic edge in signal
- SR divided in High  $E_T^{miss}$  (SR-S-high) and low  $E_T^{miss}$  (SR-S-low) to target different  $\Delta m$  regions
- Limits set on both mass degenerate sleptons (below) and divided by flavour (backup)



### 220J: analysis overview

Phys. Rev. D 101 (2020) 032009 Analysis targeting both direct production of sleptons and direct chargino production with intermediated sleptons



- Shape fit stransverse mass (mT2)
- Left model assumes other SUSY particles highly decoupled
- Right model assumes Wino  $\tilde{\chi}_1^{\pm}$

Targeting region with large  $\Delta m(\tilde{\ell}, \tilde{\chi}^0)$ 

 $m(\tilde{\ell}_{L,R})$  [GeV]

### 220J: analysis strategy



#### Main Backgrounds:

- Irreducible backgrounds: top (tt, Wt) and VV. Main source is WW: exactly same signature, especially when Δm ~ mW
- Non prompt leptons → Data Driven method

Binned SR in stransverse mass (m<sub>T2</sub>) SR divided by number of jets and lepton flavour (SF/DF) Relying on high  $E_T^{miss}$  significance to suppress

background from fake  $E_T^{miss}$ 



### Direct $\tau$ : analysis overview

# Phys. Rev. D 101 (2020) 032009 Analysis targeting direct production of staus decaying to fully hadronic tau

- First LHC results for direct status
- Analysis based on BDT to identify hadronically decaying taus
- Di-tau trigger + MET trigger
- High mass and low mass signal region (orthogonal)





Main Backgrounds:

Multijet backgrond (2 fakes τ): main

background, estimated with ABCD method

▶ W+jets background (1 fake 1 real  $\tau$ )→

**Control Region** 

### **Direct** *τ***: results**

No excess observed. Limits set on sleptons masses (two SR combined)



Combined production of  $\tilde{\tau}_L/\tilde{\tau}_R$ 

Only  $\tilde{\tau}_L$  production

### Multi lepton: analysis overview

#### JHEP 167 (2021) Analysis targeting final states with multiple leptons (4+)

- Assuming R-Parity violating (RPV) term ( $\lambda$ ): neutralino
  - (LSP) to leptons  $(\tilde{\chi}_1^0 \to \ell^{\pm} \ell^{\mp} \nu)$ .
- Sleptons (NLSP) mass degenerate
- Two assumptions on  $\lambda$ :
  - Only decay to  $e/\mu$  allowed  $(\lambda_{12k})$
  - Only decay to  $\tau$  and  $e/\mu$  allowed ( $\lambda_{k33}$ )

| Scenario       | $\tilde{\chi}_1^0$ branching ratios |                       |                 |                        |                   |                          |  |
|----------------|-------------------------------------|-----------------------|-----------------|------------------------|-------------------|--------------------------|--|
|                | $e^+e^-\nu$                         | $e^{\pm}\mu^{\mp}\nu$ | $\mu^+\mu^-\nu$ | $e^{\pm}\tau^{\mp}\nu$ | $\tau^+\tau^-\nu$ | $\mu^{\pm}\tau^{\mp}\nu$ |  |
| $LL\bar{E}12k$ | 1/4                                 | 1/2                   | 1/4             | 0                      | 0                 | 0                        |  |
| LLĒi33         | 0                                   | 0                     | 0               | 1/4                    | 1/2               | 1/4                      |  |

Signal regions based on m<sub>eff</sub>

$$m_{eff} = E_T^{miss} + \sum p_T^{lep} + \sum p_T^{jet}$$

Analysis has also R-Parity Conserving (RPC) signals



# Multi lepton: analysis strategy



Main Backgrounds:

- ► Irreducible background → From ZZ and ttZ.
  MC normalised in data (main bkg in 4L0T)
- Reducible backgrounds: estimated in data with Fake Factor method (main bkg in 3L1T/2L2T)

- Binned SR to target different scenarios (**RPV** and **RPC**)
- SR divided in b-jets veto and b-jet "agnostic"
- SR split by number of taus and electrons/muons:
  - 4Leptons 0Taus, 3Leptons 1Tau, 2Leptons
     2Tau



- Sleptons are a well motivated scenario to investigate
- ATLAS has a large variety of searches targeting sleptons in different final states and with different models
- No significant excess has been observed
- Improved reconstruction techniques and new strategies allowed us to reach new phase space and set new strong limits
- Stay tuned for even more results from ATLAS!

# Backup

### **ATLAS and the Sleptons**

Several searches at ATLAS target direct sleptons production

Sleptons  $(\tilde{e}/\tilde{\mu}) \rightarrow$ Soft/hard leptons  $(e/\mu) + E_T^{miss}$  (+ ISR jet)



Chargino to neutralino via sleptons



Direct stau in tau





#### Compressed analysis SR definition

|                                                                       | Preselection requirements                                               |                                               |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|--|
| Variable                                                              | $2\ell$                                                                 | $1\ell 1T$                                    |  |
| Number of leptons (tracks)                                            | = 2 leptons                                                             | = 1 lepton and $\geq$ 1 track                 |  |
| Lepton $p_{\rm T}$ [GeV]                                              | $p_{\rm T}^{\ell_1} > 5$                                                | $p_{\mathrm{T}}^{\ell} < 10$                  |  |
| $\Delta R_{\ell\ell}$                                                 | $\Delta R_{ee} > 0.30, \Delta R_{\mu\mu} > 0.05, \Delta R_{e\mu} > 0.2$ | $0.05 < \Delta R_{\ell \mathrm{track}} < 1.5$ |  |
| Lepton (track) charge and flavor                                      | $e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$                                | $e^{\pm}e^{\mp}$ or $\mu^{\pm}\mu^{\mp}$      |  |
| Lepton (track) invariant mass [GeV]                                   | $3 < m_{ee} < 60, 1 < m_{\mu\mu} < 60$                                  | $0.5 < m_{\ell \mathrm{track}} < 5$           |  |
| $J/\psi$ invariant mass [GeV]                                         | veto $3 < m_{\ell\ell} < 3.2$                                           | veto $3 < m_{\ell \text{track}} < 3.2$        |  |
| $m_{\tau\tau}$ [GeV]                                                  | < 0 or > 160                                                            | no requirement                                |  |
| $E_{\rm T}^{\rm miss}$ [GeV]                                          | > 120                                                                   | > 120                                         |  |
| Number of jets                                                        | $\geq 1$                                                                | $\geq 1$                                      |  |
| Number of <i>b</i> -tagged jets                                       | = 0                                                                     | no requirement                                |  |
| Leading jet $p_{\rm T}$ [GeV]                                         | $\geq 100$                                                              | ≥ 100                                         |  |
| $\min(\Delta \phi(\text{any jet}, \mathbf{p}_{T}^{\text{miss}}))$     | > 0.4                                                                   | > 0.4                                         |  |
| $\Delta \phi(j_1, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})^{\dagger}$ | ≥ 2.0                                                                   | $\geq 2.0$                                    |  |

|                                 | Slepton SR Requirements                        |                                                              |  |  |
|---------------------------------|------------------------------------------------|--------------------------------------------------------------|--|--|
| Variable                        | SR–S–low                                       | SR–S–high                                                    |  |  |
| $E_{\rm T}^{\rm miss}$ [GeV]    | [150, 200]                                     | > 200                                                        |  |  |
| $m_{\rm T2}^{100} [{ m GeV}]$   | < 140                                          | < 140                                                        |  |  |
| $p_{\mathrm{T}}^{\ell_2}$ [GeV] | $> \min(15, 7.5 + 0.75 \times (m_{T2} - 100))$ | $> \min(20, 2.5 + 2.5 \times (m_{T2} - 100))$                |  |  |
| <b>R</b> <sub>ISR</sub>         | [0.8, 1.0]                                     | $[\max(0.85, 0.98 - 0.02 \times (m_{\rm T2} - 100)), \ 1.0]$ |  |  |

Stansverse mass defined by:

$$m_{\mathrm{T2}}^{m_{\chi}}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{1}},\mathbf{p}_{\mathrm{T}}^{\ell_{2}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}\right) = \min_{\mathbf{q}_{\mathrm{T}}}\left(\max\left[m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{1}},\mathbf{q}_{\mathrm{T}},m_{\chi}\right),m_{\mathrm{T}}\left(\mathbf{p}_{\mathrm{T}}^{\ell_{2}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}-\mathbf{q}_{\mathrm{T}},m_{\chi}\right)\right]\right)$$



Compressed analysis SR systematics



### **Compressed EKW: results**

No excess observed. Limits set on sleptons masses



**Considering mass degenerate sleptons** 

Limits divided by flavour

### Direct $\tau$ : analysis Strategy

#### Direct $\tau$ analysis SR definition

| SR-lowMass                                                | SR-highMass                                  |  |  |  |
|-----------------------------------------------------------|----------------------------------------------|--|--|--|
| $2 \text{ tight } \tau \text{ (OS)}$                      | 2 medium $\tau$ (OS) , $\geq$ 1 tight $\tau$ |  |  |  |
| asymmetric di- $\tau$ trigger                             | di- $\tau + E_{\rm T}^{\rm miss}$ trigger    |  |  |  |
| $75 < E_{\mathrm{T}}^{\mathrm{miss}} < 150 \mathrm{~GeV}$ | $E_{\rm T}^{\rm miss} > 150 {\rm ~GeV}$      |  |  |  |
| $	au \; p_{ m T} \; { m cut} \; { m des}$                 | scribed in Section 5                         |  |  |  |
| light lepton veto                                         | and 3rd medium $\tau$ veto                   |  |  |  |
| <i>b</i> -jet veto                                        |                                              |  |  |  |
| $Z/H$ veto $(m(\tau_1, \tau_2) > 120 \text{ GeV})$        |                                              |  |  |  |
| $ \Delta\phi(\tau_1,\tau_2)  > 0.8$                       |                                              |  |  |  |
| $\Delta R(\tau_1, \tau_2) < 3.2$                          |                                              |  |  |  |
| $m_{\rm T2} > 70 {\rm ~GeV}$                              |                                              |  |  |  |

### 2/0J: analysis Strategy

#### $2\ell$ 0J analysis SR definition

| Signal region (SR)                    | SR-DF-0J           | SR-DF-1J | SR-SF-0J | SR-SF-1J |  |
|---------------------------------------|--------------------|----------|----------|----------|--|
| $n_{\text{non-}b\text{-tagged jets}}$ | = 0                | = 1      | = 0      | = 1      |  |
| $m_{\ell_1\ell_2}$ [GeV]              | >1                 | 100      | >12      | 21.2     |  |
| $E_{\rm T}^{\rm miss}$ [GeV]          |                    | >1       | 10       |          |  |
| $E_{\rm T}^{\rm miss}$ significance   |                    | >        | 10       |          |  |
| $n_{b-{ m tagged jets}}$              |                    | =        | 0        |          |  |
| Binned SRs                            |                    |          |          |          |  |
|                                       |                    | ∈[100    | ,105)    |          |  |
|                                       | €[105,110)         |          |          |          |  |
| $[C \circ V]$                         | ∈[110,120)         |          |          |          |  |
| $m_{\mathrm{T2}}$ [GeV]               | ∈[120,140)         |          |          |          |  |
|                                       | ∈[140,160)         |          |          |          |  |
|                                       | ∈[160,180)         |          |          |          |  |
|                                       | $\in [180, 220)$   |          |          |          |  |
|                                       | ∈[220,260)         |          |          |          |  |
|                                       | $\in [260,\infty)$ |          |          |          |  |
| Inclusive SRs                         |                    |          |          |          |  |
|                                       | $\in [100,\infty)$ |          |          |          |  |
| $m_{\rm T2} \; [{\rm GeV}]$           | $\in [160,\infty)$ |          |          |          |  |
|                                       | ∈[100,120)         |          |          |          |  |
|                                       |                    | €[120    | ,160)    |          |  |

### 220J: analysis Strategy

#### $2\ell$ 0J analysis SR Systematics

| $\begin{array}{c} \text{Region} \\ m_{\text{T2}} \ [\text{GeV}] \end{array}$ | $\mathrm{SR}	ext{-}\mathrm{DF}	ext{-}\mathrm{0J}$<br>$\in [100,\infty)$ | $SR-DF-1J \in [100,\infty)$ | $\mathrm{SR}	ext{-}\mathrm{SF}	ext{-}0\mathrm{J}$<br>$\in [100,\infty)$ | $SR-SF-1J \in [100,\infty)$ |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------|-----------------------------|
| Total background expectation                                                 | 96                                                                      | 75                          | 144                                                                     | 124                         |
| MC statistical uncertainties                                                 | 3%                                                                      | 3%                          | 2%                                                                      | 3%                          |
| WW normalisation                                                             | 7%                                                                      | 6%                          | 4%                                                                      | 3%                          |
| VZ normalisation                                                             | < 1%                                                                    | < 1%                        | 1%                                                                      | 1%                          |
| $t\bar{t}$ normalisation                                                     | 1%                                                                      | 2%                          | < 1%                                                                    | 1%                          |
| Diboson theoretical uncertainties                                            | 7%                                                                      | 7%                          | 4%                                                                      | 3%                          |
| Top theoretical uncertainties                                                | 7%                                                                      | 8%                          | 3%                                                                      | 6%                          |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ modelling                                   | 1%                                                                      | 1%                          | < 1%                                                                    | 2%                          |
| Jet energy scale                                                             | 2%                                                                      | 3%                          | 2%                                                                      | 2%                          |
| Jet energy resolution                                                        | 1%                                                                      | 2%                          | 1%                                                                      | 2%                          |
| Pile-up reweighting                                                          | < 1%                                                                    | 1%                          | < 1%                                                                    | < 1%                        |
| b-tagging                                                                    | < 1%                                                                    | 2%                          | < 1%                                                                    | 1%                          |
| Lepton modelling                                                             | 1%                                                                      | 1%                          | 1%                                                                      | 3%                          |
| FNP leptons                                                                  | 1%                                                                      | 1%                          | 1%                                                                      | 1%                          |
| Total systematic uncertainties                                               | 15%                                                                     | 12%                         | 8%                                                                      | 10%                         |

### Direct *τ*: analysis Strategy

#### Direct $\tau$ analysis SR systematics

| Source of systematic uncertainty on background prediction | SR-lowMass $[\%]$ | SR-highMass [%] |
|-----------------------------------------------------------|-------------------|-----------------|
| Statistical uncertainty of MC samples                     | 11                | 21              |
| $\tau$ -lepton identification and energy scale            | 19                | 10              |
| Normalization uncertainties of the multi-jet background   | 12                | 8               |
| Multi-jet estimation                                      | 4                 | 10              |
| Jet energy scale and resolution                           | 5                 | 8               |
| Diboson theory uncertainty                                | 5                 | 6               |
| W+jets theory uncertainty                                 | 2                 | 3               |
| $E_{\rm T}^{\rm miss}$ soft-term resolution and scale     | 2                 | 2               |
| Total                                                     | 28                | 32              |
| Source of systematic uncertainty on signal prediction     | SR-lowMass [%]    | SR-highMass [%] |
| $m (	ilde{	au}, 	ilde{	ilde{\chi}}_1^0) [\text{GeV}]$     | (120, 1)          | (280, 1)        |
| $\tau$ -lepton identification and energy scale            | 29                | 14              |
| Statistical uncertainty of MC samples                     | 6                 | 10              |
| Jet energy scale and resolution                           | 3                 | 2               |
| Signal cross-section uncertainty                          | 2                 | 2               |
| $E_{\rm T}^{\rm miss}$ soft-term resolution and scale     | 3                 | < 1             |
| Total                                                     | 31                | 17              |

## Multi Lepton: analysis Strategy

#### Multi Lepton analysis SR definition

| Name                  | Signal Region                            | $N(e,\mu)$ | $N(\tau_{\rm had})$ | N(b-tagged jets) | Z boson           | Selection                              | Target                |
|-----------------------|------------------------------------------|------------|---------------------|------------------|-------------------|----------------------------------------|-----------------------|
| 4L0T                  | SR0-ZZ <sup>loose</sup> <sub>bveto</sub> | ≥ 4        | $\geq 0$            | = 0              | require 1st & 2nd | $E_{\rm T}^{\rm miss} > 100 {\rm GeV}$ | higgsino GGM          |
|                       | SR0-ZZ <sup>tight</sup> <sub>bveto</sub> | ≥ 4        | $\geq 0$            | = 0              | require 1st & 2nd | $E_{\rm T}^{\rm miss} > 200 {\rm GeV}$ | higgsino GGM          |
|                       | SR0-ZZ <sup>loose</sup>                  | ≥ 4        | $\geq 0$            | $\geq 0$         | require 1st & 2nd | $E_{\rm T}^{\rm miss} > 50 {\rm GeV}$  | Excess from Ref. [18] |
|                       | SR0-ZZ <sup>tight</sup>                  | ≥ 4        | $\geq 0$            | $\geq 0$         | require 1st & 2nd | $E_{\rm T}^{\rm miss} > 100 {\rm GeV}$ | Excess from Ref. [18] |
|                       | SR0 <sup>loose</sup><br>bveto            | ≥ 4        | $\geq 0$            | = 0              | veto              | $m_{\rm eff} > 600 {\rm GeV}$          | General               |
|                       | SR0 <sup>tight</sup> <sub>bveto</sub>    | ≥ 4        | $\geq 0$            | = 0              | veto              | $m_{\rm eff} > 1250  {\rm GeV}$        | RPV LLĒ12k            |
|                       | SR0 <sub>breq</sub>                      | ≥ 4        | $\geq 0$            | $\geq 1$         | veto              | $m_{\rm eff} > 1300  {\rm GeV}$        | RPV <i>LLĒ</i> 12k    |
| 3 <i>L</i> 1 <i>T</i> | SR1 <sup>loose</sup> <sub>bveto</sub>    | = 3        | ≥ 1                 | = 0              | veto              | $m_{\rm eff} > 600  { m GeV}$          | General               |
|                       | SR1 <sup>tight</sup> <sub>bveto</sub>    | = 3        | $\geq 1$            | = 0              | veto              | $m_{\rm eff} > 1000  { m GeV}$         | RPV LLĒi33            |
|                       | $SR1_{breq}$                             | = 3        | $\geq 1$            | $\geq 1$         | veto              | $m_{\rm eff} > 1300  {\rm GeV}$        | RPV LLĒi33            |
| 2L2T                  | SR2 <sup>loose</sup> <sub>bveto</sub>    | = 2        | ≥ 2                 | = 0              | veto              | $m_{\rm eff} > 600  { m GeV}$          | General               |
|                       | SR2 <sup>tight</sup> <sub>bveto</sub>    | = 2        | $\geq 2$            | = 0              | veto              | $m_{\rm eff} > 1000  {\rm GeV}$        | RPV LLĒi33            |
|                       | SR2 <sub>breq</sub>                      | = 2        | ≥ 2                 | $\geq 1$         | veto              | $m_{\rm eff} > 1100  {\rm GeV}$        | RPV LLĒi33            |
| 5 <i>L</i> 0 <i>T</i> | SR5L                                     | ≥ 5        | $\geq 0$            | $\geq 0$         | -                 | _                                      | General               |

### Multi Leptons: analysis Strategy

#### Multi Leptons analysis SR Systematics

