

Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum with the ATLAS experiment

public page

Yuta Okazaki (Kyoto University)

on behalf of the ATLAS collaboration

24 August 2021 The XXVIII International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2021)

Introduction

- Target : EWKinos with Δm > 400GeV
 - Consider wino or higgsino pair-production and various types of LSP (bino/wino/higgsino/gravitino/axino)
 - Focus on the full hadronic decays of W/Z/h.
 - motivation : Dark matter, Naturalness, Muon g-2
 - qqqq final state is explored for the first time in LHC!
- Advantages :
 - Large branching ratio
 - Most of the previous searches rely on leptonic final states with W→lv or Z→ll.
 - Increased BGs can be still handled when with large Δm, using tight kinematic cuts and "boosted boson tagging".
 - Small model dependency
 - As W, Z and h are targeted altogether.²

W/Z → qq tagging

- 3 variable cuts with p_T-dependent cut values
 - Jet mass window selection
 - Upper cut on D₂ energy correlation
 : represent 2-prong substructure
 - Upper cut on n_{trk} track multiplicity

selection for the W/Z mass peak

Jet mass

(ATL-PHYS-PUB-2020-017)

W/Z → qq tagging

- 3 variable cuts with p_T-dependent cut values
 - Jet mass window selection
 - Upper cut on D₂ energy correlation
 : represent 2-prong substructure
 - Upper cut on n_{trk} track multiplicity
- W/Z : color singlet -> particle multiplicity is nearly independent of p_T.
- single parton jet : high multiplicity (high p_T jet)
- n_{trk} cut is optimized for this analysis.^{by}/_{by}

Official 50% WP vs redefined WP for this analysis

- W → qq tagging
 - signal boson efficiency : 45 ~ 50% (= 1.3 × Official WP)
 - background rejection (= 1/background efficiency) :

 $10 \sim 30 (= 0.5 \times \text{Official WP})$

• $Z \rightarrow qq$ tagging : similar with $W \rightarrow qq$ tagging

* Jet mass > 40 GeV cut is already applied.

• $Z/h \rightarrow bb$ tagging

- Require 2 small b-tagged sub jets within a large-R jet
- 2b-tagged large-R jet mass window selection for the Z/h mass peak
 - 70 GeV < m(Jbb) < 100 GeV for Z candidates
 - 100 GeV < m(Jbb) < 135 GeV for h candidates
- Jet mass corrected for muons from semi-leptonic b-hadron decays
- Signal efficiency : ~ 50 %
- background efficiency : depends on the origin of sub jets, 0.1 ~ 10 %

Signal efficiency

Event selection strategy

Preselections for SRs

• $n(\text{large-R jets}) \ge 2$, Lepton-veto, MET > 200 GeV (trigger)

• 2 categories

- 4Q : (W/Z)(W/Z) → qqqq
- 2B2Q : (W/Z)(Z/h) → qqbb
 - Split based on the presence/absence of 2b-tagged large-R jet

Boson tagging requirements on the two large-R jets

• 10 signal region (SRs) bins to target different bosons from the signals

Selections

		S S	R(CR0L)
 Dominant background : Z(→vv) + ISR jets 		4Q	2B2Q
 Further BG rejection cuts 	$n_{\text{Large-}R \text{ jets}}$	$ \geq 2 \\ = 0 \\ - \\ -$	
 Veto b-jets outside the large-R jets (n_{b-iet}^{unmatched} = 0) 	$p_{\rm T}(\ell_1)$ [GeV] $n_{\rm photon}$		
 minΔφ(j,MET)>1.0 	$n(V_{qq})$ $n(!V_{qq})$	$\begin{vmatrix} = 2 \ (= 1) \\ = 0 \ (= 1) \end{vmatrix}$	= 1 (= 0) = 0 (= 1)
• m_{eff} (scalar sum of MET, J_1 and J_2 p _T):	$n(J_{bb})$ $m(J_{bb})$ [GeV]	= 0	= 1 ∈ [70, 135 (150)]
select events with hard kinematics	$n_{b-jet}^{\text{unmatched}}$	< 1	= 0
 m_{T2} : stransverse mass with the two large-R jets assigned to the visible particle legs 	$\frac{E_{\rm T}^{\rm miss} [{\rm GeV}]}{p_{\rm T}(W) [{\rm GeV}]}$	> 300	> 200
	$p_{\rm T}(\gamma)$ [GeV] $m_{\rm eff}$ [GeV] $\min \Delta \phi(E_{\rm T}^{\rm miss}, j)$	> 1300	<pre>> 1000 (> 900) > 1.0</pre>
	$m_{\rm T2}$ [GeV]	-	> 250

Background estimation

• V needs to decay leptonically ($W \rightarrow lv, Z \rightarrow vv$) to create large enough MET

・V+jets (50-75%) :	2 ISR jets	& 0	real	boson	jet .	"Reducible BG" (>90%) → Semi data-driven method
• VV, ttbar, single-top (~20%)	:1 ISR jet	& 1	real	boson	jet	
€ tt+X, VVV (~10%) :	0 ISR jet	& <mark>2</mark>	real	boson	jets	- "Irreducible BG" (<10%) → Direct from MC

"Fake boson" originating from ISR jets.

Estimation strategy

- Using semi-data driven method
 - Using MC extrapolation
 - MC is normalized by data in Control Region (CR)
 - CR defined by inverting the W/Z-tagging of SR.

Background estimation

- CR→SR extrapolation relies on MC modeling.
 → need to validate using data
- Validation for reducible background estimation
 - W(\rightarrow Iv)+jets / γ +jets (Similar diagram with dominant BG in SR : Z(\rightarrow vv)+jets)
 - Define control/validation regions with 1 lepton / 1 photon.
 - CR : similar with 0-lepton CR (inverting the W/Z-tagging)
 - VR : similar with 0-lepton SR
 - Good agreement is found.

Unblinded signal regions

No data excess in SR.

Target models

- Baseline MSSM scenario
- Wino or Higgsino pair-production
- Consider both the simplified models (100% branching ratio) and other interesting MSSM interpretations.

Exclusion limits : Simplified model

Exclusion limits : Bino-LSP model

Bino-LSP model : $(\tilde{W}, \tilde{B}), (\tilde{H}, \tilde{B})$ $\mathcal{B}(\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0) = 1 - \mathcal{B}(\tilde{\chi}_2^0 \to h \tilde{\chi}_1^0)$ $\mathcal{B}(\tilde{\chi}_3^0 \to Z \tilde{\chi}_1^0) = 1 - \mathcal{B}(\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0)$

- $\mathcal{B}(\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0)$ is almost free parameter
- Small dependency on the variable branching fraction : $\tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$
- Up to 1050 (900) GeV for wino (higgsino) production.

Bino-dominant dark matter scenario

(\tilde{H},\tilde{B})

- large ∆m is favored by DM relic density when bino LSP mass ~ m(Z)/2 or m(h)/2 ("Z/h funnel scenario")
- Strongest collider constrain obtained by the analysis.

Exclusion limits : $(\tilde{W}, \tilde{H}), (\tilde{H}, \tilde{W})$

- Scanned over the MSSM parameter (M₂, μ , tan β) which dedicates the branching ratios of $\tilde{\chi}_{heavy}$
- Small dependency on variable $\tan\beta$ and the sign of μ .
- Limits are also interpreted in the (m_{Heavy} , m_{LSP}) plane for a given tan β .
- Up to 1050 (900) GeV for wino (higgsino) production.
 - Similar to Bino-LSP model.

Summary

- A new inclusive EWKino search done using fully-hadronic final states.
 - Benefitted by the large branching ratio.
 - Excellent BG rejection with the boosted W/Z/h reconstruction using large-radius jets and the substructure
 - New signature in ATLAS/CMS SUSY search
- Confirmed with various branching ratio hypotheses and LSP types.
- No data excess in the SRs
- Most stringent limits set for scenarios with large Δm
 - 300-400 GeV improvement in the exclusion on the benchmark simplified models w.r.t. existing best limits by ATLAS/CMS.
 - Up to 1050 (900) GeV is excluded in the wino (higgsino) mass.

Back up

Muon g-2 motivated scenario

• W/Z \rightarrow qq tagging

- 3 variable cuts with p_T-dependent cut values
 - Jet mass window selection
 - Upper cut on D₂ energy correlation
 - Upper cut on n_{trk} track multiplicity

2-prong -> small D₂ 1-prong -> large D₂

$$ECF(1,\beta) = \sum_{i \in J} p_{Ti}$$

$$ECF(2,\beta) = \sum_{i < j \in J} p_{Ti} p_{Tj} (\Delta R_{ij})^{\beta}$$

$$ECF(3,\beta) = \sum_{i < j < k \in J} p_{Ti} p_{Tj} p_{Tk} (\Delta R_{ij} \Delta R_{ik} \Delta R_{jk})$$

$$D_2^{\beta=1} = \frac{ECF(3,\beta)(ECF(1,\beta))^3}{(ECF(2,\beta))^2}$$

(ATL-PHYS-PUB-2020-017)

W/Z→qq tagging performance

Official 50% WP vs redefined WP for this analysis

- n_{trk} cut of redefined WP is loosened.
- efficiency
 - 35 ~ 40 %
 (Official WP)
 - 45 ~ 50 % (Redefined WP)
- background rejection [¥]
 - (Official WP) = (Redefined WP)
 × 2

Event display

Systematic uncertainty

- Dominant systematic uncertainty is MC stats.
 - Experimental/Theory uncertainty are used in accordance with the recommendation.
 - Uncertainties for reducible backgrounds are evaluated as the extrapolation uncertainty.
 - Boson tagging uncertainty is the largest of the experimental uncertainties.
- Still smaller than data stat. uncertainty(70~100%) in SR.

CR/VR yields in 1L/1Y regions

Region	CR1L-4Q	VR1L-4Q	CR1L-2B2Q	VR1L-2B2Q
Observed	439	13	96	5
Post-fit	439 ± 21	22.0 ± 3.4	96 ± 10	7.8 ± 1.5
W+jets	325 ± 16	13.4 ± 2.2	48 ± 5	3.4 ± 0.7
Z+jets	4.45 ± 0.21	0.198 ± 0.035	0.58 ± 0.06	0.044 ± 0.012
γ +jets	< 1	-	0.57 ± 0.06	0.22 ± 0.10
VV	65.4 ± 3.1	4.1 ± 0.8	6.9 ± 0.7	0.55 ± 0.15
$V\gamma$	< 1	-	< 0.1	-
VVV	1.3 ± 0.6	0.52 ± 0.28	0.14 ± 0.08	0.09 ± 0.05
tī	30.4 ± 1.5	2.7 ± 0.4	24.0 ± 2.5	1.8 ± 0.4
t + X	11.0 ± 0.5	0.91 ± 0.21	13.2 ± 1.4	1.27 ± 0.34
$t\bar{t}+X$	1.5 ± 1.2	0.16 ± 0.12	1.5 ± 1.1	0.4 ± 0.4
Vh	< 0.1	< 0.001	0.69 ± 0.07	0.046 ± 0.009
Region	CR1Y-4Q	VR1Y-4Q	CR1Y-2B2Q	VR1Y-2B2Q
Region Observed	CR1Y-4Q 1001	VR1Y-4Q 38	CR1Y-2B2Q 127	VR1Y-2B2Q 14
Region Observed Post-fit	$ CR1Y-4Q \\ 1001 \\ 1001 \pm 32 $	VR1Y-4Q 38 43 ± 8	CR1Y-2B2Q 127 127 ± 11	VR1Y-2B2Q 14 8.6 ± 2.0
Region Observed Post-fit W+jets	$\begin{array}{c} \text{CR1Y-4Q} \\ 1001 \\ 1001 \pm 32 \\ 2.59 \pm 0.08 \end{array}$	VR1Y-4Q 38 43 ± 8 < 0.1	CR1Y-2B2Q 127 127 ± 11 < 0.1	VR1Y-2B2Q 14 8.6 ± 2.0 -
Region Observed Post-fit W+jets Z+jets	$CR1Y-4Q \\ 1001 \\ 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1$	VR1Y-4Q 38 43 ± 8 < 0.1 -	CR1Y-2B2Q 127 127 ± 11 < 0.1 < 0.01	VR1Y-2B2Q 14 8.6 ± 2.0 - -
RegionObservedPost-fit W +jets Z +jets γ +jets	$\begin{array}{c} \text{CR1Y-4Q} \\ 1001 \\ 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \end{array}$	VR1Y-4Q 38 43 ± 8 < 0.1 - 37 ± 7	CR1Y-2B2Q 127 127 ± 11 < 0.1 < 0.01 107 ± 11	VR1Y-2B2Q 14 8.6 ± 2.0 - 6.4 ± 1.6
RegionObservedPost-fit W +jets Z +jets γ +jets VV	$\begin{array}{c} \text{CR1Y-4Q} \\ 1001 \\ 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \\ < 1 \end{array}$	VR1Y-4Q 38 43 ± 8 < 0.1 - 37 ± 7 -	CR1Y-2B2Q 127 127 ± 11 < 0.1 < 0.01 107 ± 11	VR1Y-2B2Q 14 8.6 ± 2.0 - 6.4 ± 1.6 -
RegionObservedPost-fit W +jets Z +jets γ +jets VV $V\gamma$	$\begin{array}{c} \text{CR1Y-4Q} \\ 1001 \\ 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \\ < 1 \\ 131 \pm 4 \end{array}$	VR1Y-4Q 38 43 ± 8 < 0.1 - 37 ± 7 - 5.0 ± 0.9	CR1Y-2B2Q 127 127 ± 11 < 0.1 < 0.01 107 ± 11 - 12.6 ± 1.3	VR1Y-2B2Q 14 8.6 ± 2.0 - 6.4 ± 1.6 - 1.13 ± 0.27
RegionObservedPost-fit W +jets Z +jets γ +jets VV $V\gamma$ $V\gamma$ VVV	$\begin{array}{c} \text{CR1Y-4Q} \\ 1001 \\ 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \\ < 1 \\ 131 \pm 4 \\ < 0.1 \end{array}$	VR1Y-4Q 38 43 ± 8 < 0.1 - 37 ± 7 - 5.0 ± 0.9 < 0.01	CR1Y-2B2Q 127 127 ± 11 < 0.1 < 0.01 107 ± 11 - 12.6 ± 1.3 -	VR1Y-2B2Q 14 8.6 ± 2.0 - 6.4 ± 1.6 - 1.13 ± 0.27 -
RegionObservedPost-fit W +jets Z +jets γ +jets VV $V\gamma$ VV $t\bar{t}$	$\begin{array}{c} \text{CR1Y-4Q} \\ 1001 \\ 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \\ < 1 \\ 131 \pm 4 \\ < 0.1 \\ 1.28 \pm 0.04 \end{array}$	VR1Y-4Q 38 43 ± 8 < 0.1 - 37 ± 7 - 5.0 ± 0.9 < 0.01	CR1Y-2B2Q 127 127 \pm 11 < 0.1 < 0.01 107 \pm 11 - 12.6 \pm 1.3 - 0.57 \pm 0.06	VR1Y-2B2Q 14 8.6 ± 2.0 6.4 ± 1.6 - 1.13 ± 0.27 - 0.28 ± 0.18
RegionObservedPost-fit W +jets Z +jets γ +jets VV $V\gamma$ VV $t\bar{t}$ $t+X$	$\begin{array}{c} \text{CR1Y-4Q} \\ 1001 \\ 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \\ < 1 \\ 131 \pm 4 \\ < 0.1 \\ 1.28 \pm 0.04 \\ < 1 \end{array}$	VR1Y-4Q 38 43 ± 8 < 0.1 - 37 ± 7 - 5.0 ± 0.9 < 0.01	CR1Y-2B2Q 127 127 \pm 11 < 0.1 < 0.01 107 \pm 11 - 12.6 \pm 1.3 - 0.57 \pm 0.06 < 0.1	VR1Y-2B2Q 14 8.6 ± 2.0 6.4 ± 1.6 - 1.13 ± 0.27 - 0.28 ± 0.18
RegionObservedPost-fit W +jets Z +jets γ +jets VV $V\gamma$ VV $t\bar{t}$ $t+X$ $t\bar{t}+X$	$\begin{array}{c} \text{CR1Y-4Q} \\ 1001 \\ 1001 \pm 32 \\ 2.59 \pm 0.08 \\ < 1 \\ 856 \pm 28 \\ < 1 \\ 131 \pm 4 \\ < 0.1 \\ 1.28 \pm 0.04 \\ < 1 \\ 9 \pm 6 \end{array}$	VR1Y-4Q 38 43 ± 8 < 0.1 - 37 ± 7 - 5.0 ± 0.9 < 0.01 0.6 ± 0.5	CR1Y-2B2Q 127 127 \pm 11 < 0.1 < 0.01 107 \pm 11 - 12.6 \pm 1.3 - 0.57 \pm 0.06 < 0.1 7 \pm 5	$\begin{array}{c} VR1Y-2B2Q\\ 14\\ \hline 8.6 \pm 2.0\\ \hline \\ -\\ 6.4 \pm 1.6\\ \hline \\ -\\ 1.13 \pm 0.27\\ \hline \\ -\\ 0.28 \pm 0.18\\ \hline \\ -\\ 0.8 \pm 0.6\end{array}$

CR/VR yields in 1L/1Y regions

- 6 independent fits done in 0L4Q, 1L4Q, 1Y4Q, 0L2B2Q, 1L2B2Q, 1Y2B2Q category separately.
- A common NF assigned on the sum of reducible BGs in each fit.
- Uncertainty assigned per BG separately.
- Good agreement is found. Max deviation: 1.8σ deficit in VR1L-4Q, most likely due to the fluctuation.

Kinematic distributions in VRs

Kinematic distributions in SRs

CR/SR yields in 0L regions

Region	CR0L-4Q	CR0L-2B2Q	SR-4Q-WW	SR-4Q-WZ	SR-4Q-ZZ	SR-4Q-VV
Observed	129	83	2	3	1	3
Post-fit	129 ± 11	83 ± 9	1.9 ± 0.4	3.4 ± 0.7	1.9 ± 0.5	3.9 ± 0.8
W+jets	24.2 ± 2.2	16.6 ± 2.0	0.37 ± 0.08	0.60 ± 0.13	0.26 ± 0.07	0.69 ± 0.15
Z+jets	78 ± 7	44 ± 5	1.0 ± 0.21	1.8 ± 0.4	1.26 ± 0.32	2.1 ± 0.4
VV	21.5 ± 1.9	7.1 ± 0.9	0.35 ± 0.11	0.73 ± 0.24	0.26 ± 0.09	0.79 ± 0.25
VVV	0.9 ± 0.4	0.10 ± 0.05	0.17 ± 0.09	0.19 ± 0.10	0.11 ± 0.07	0.23 ± 0.12
$t\bar{t}$	1.38 ± 0.12	7.8 ± 0.9	0.039 ± 0.009	0.060 ± 0.018	0.025 ± 0.010	0.063 ± 0.018
t + X	1.32 ± 0.12	2.87 ± 0.34	0.015 ± 0.006	0.039 ± 0.016	0.012 ± 0.005	0.039 ± 0.016
$t\bar{t}+X$	1.3 ± 0.9	3.7 ± 2.6	-	-	-	-
Other	< 0.1	0.95 ± 0.11	< 0.001	< 0.001	< 0.001	< 0.001
Region	SR-2B2Q-WZ	SR-2B2Q-Wh	SR-2B2Q-ZZ	SR-2B2Q-Zh	SR-2B2Q-VZ	SR-2B2Q-Vh
Region Observed	SR-2B2Q-WZ 2	SR-2B2Q-Wh 0	SR-2B2Q-ZZ 2	SR-2B2Q-Zh 1	SR-2B2Q-VZ 2	SR-2B2Q-Vh 1
Region Observed Post-fit	$\frac{\text{SR-2B2Q-WZ}}{2}$ 1.6 ± 0.4	$SR-2B2Q-Wh$ 0 1.9 ± 0.7	$\frac{\text{SR-2B2Q-ZZ}}{2}$ 1.7 ± 0.5	SR-2B2Q-Zh 1 1.6 ± 0.5	$\frac{\text{SR-2B2Q-VZ}}{2}$	$\frac{\text{SR-2B2Q-Vh}}{1} \\ 2.5 \pm 0.8$
Region Observed Post-fit W+jets	$SR-2B2Q-WZ = 2 \\ 1.6 \pm 0.4 \\ 0.11 \pm 0.06$	SR-2B2Q-Wh 0 1.9 ± 0.7 0.24 ± 0.09	$SR-2B2Q-ZZ = 2 = 0.23 \pm 0.08$	SR-2B2Q-Zh 1 1.6 ± 0.5 0.26 ± 0.10	$SR-2B2Q-VZ = 2$ $2.2 \pm 0.6 = 0.26 \pm 0.09$	$SR-2B2Q-Vh \\ 1 \\ 2.5 \pm 0.8 \\ 0.26 \pm 0.09$
Region Observed Post-fit W+jets Z+jets	$SR-2B2Q-WZ = 2$ $1.6 \pm 0.4 = 0.11 \pm 0.06$ $0.84 \pm 0.27 = 0.000$	$SR-2B2Q-Wh 0 1.9 \pm 0.7 0.24 \pm 0.09 1.3 \pm 0.5$	$SR-2B2Q-ZZ = 2 = 0.23 \pm 0.08 = 0.78 \pm 0.23 \pm 0.08$	SR-2B2Q-Zh 1 1.6 ± 0.5 0.26 ± 0.10 0.66 ± 0.24	$SR-2B2Q-VZ = 2$ 2.2 ± 0.6 0.26 ± 0.09 1.15 ± 0.33	$SR-2B2Q-Vh 1 2.5 \pm 0.8 0.26 \pm 0.09 1.4 \pm 0.5$
Region Observed Post-fit W+jets Z+jets VV	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ 2 \\ \hline 1.6 \pm 0.4 \\ 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \end{array}$	$SR-2B2Q-Wh 0 1.9 \pm 0.7 0.24 \pm 0.09 1.3 \pm 0.5 0.09 \pm 0.03$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \end{array}$	$SR-2B2Q-Zh$ 1 1.6 ± 0.5 0.26 ± 0.10 0.66 ± 0.24 0.085 ± 0.032	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \end{array}$	SR-2B2Q-Vh 1 2.5 ± 0.8 0.26 ± 0.09 1.4 ± 0.5 0.085 ± 0.030
Region Observed Post-fit W+jets Z+jets VV VVV	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ 2 \\ \hline 1.6 \pm 0.4 \\ 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \end{array}$	$SR-2B2Q-Wh$ 0 1.9 ± 0.7 0.24 ± 0.09 1.3 ± 0.5 0.09 ± 0.03 < 0.01	$SR-2B2Q-ZZ$ 2 1.7 ± 0.5 0.23 ± 0.08 0.78 ± 0.23 0.32 ± 0.10 0.051 ± 0.032	$SR-2B2Q-Zh$ 1 1.6 ± 0.5 0.26 ± 0.10 0.66 ± 0.24 0.085 ± 0.032 0.011 ± 0.007	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \end{array}$	$SR-2B2Q-Vh$ 1 2.5 ± 0.8 0.26 ± 0.09 1.4 ± 0.5 0.085 ± 0.030 0.011 ± 0.007
RegionObservedPost-fit W +jets Z +jets VV VV	$\begin{array}{c} \text{SR-2B2Q-WZ}\\ \hline 2\\ \hline 1.6 \pm 0.4\\ \hline 0.11 \pm 0.06\\ \hline 0.84 \pm 0.27\\ \hline 0.33 \pm 0.11\\ \hline 0.047 \pm 0.027\\ \hline 0.016 \pm 0.006\\ \end{array}$	$SR-2B2Q-Wh$ 0 1.9 ± 0.7 0.24 ± 0.09 1.3 ± 0.5 0.09 ± 0.03 < 0.01 0.13 ± 0.04	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \\ 0.064 \pm 0.019 \end{array}$	$SR-2B2Q-Zh$ 1 1.6 ± 0.5 0.26 ± 0.10 0.66 ± 0.24 0.085 ± 0.032 0.011 ± 0.007 0.40 ± 0.16	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ \hline 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \\ 0.072 \pm 0.021 \end{array}$	$SR-2B2Q-Vh$ 1 2.5 ± 0.8 0.26 ± 0.09 1.4 ± 0.5 0.085 ± 0.030 0.011 ± 0.007 0.46 ± 0.18
RegionObservedPost-fit W +jets Z +jets VV VV $t\bar{t}$ $t+X$	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ 2 \\ \hline 1.6 \pm 0.4 \\ 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \\ 0.016 \pm 0.006 \\ 0.11 \pm 0.05 \end{array}$	$SR-2B2Q-Wh$ 0 1.9 ± 0.7 0.24 ± 0.09 1.3 ± 0.5 0.09 ± 0.03 < 0.01 0.13 ± 0.04 0.07 ± 0.04	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \\ 0.064 \pm 0.019 \\ 0.11 \pm 0.05 \end{array}$	$SR-2B2Q-Zh$ 1 1.6 ± 0.5 0.26 ± 0.10 0.66 ± 0.24 0.085 ± 0.032 0.011 ± 0.007 0.40 ± 0.16 0.041 ± 0.022	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \\ 0.072 \pm 0.021 \\ 0.11 \pm 0.05 \end{array}$	$SR-2B2Q-Vh$ 1 2.5 ± 0.8 0.26 ± 0.09 1.4 ± 0.5 0.085 ± 0.030 0.011 ± 0.007 0.46 ± 0.18 0.10 ± 0.05
RegionObservedPost-fit W +jets Z +jets VV VV $t\bar{t}$ $t+X$ $t\bar{t}+X$	$\begin{array}{c} \text{SR-2B2Q-WZ} \\ \hline 2 \\ \hline 1.6 \pm 0.4 \\ \hline 0.11 \pm 0.06 \\ 0.84 \pm 0.27 \\ 0.33 \pm 0.11 \\ 0.047 \pm 0.027 \\ 0.016 \pm 0.006 \\ 0.11 \pm 0.05 \\ 0.10 \pm 0.08 \end{array}$	$SR-2B2Q-Wh$ 0 1.9 ± 0.7 0.24 ± 0.09 1.3 ± 0.5 0.09 ± 0.03 < 0.01 0.13 ± 0.04 0.07 ± 0.04 $0.07^{+0.10}_{-0.07}$	$\begin{array}{c} \text{SR-2B2Q-ZZ} \\ 2 \\ \hline 1.7 \pm 0.5 \\ 0.23 \pm 0.08 \\ 0.78 \pm 0.23 \\ 0.32 \pm 0.10 \\ 0.051 \pm 0.032 \\ 0.064 \pm 0.019 \\ 0.11 \pm 0.05 \\ 0.14 \pm 0.12 \end{array}$	$SR-2B2Q-Zh$ 1 1.6 ± 0.5 0.26 ± 0.10 0.66 ± 0.24 0.085 ± 0.032 0.011 ± 0.007 0.40 ± 0.16 0.041 ± 0.022 $0.08^{+0.09}_{-0.08}$	$\begin{array}{c} \text{SR-2B2Q-VZ} \\ 2 \\ 2.2 \pm 0.6 \\ 0.26 \pm 0.09 \\ 1.15 \pm 0.33 \\ 0.37 \pm 0.11 \\ 0.06 \pm 0.04 \\ 0.072 \pm 0.021 \\ 0.11 \pm 0.05 \\ 0.18 \pm 0.14 \end{array}$	$SR-2B2Q-Vh$ 1 2.5 ± 0.8 0.26 ± 0.09 1.4 ± 0.5 0.085 ± 0.030 0.011 ± 0.007 0.46 ± 0.18 0.10 ± 0.05 $0.10^{+0.11}_{-0.10}$

Exclusion limits : Simplified model

Exclusion limits : $(\hat{H}, \hat{G}), (\hat{H}, \hat{a})$

Naturalness driven GGM gravitino-LSP model / axino-LSP model

- Naturalness driven
 - Light higgsino motivated by naturalness
 - Considering small higgsino-gravitino (axino) coupling $\rightarrow \tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ decays into $\tilde{\chi}_1^0$, then $\tilde{\chi}_1^0$ decays into $Z/h + \tilde{G}(\tilde{\chi}_1)$
 - Massless gravitino-LSP or massive axino-LSP
 - Branching ratio to Z vs h is a free parameter

Upper limits on BSM signal cross sections

Model independent fit (calculated using toy MC)

Signal region	$\langle \epsilon \sigma \rangle_{obs}^{95}$ [fb]	S_{obs}^{95}	$S_{\mathrm exp}^{95}$	CL_B	p(s=0)(Z)
SR-4Q-WW	0.032	4.5	$4.2^{+1.8}_{-1.0}$	0.55	0.44 (0.15)
SR-4Q-WZ	0.036	5.0	$5.1^{+2.1}_{-1.3}$	0.46	0.50 (0.00)
SR-4Q-ZZ	0.025	3.6	$4.1^{+1.8}_{-1.0}$	0.30	0.50(0.00)
SR-4Q-VV	0.034	4.7	$5.3^{+2.3}_{-1.5}$	0.38	0.50 (0.00)
SR-2B2Q-WZ	0.033	4.7	$4.0^{+1.7}_{-0.7}$	0.66	0.33 (0.44)
SR-2B2Q-Wh	0.022	3.1	$3.9^{+1.3}_{-0.7}$	0.28	0.50(0.00)
SR-2B2Q-ZZ	0.033	4.5	$4.1^{+1.7}_{-0.9}$	0.63	0.37 (0.32)
SR-2B2Q-Zh	0.026	3.6	$3.9^{+1.4}_{-0.7}$	0.38	0.50(0.00)
SR-2B2Q-VZ	0.032	4.4	$4.4^{+1.8}_{-1.0}$	0.50	0.50(0.00)
SR-2B2Q-Vh	0.026	3.6	$4.4^{+1.7}_{-1.0}$	0.24	0.50 (0.00)
Disc-SR-2B2Q	0.034	4.8	$5.6^{+2.4}_{-1.6}$	0.30	0.50 (0.00)
Disc-SR-Incl	0.042	5.9	$7.2^{+2.2}_{-2.0}$	0.27	0.50 (0.00)

Disc-SR-2B2Q : the logical union of SR-2B2Q-VZ and SR-2B2Q-Vh Disc-SR-Incl : the logical union of SR-4Q-VV and Disc-SR-2B2Q